예제 #1
0
파일: lpc.cpp 프로젝트: b14ckkn19ht/Shang
void
Autocorrelation (word * s /* [0..159]     IN/OUT  */ ,
		 longword * L_ACF /* [0..8]       OUT     */ )
/*
 *  The goal is to compute the array L_ACF[k].  The signal s[i] must
 *  be scaled in order to avoid an overflow situation.
 */
{
  register int k, i;

  word temp;
  word smax;
  word scalauto, n;
  word *sp;
  word sl;

  /*  Search for the maximum.
   */
  smax = 0;
  for (k = 0; k <= 159; k++)
    {
      temp = GSM_ABS (s[k]);
      if (temp > smax)
	smax = temp;
    }

  /*  Computation of the scaling factor.
   */
  if (smax == 0)
    scalauto = 0;
  else
    scalauto = 4 - gsm_norm ((longword) smax << 16);	/* sub(4,..) */

  if (scalauto > 0 && scalauto <= 4)
    {
      n = scalauto;
      for (k = 0; k <= 159; k++)
	s[k] = GSM_MULT_R (s[k], 16384 >> (n - 1));
    }
예제 #2
0
static void LARp_to_rp(gsmword * LARp)
{
	int 		i;
	gsmword	temp;

	for (i = 1; i <= 8; i++, LARp++)
    {

		if (*LARp < 0)
        {
			temp = (gsmword)GSM_ABS( *LARp );
			*LARp = (gsmword)(- ((temp < 11059) ? SASL( temp, 1 )
				: ((temp < 20070) ? temp + 11059
				:  ( SASR( temp, 2 ) + 26112 ))));
		}
        else
        {
			temp  = *LARp;
			*LARp =    (gsmword)((temp < 11059) ? SASL( temp, 1 )
				: ((temp < 20070) ? temp + 11059
				:  ( SASR( temp, 2 ) + 26112 )));
		}
	}
}
예제 #3
0
static void Calculation_of_the_LTP_parameters (
	register int16_t	* din,		/* [0..39]	IN	*/
	register int16_t	* dp,		/* [-120..-1]	IN	*/
	int16_t		* bc_out,	/* 		OUT	*/
	int16_t		* Nc_out	/* 		OUT	*/)
{
	register int	k, lambda ;
	int16_t	Nc, bc ;

	float	wt_float [40] ;
	float	dp_float_base [120], * dp_float = dp_float_base + 120 ;

	int32_t	L_max, L_power ;
	int16_t		R, S, dmax, scal ;
	register int16_t	temp ;

	/*  Search of the optimum scaling of d [0..39].
	 */
	dmax = 0 ;

	for (k = 0 ; k <= 39 ; k++)
	{	temp = din [k] ;
		temp = GSM_ABS (temp) ;
		if (temp > dmax) dmax = temp ;
		}

	temp = 0 ;
	if (dmax == 0) scal = 0 ;
	else
	{	assert (dmax > 0) ;
		temp = gsm_norm ((int32_t) dmax << 16) ;
		}

	if (temp > 6) scal = 0 ;
	else scal = 6 - temp ;

	assert (scal >= 0) ;

	/*  Initialization of a working array wt */

	for (k = 0 ; k < 40 ; k++)		wt_float [k] = SASR_W (din [k], scal) ;
	for (k = -120 ; k < 0 ; k++)	dp_float [k] = dp [k] ;

	/* Search for the maximum cross-correlation and coding of the LTP lag
	 */
	L_max = 0 ;
	Nc = 40 ;	/* index for the maximum cross-correlation */

	for (lambda = 40 ; lambda <= 120 ; lambda += 9)
	{	/*  Calculate L_result for l = lambda .. lambda + 9. */
		register float *lp = dp_float - lambda ;

		register float W ;
		register float a = lp [-8], b = lp [-7], c = lp [-6],
						d = lp [-5], e = lp [-4], f = lp [-3],
						g = lp [-2], h = lp [-1] ;
		register float E ;
		register float S0 = 0, S1 = 0, S2 = 0, S3 = 0, S4 = 0,
						S5 = 0, S6 = 0, S7 = 0, S8 = 0 ;

#		undef STEP
#		define	STEP(K, a, b, c, d, e, f, g, h) \
			W = wt_float [K] ;		\
			E = W * a ; S8 += E ;		\
			E = W * b ; S7 += E ;		\
			E = W * c ; S6 += E ;		\
			E = W * d ; S5 += E ;		\
			E = W * e ; S4 += E ;		\
			E = W * f ; S3 += E ;		\
			E = W * g ; S2 += E ;		\
			E = W * h ; S1 += E ;		\
			a = lp [K] ;				\
			E = W * a ; S0 += E

#		define	STEP_A(K)	STEP (K, a, b, c, d, e, f, g, h)
#		define	STEP_B(K)	STEP (K, b, c, d, e, f, g, h, a)
#		define	STEP_C(K)	STEP (K, c, d, e, f, g, h, a, b)
#		define	STEP_D(K)	STEP (K, d, e, f, g, h, a, b, c)
#		define	STEP_E(K)	STEP (K, e, f, g, h, a, b, c, d)
#		define	STEP_F(K)	STEP (K, f, g, h, a, b, c, d, e)
#		define	STEP_G(K)	STEP (K, g, h, a, b, c, d, e, f)
#		define	STEP_H(K)	STEP (K, h, a, b, c, d, e, f, g)

