コード例 #1
0
ファイル: dataobj.cpp プロジェクト: jfahren/BayesX
void droprun(dataobject & o)
  {
  list<ST::string> names = o.m.getModelVarnames();
  ST::string boolexp = o.methods[1].getexpression();

  if ( (names.size() > 0) && (boolexp.length() == 0) )
	 {
	 o.d.dropvariables(names);
	 o.errormessages = o.d.geterrormessages();
	if (o.errormessages.empty())
	  o.out("NOTE: " + ST::inttostring(names.size()) + " variables dropped\n");
	 }
  else if ( (names.size() == 0) && (boolexp.length() > 0) )
	 {
     unsigned nrelim;
	 nrelim = o.d.dropobservations(boolexp);
	 o.errormessages = o.d.geterrormessages();
	 if (o.errormessages.empty())
		o.out("NOTE: " + ST::inttostring(nrelim) + " observations dropped\n");
	 }
  else if ( (names.size() == 0) && (boolexp.length() == 0) )
	 {
	 o.outerror("ERROR: varlist or boolean expression expected\n");
	 }
  else
    o.outerror("ERROR: dropping variables and observations in one step not allowed\n");

  o.changedescription();
  }
コード例 #2
0
ファイル: use.cpp プロジェクト: cran/BayesXsrc
void usePathWrite::parse(const ST::string & usetext)
  {

  path = "";
  errormessages.clear();
  notext = true;

  if (usetext.length() > 0)
	 {
	 notext = false;
	 int k = usetext.isvalidfile();

	 if (k == 1)
		{
		errormessages.push_back("ERROR: file " + usetext +
		" could not be opened for writing\n");
		alreadyexisting = false;
		}
	 else if (k == 0)
		alreadyexisting = false;
	 else
		alreadyexisting = true;

	 if (errormessages.empty())
		path = usetext;
	 }

  }
コード例 #3
0
ファイル: use.cpp プロジェクト: cran/BayesXsrc
void useDataset::parse(const ST::string & usetext)
  {

  errormessages.clear();
  notext = true;

  if (usetext.length() > 0)
	 {
	 notext = false;
	 if (! datasets->empty())
		{
		int i = 0;
		bool existing = false;
		while ( (i < datasets->size()) && (existing == false) )
		  {
		  if (usetext == (*((*datasets)[i])).getname())
			 {
			 existing = true;
			 datasetpointer = (*datasets)[i];
			 }
		  i++;
		  }
		if (existing == false)
		  errormessages.push_back(
		  "ERROR: dataset " + usetext + " is not existing\n");

		}
	 else
		errormessages.push_back(
		"ERROR: dataset " + usetext + " is not existing\n");
	 }

  }
コード例 #4
0
ファイル: dataobj.cpp プロジェクト: jfahren/BayesX
void outfilerun(dataobject & o)
  {

  unsigned nrwritten;
  ST::string path  = o.uwrite.getPath();
  list<ST::string> names = o.m.getModelVarnames();
  ST::string expression = o.methods[6].getexpression();

  if ( (o.uwrite.isexisting() == true) && (o.replace.getvalue() == false) )
	 o.errormessages.push_back(
	 "ERROR: file " + path + " is already existing\n");
  else
	 {
	 ofstream fout;
	 ST::open(fout,path);
	 if (expression.length() > 0)
		{
		realvar v = o.d.eval_exp(expression);
        #if defined(JAVA_OUTPUT_WINDOW)
		nrwritten = o.d.write(o.adminb_p,fout,names,o.header.getvalue(),v);
        #else
        nrwritten = o.d.write(fout,names,o.header.getvalue(),v);
        #endif
		}
	 else
       {
        #if defined(JAVA_OUTPUT_WINDOW)
	   nrwritten = o.d.write(o.adminb_p,fout,names,o.header.getvalue());
       #else
	   nrwritten = o.d.write(fout,names,o.header.getvalue());
       #endif
       }

     o.errormessages = o.d.geterrormessages();
     if (o.errormessages.empty())
       {
       o.out("NOTE: " + ST::inttostring(names.size()) + " variable(s) with " +
             ST::inttostring(nrwritten) +  " observations written to file\n");
       o.out("      " + path + "\n");
       }
     else
       {
       fout.close();
       remove(path.strtochar());
       }


	 }
  }
コード例 #5
0
ファイル: use.cpp プロジェクト: cran/BayesXsrc
void usePathRead::parse(const ST::string & usetext)
  {

  path = "";
  errormessages.clear();
  notext = true;

  if (usetext.length() > 0)
	 {
	 notext = false;
	 if (usetext.isexistingfile() == 1)
		errormessages.push_back(
		"ERROR: file " + usetext + " could not be opened for reading\n");
	 if (errormessages.empty())
		path = usetext;
	 }

  }
コード例 #6
0
ファイル: FC_nonp_variance.cpp プロジェクト: jfahren/BayesX
void FC_nonp_variance_varselection::outresults(ofstream & out_stata,ofstream & out_R,
                                  const ST::string & pathresults)
  {

  if (pathresults.isvalidfile() != 1)
    {

    ST::string pathresults_delta = pathresults.substr(0,pathresults.length()-4) + "_delta.res";
    ST::string pathresults_omega = pathresults.substr(0,pathresults.length()-4) + "_omega.res";

    FC_nonp_variance::outresults(out_stata,out_R,pathresults);

    FC_delta.outresults(out_stata,out_R,"");
    FC_omega.outresults(out_stata,out_R,pathresults_omega);


    optionsp->out("    Inclusion probability: " + ST::doubletostring(FC_delta.betamean(0,0),6)  + "\n");
    optionsp->out("\n");
    optionsp->out("    Results for the inclusion probabilities are also stored in file\n");
    optionsp->out("    " +  pathresults_delta + "\n");
    optionsp->out("\n");
    optionsp->out("\n");

    optionsp->out("    Inclusion probability parameter omega:\n");
    optionsp->out("\n");
    FC_omega.outresults_singleparam(out_stata,out_R,"");
    optionsp->out("    Results for the inclusion probability parameter omega are also stored in file\n");
    optionsp->out("    " +  pathresults_omega + "\n");
    optionsp->out("\n");
    optionsp->out("\n");

    // deltas
    ofstream ou(pathresults_delta.strtochar());

    ou << "pmean" << endl;
    ou << FC_delta.betamean(0,0) << endl;
    }


//  FC_nonp_variance::outresults(out_stata,out_R,pathresults);

  }
コード例 #7
0
ファイル: FC_predict_mult.cpp プロジェクト: jfahren/BayesX
void FC_predict_mult::outresults_deviance(void)
    {

    ST::string l1 = ST::doubletostring(optionsp->lower1,4);
    ST::string l2 = ST::doubletostring(optionsp->lower2,4);
    ST::string u1 = ST::doubletostring(optionsp->upper1,4);
    ST::string u2 = ST::doubletostring(optionsp->upper2,4);
    l1 = l1.replaceallsigns('.','p');
    l2 = l2.replaceallsigns('.','p');
    u1 = u1.replaceallsigns('.','p');
    u2 = u2.replaceallsigns('.','p');


    ST::string meanstr = "    Mean:          ";
    unsigned l_meanstr = meanstr.length();

    ST::string stdstr =  "    Std. Dev:      ";
    unsigned l_stdstr = stdstr.length();

    ST::string l1str = "    " + l1 + "% Quantile: ";
    unsigned l_l1str = l1str.length();

    ST::string l2str = "    " + l2 + "% Quantile: ";
    unsigned l_l2str = l2str.length();

    ST::string medianstr = "    50% Quantile: ";
    unsigned l_medianstr = medianstr.length();

    ST::string u1str = "    " + u1 + "% Quantile: ";
    unsigned l_u1str = u1str.length();

    ST::string u2str = "    " + u2 + "% Quantile: ";
    unsigned l_u2str = u2str.length();


    optionsp->out("  ESTIMATION RESULT FOR THE DEVIANCE: \n",true);
    optionsp->out("\n");

    double devhelpm = FC_deviance.betamean(0,0);
    double devhelp;

    unsigned d;
    if (devhelpm > 1000000000)
      d = 14;
    else if (devhelpm > 1000000)
      d = 11;
    else
      d = 8;

    optionsp->out(meanstr + ST::string(' ',20-l_meanstr) +
    ST::doubletostring(devhelpm,d) + "\n");


    devhelp = sqrt(FC_deviance.betavar(0,0));
    optionsp->out(stdstr + ST::string(' ',20-l_stdstr) +
    ST::doubletostring(devhelp,d) +  "\n");

    devhelp = FC_deviance.betaqu_l1_lower(0,0);
    optionsp->out(l1str +  ST::string(' ',20-l_l1str) +
    ST::doubletostring(devhelp,d) +  "\n");

    devhelp = FC_deviance.betaqu_l2_lower(0,0);
    optionsp->out(l2str +  ST::string(' ',20-l_l2str) +
    ST::doubletostring(devhelp,d) +  "\n");

    devhelp = FC_deviance.betaqu50(0,0);
    optionsp->out(medianstr +  ST::string(' ',20-l_medianstr) +
    ST::doubletostring(devhelp,d) +  "\n");


    devhelp = FC_deviance.betaqu_l2_upper(0,0);
    optionsp->out(u1str +  ST::string(' ',20-l_u1str) +
    ST::doubletostring(devhelp,d) +  "\n");


    devhelp = FC_deviance.betaqu_l1_upper(0,0);
    optionsp->out(u2str +  ST::string(' ',20-l_u2str) +
    ST::doubletostring(devhelp,d) +  "\n");

    optionsp->out("\n");

    optionsp->out("\n");

    }
コード例 #8
0
ファイル: FC_predict_mult.cpp プロジェクト: jfahren/BayesX
void FC_predict_mult::outresults_DIC(ofstream & out_stata, ofstream & out_R,
                                     const ST::string & pathresults)
  {

  ST::string pathresultsdic = pathresults.substr(0,pathresults.length()-4) + "_DIC.res";
  ofstream out(pathresultsdic.strtochar());

  out_R << "DIC=" << pathresultsdic << ";" <<  endl;

  optionsp->out("    Results for the DIC are stored in file\n");
  optionsp->out("    " +  pathresultsdic + "\n");
  optionsp->out("\n");

  double deviance2=0;

  double devhelp;

  vector<double *> worklinp;
  vector<double *> workresponse;
  vector<double *> workweight;
  vector<datamatrix *>   aux;

  unsigned j;

  for (j=0;j<likep.size();j++)
    {

    worklinp.push_back(betamean.getV()+j);

    workresponse.push_back(likep[j]->response.getV());

    workweight.push_back(likep[j]->weight.getV());

    aux.push_back(likep[j]->get_auxiliary_parameter(auxpostmean));

    }

  unsigned i;

  for (i=0;i<likep[0]->nrobs;i++)
    {

    likep[likep.size()-1]->compute_deviance_mult(workresponse,
                                                 workweight,worklinp,
                                                 &devhelp,aux);

    deviance2 += devhelp;

    int s = likep.size();
    int bs = betamean.cols();

    for (j=0;j<s;j++)
      {
      worklinp[j]+=bs;
      workresponse[j]++;
      workweight[j]++;
      }

    }


  double devhelpm = FC_deviance.betamean(0,0);

  unsigned d;
  if (devhelpm > 1000000000)
    d = 14;
  else if (devhelpm > 1000000)
    d = 11;
  else
    d = 8;

  out << "deviance   pd dic" << endl;

  optionsp->out("  ESTIMATION RESULTS FOR THE DIC: \n",true);
  optionsp->out("\n");

  optionsp->out("    Deviance(bar_mu):           " +
  ST::doubletostring(deviance2,d) + "\n");
  out << deviance2 << "   ";

  optionsp->out("    pD:                         " +
  ST::doubletostring(devhelpm-deviance2,d) + "\n");
  out << (devhelpm-deviance2) << "   ";

  optionsp->out("    DIC:                        " +
  ST::doubletostring(2*devhelpm-deviance2,d) + "\n");
  optionsp->out("\n");
  out << (2*devhelpm-deviance2) << "   " << endl;

  optionsp->out("\n");

  }
コード例 #9
0
ファイル: FC_nonp_variance.cpp プロジェクト: jfahren/BayesX
void FC_nonp_variance::outresults(ofstream & out_stata,ofstream & out_R,
                                  const ST::string & pathresults)
  {

  FC::outresults(out_stata,out_R,"");

  ST::string l1 = ST::doubletostring(optionsp->lower1,4);
  ST::string l2 = ST::doubletostring(optionsp->lower2,4);
  ST::string u1 = ST::doubletostring(optionsp->upper1,4);
  ST::string u2 = ST::doubletostring(optionsp->upper2,4);

  ST::string nl1 = ST::doubletostring(optionsp->lower1,4);
  ST::string nl2 = ST::doubletostring(optionsp->lower2,4);
  ST::string nu1 = ST::doubletostring(optionsp->upper1,4);
  ST::string nu2 = ST::doubletostring(optionsp->upper2,4);
  nl1 = nl1.replaceallsigns('.','p');
  nl2 = nl2.replaceallsigns('.','p');
  nu1 = nu1.replaceallsigns('.','p');
  nu2 = nu2.replaceallsigns('.','p');

  ST::string vstr;


  if (optionsp->samplesize > 1)
    {

    vstr = "    Mean:         ";
    optionsp->out(vstr + ST::string(' ',20-vstr.length()) +
    ST::doubletostring(betamean(0,0),6) + "\n");

    vstr = "    Std. dev.:    ";

    optionsp->out(vstr + ST::string(' ',20-vstr.length()) +
    ST::doubletostring(sqrt(betavar(0,0)),6) + "\n");

    vstr = "    " + l1 + "% Quantile: ";
    optionsp->out(vstr + ST::string(' ',20-vstr.length()) +
    ST::doubletostring(betaqu_l1_lower(0,0),6) + "\n");

    vstr = "    " + l2 + "% Quantile: ";
    optionsp->out(vstr + ST::string(' ',20-vstr.length()) +
    ST::doubletostring(betaqu_l2_lower(0,0),6) + "\n");

    vstr = "    50% Quantile: ";
    optionsp->out(vstr + ST::string(' ',20-vstr.length()) +
    ST::doubletostring(betaqu50(0,0),6) + "\n");

    vstr = "    " + u1 + "% Quantile: ";
    optionsp->out(vstr + ST::string(' ',20-vstr.length()) +
    ST::doubletostring(betaqu_l2_upper(0,0),6) + "\n");

    vstr = "    " + u2 + "% Quantile: ";
    optionsp->out(vstr + ST::string(' ',20-vstr.length()) +
    ST::doubletostring(betaqu_l1_upper(0,0),6) + "\n");

    optionsp->out("\n");

    }
  else
    {
    optionsp->out("    Smoothing parameter: " +
    ST::doubletostring(betamean(0,1),6) + "\n");

    optionsp->out("\n");
    }

//  out_R << "term=" << title <<  ";" << endl;

  if (pathresults.isvalidfile() != 1)
    {

    optionsp->out("    Results for the variance component are also stored in file\n");
    optionsp->out("    " +  pathresults + "\n");
    optionsp->out("\n");

    ST::string paths = pathresults.substr(0,pathresults.length()-4) +
                                 "_sample.raw";

    out_R << "pathvarsample=" << paths << endl; 
//    out_R << "filetype=param; path=" << pathresults << ";" <<  endl;

    ofstream ou(pathresults.strtochar());

    if (optionsp->samplesize > 1)
      {
      ou << "pmean  pstd  pqu"  << nl1 << "   pqu" << nl2 << "  pmed pqu" <<
      nu1 << "   pqu" << nu2 << endl;
      }
    else
      {
      ou << "pmean" << endl;
      }

    ou << betamean(0,0) << "  ";
    if (optionsp->samplesize > 1)
      {
      if (betavar(0,0) < 0.0000000000001)
        ou << 0 << "  ";
      else
        ou << sqrt(betavar(0,0)) << "  ";
      ou << betaqu_l1_lower(0,0) << "  ";
      ou << betaqu_l2_lower(0,0) << "  ";
      ou << betaqu50(0,0) << "  ";
      ou << betaqu_l2_upper(0,0) << "  ";
      ou << betaqu_l1_upper(0,0) << "  " << endl;
      }

    optionsp->out("\n");
    }

  }
コード例 #10
0
ファイル: admin.cpp プロジェクト: cran/BayesXsrc
bool administrator::parse(ST::string & in)
  {

  errormessages.clear();

  ST::string objectname;
  ST::string firsttoken = in.getFirstToken(" .");
  int pointpos = in.checksign('.');

  if (firsttoken.length() > 0)
	 {
	 if ( (firsttoken == "quit") || (firsttoken == "exit") )
		return true;
	 else if (firsttoken == "delimeter")
		{
		vector<ST::string> token = in.strtoken(" ");
		if (token.size() != 3)
		  errormessages.push_back("ERROR: invalid syntax\n");
		else if (token[1] != "=")
		  errormessages.push_back("ERROR: \"=\" expected\n");
		else
		  {
		  if (token[2] == "newline")
			 delim = '\n';
		  else if (token[2].length() > 1)
			 errormessages.push_back("ERROR: invalid delimeter symbol\n");
		  else
			 delim = token[2][0];
		  }

		return false;
		} // end: delimeter
	 else if (firsttoken == "usefile")
		{

		vector<ST::string> token = in.strtoken(" ");
		if (token.size() < 2)
		  errormessages.push_back("ERROR: filename expected\n");
		else if (token.size() > 2)
		  errormessages.push_back("ERROR: invalid syntax\n");

		if (errormessages.empty())
		  {
		  ST::string path = token[1];
		  if (path.isexistingfile() == 1)
			 errormessages.push_back("ERROR: file " + path +
											 " could not be opened\n");
		  else
			 {
			 ST::string in;
			 ifstream infile;
			 input = &infile;
			 ST::open(infile,path);
			 while (! infile.eof())
				{
				ST::getline(infile,10000,in,delim);
				if (delim != '\n')
				 in = in.replaceallsigns('\n',' ');
	         in = in.eatwhitespace();


				out("> " + in + "\n");
				parse(in);
				}

			 }
		  }

		input = &cin;
		out(errormessages);
		return false;

		}
	 else if (firsttoken == "logopen")
		{
		model m;
		simpleoption replace("replace",false);
		optionlist logoptions;
		logoptions.push_back(&replace);
		usePathWrite uw;

		command logopen("logopen",&m,&logoptions,&uw,notallowed,notallowed,
							 notallowed,notallowed,optional,required);

		logopen.parse(in);
		errormessages = logopen.geterrormessages();
		if (logfileopen == true)
		  errormessages.push_back("ERROR: logfile is already open\n");
		if (errormessages.empty())
		  {
		  logfileopen = true;
		  logfilepath = uw.getPath();
		  if ((replace.getvalue() == false) && (uw.isexisting() == true))
            {
            ST::open(logout,logfilepath,ios::app);
            }
		  else
            {
            ST::open(logout,logfilepath);
            }
		  }
		else
		  out(errormessages);
		return false;
		}  // end: logopen
	 else if (firsttoken == "logclose")
		{
		if (logfileopen == false)
		  {
		  errormessages.push_back("ERROR: currently no logfile open\n");
		  out(errormessages);
		  }
		else
		  {
		  logfileopen = false;
		  logout.close();
		  out("NOTE: logfile " + logfilepath + " closed\n");
		  }
		return false;
		}  // end: logclose
	 else if (firsttoken == "drop")
		{

		modelStandard m;
		optionlist dropoptions;
		usePathWrite uw;

		command drop("drop",&m,&dropoptions,&uw,required,notallowed,
							 notallowed,notallowed,notallowed,notallowed);

		drop.parse(in);
		errormessages = drop.geterrormessages();
		vector<ST::string> objectnames =  m.getModelVarnamesAsVector();
		if (objectnames.size() == 0)
		  errormessages.push_back("ERROR: objectlist required\n");

		if (errormessages.empty())
		  {

		  int j;
		  for (j=0;j<objectnames.size();j++)
			 {

			 int recognized = 0;
			 int i=0;
			 while ( (i < objects.size()) && (recognized == 0) )
				{

				if ( objectnames[j] == objects[i]->getname())
				  {
				  ST::string type = objects[i]->gettype();
				  dropobjects(objectnames[j],type);
				  recognized = 1;
				  }
				i++;
				}

			  if (recognized == 0)
				 errormessages.push_back(
				 "ERROR: object " + objectnames[j] + " is not existing\n");

			 } // end: for (j=0;j<objectnames.size();j++)

		  }  // end: if (errormessages.empty())

		out(errormessages);
		return false;
		} // end: drop
	 else if (firsttoken.isinlist(objecttyps) >= 0)      // create a new object
		{


		if (pointpos == -1)
		  objectname = create(in);
		else
		  objectname = create(in.substr(0,pointpos));


		if ( (errormessages.empty()) && (pointpos > 0) )
		  {
		  if (in.length()-1-pointpos <= 0)
			 errormessages.push_back("ERROR: invalid syntax\n");
		  else
			parseexisting(objectname,in.substr(pointpos+1,in.length()-1-pointpos));
		  }

		out(errormessages);
		return false;

		}               // end: create a new object
	 else     // existing object
		{
		if (pointpos != firsttoken.length())
		  errormessages.push_back("ERROR: invalid syntax\n");
		else
		  if (in.length() > pointpos+1)
			parseexisting(firsttoken,in.substr(pointpos+1,in.length()-pointpos-1));
		  else
			 errormessages.push_back("ERROR: invalid syntax\n");

		out(errormessages);
		return false;

		}

	 }  // end: if (firsttoken.length() > 0)
  else                                                  // empty command
	 return false;

  }
コード例 #11
0
ファイル: FC_cv.cpp プロジェクト: jfahren/BayesX
void FC_cv::outresults(ofstream & out_stata, ofstream & out_R,
                            const ST::string & pathresults)
  {


  if (pathresults.isvalidfile() != 1)
    {

    FC::outresults(out_stata,out_R,pathresults);

    optionsp->out("  Marshall-Spiegelhalter Cross Validation: \n",true);
    optionsp->out("\n");

    optionsp->out("    Estimated individual observation samples are stored in\n");
    optionsp->out("    " +  pathresults + "\n");
    optionsp->out("\n");


    ST::string pathresults_like = pathresults.substr(0,pathresults.length()-4)+
                                  "_like.res";

    FC_sampled_l.outresults(out_stata,out_R,pathresults_like);

    optionsp->out("    Estimated individual observation likelihoods are stored in\n");
    optionsp->out("    " +  pathresults_like + "\n");
    optionsp->out("\n");



//    unsigned nrobs = sampled_etas.rows();
    unsigned i;

    /*
    ofstream outres(pathresults.strtochar());

    for(j=0;j<sampled_etas.cols();j++)
      outres << "s_eta_" << (j+1) << "  ";

    for(j=0;j<sampled_etas.cols();j++)
      outres << "s_resp_" << (j+1) << "  ";

    outres << endl;

    for (i=0;i<nrobs;i++)
      {

      for(j=0;j<sampled_etas.cols();j++)
        outres << sampled_etas(i,j) << "  ";

      for(j=0;j<sampled_responses.cols();j++)
        outres << sampled_responses(i,j) << "  ";

      outres << endl;

      }
     */

    // Energy score

    double es = compute_energyscore();


    ST::string pathresults_e = pathresults.substr(0,pathresults.length()-4)+
                               "_energy.res";


    ofstream out2(pathresults_e.strtochar());
    out2 << "id   score" << endl;

    for (i=0;i<e_score.rows();i++)
      out2 << effectvalues[i] << "  " << e_score(i,0) << endl;

    // Log-score


    double ls = compute_logscore();

    ST::string pathresults_l = pathresults.substr(0,pathresults.length()-4)+
                               "_logscore.res";

    ofstream out3(pathresults_l.strtochar());
    out3 << "id   score" << endl;

    for (i=0;i<e_score.rows();i++)
      out3 << effectvalues[i] << "  " << log_score(i,0) << endl;

    optionsp->out("    Estimated energy scores are stored in\n");
    optionsp->out("    " +  pathresults_e + "\n");
    optionsp->out("\n");

    optionsp->out("    Estimated log-scores are stored in\n");
    optionsp->out("    " +  pathresults_l + "\n");
    optionsp->out("\n");

    optionsp->out("    Mean energy score: " + ST::doubletostring(es,8) + "\n");
    optionsp->out("    Mean log score: " + ST::doubletostring(ls,8) + "\n");


    }   // end if (pathresults.isvalidfile() != 1)


  }