		STEP_A (0) ; STEP_B (1) ; STEP_C (2) ; STEP_D (3) ;
		STEP_E (4) ; STEP_F (5) ; STEP_G (6) ; STEP_H (7) ;

		STEP_A (8) ; STEP_B (9) ; STEP_C (10) ; STEP_D (11) ;
		STEP_E (12) ; STEP_F (13) ; STEP_G (14) ; STEP_H (15) ;

		STEP_A (16) ; STEP_B (17) ; STEP_C (18) ; STEP_D (19) ;
		STEP_E (20) ; STEP_F (21) ; STEP_G (22) ; STEP_H (23) ;

		STEP_A (24) ; STEP_B (25) ; STEP_C (26) ; STEP_D (27) ;
		STEP_E (28) ; STEP_F (29) ; STEP_G (30) ; STEP_H (31) ;

		STEP_A (32) ; STEP_B (33) ; STEP_C (34) ; STEP_D (35) ;
		STEP_E (36) ; STEP_F (37) ; STEP_G (38) ; STEP_H (39) ;

#		undef STEP_A
#		undef STEP_B
#		undef STEP_C
#		undef STEP_D
#		undef STEP_E
#		undef STEP_F
#		undef STEP_G
#		undef STEP_H

		if (S0 > L_max) { L_max = S0 ; Nc = lambda ; }
		if (S1 > L_max) { L_max = S1 ; Nc = lambda + 1 ; }
		if (S2 > L_max) { L_max = S2 ; Nc = lambda + 2 ; }
		if (S3 > L_max) { L_max = S3 ; Nc = lambda + 3 ; }
		if (S4 > L_max) { L_max = S4 ; Nc = lambda + 4 ; }
		if (S5 > L_max) { L_max = S5 ; Nc = lambda + 5 ; }
		if (S6 > L_max) { L_max = S6 ; Nc = lambda + 6 ; }
		if (S7 > L_max) { L_max = S7 ; Nc = lambda + 7 ; }
		if (S8 > L_max) { L_max = S8 ; Nc = lambda + 8 ; }
	}
	*Nc_out = Nc ;

	L_max <<= 1 ;

	/*  Rescaling of L_max
	 */
	assert (scal <= 100 && scal >= -100) ;
	L_max = L_max >> (6 - scal) ;	/* sub (6, scal) */

	assert (Nc <= 120 && Nc >= 40) ;

	/*   Compute the power of the reconstructed short term residual
	 *   signal dp [..]
	 */
	L_power = 0 ;
	for (k = 0 ; k <= 39 ; k++)
	{	register int32_t L_temp ;

		L_temp = SASR_W (dp [k - Nc], 3) ;
		L_power += L_temp * L_temp ;
		}
	L_power <<= 1 ;	/* from L_MULT */

	/*  Normalization of L_max and L_power
	 */

	if (L_max <= 0)
	{	*bc_out = 0 ;
		return ;
		}
	if (L_max >= L_power)
	{	*bc_out = 3 ;
		return ;
		}

	temp = gsm_norm (L_power) ;

	R = SASR_L (L_max << temp, 16) ;
	S = SASR_L (L_power << temp, 16) ;

	/*  Coding of the LTP gain
	 */

	/*  Table 4.3a must be used to obtain the level DLB [i] for the
	 *  quantization of the LTP gain b to get the coded version bc.
	 */
	for (bc = 0 ; bc <= 2 ; bc++) if (R <= gsm_mult (S, gsm_DLB [bc])) break ;
	*bc_out = bc ;
}
예제 #4
0
static void Cut_Calculation_of_the_LTP_parameters (

	struct gsm_state * st,

	register int16_t	* d,		/* [0..39]	IN	*/
	register int16_t	* dp,		/* [-120..-1]	IN	*/
	int16_t		* bc_out,	/* 		OUT	*/
	int16_t		* Nc_out	/* 		OUT	*/)
{
	register int	k, lambda ;
	int16_t		Nc, bc ;
	int16_t		wt [40] ;

	int32_t	L_result ;
	int32_t	L_max, L_power ;
	int16_t		R, S, dmax, scal, best_k ;
	int16_t		ltp_cut ;

	register int16_t	temp, wt_k ;

	/*  Search of the optimum scaling of d [0..39]. */
	dmax = 0 ;
	for (k = 0 ; k <= 39 ; k++)
	{	temp = d [k] ;
		temp = GSM_ABS (temp) ;
		if (temp > dmax)
		{	dmax = temp ;
			best_k = k ;
			}
		}
	temp = 0 ;
	if (dmax == 0)
		scal = 0 ;
	else
	{	assert (dmax > 0) ;
		temp = gsm_norm ((int32_t) dmax << 16) ;
		}
	if (temp > 6) scal = 0 ;
	else scal = 6 - temp ;
	assert (scal >= 0) ;

	/* Search for the maximum cross-correlation and coding of the LTP lag
	 */
	L_max = 0 ;
	Nc = 40 ;	/* index for the maximum cross-correlation */
	wt_k = SASR_W (d [best_k], scal) ;

	for (lambda = 40 ; lambda <= 120 ; lambda++)
	{	L_result = (int32_t) wt_k * dp [best_k - lambda] ;
		if (L_result > L_max)
		{	Nc = lambda ;
			L_max = L_result ;
			}
		}
	*Nc_out = Nc ;
	L_max <<= 1 ;

	/*  Rescaling of L_max
	 */
	assert (scal <= 100 && scal >= -100) ;
	L_max = L_max >> (6 - scal) ;	/* sub (6, scal) */

	assert (Nc <= 120 && Nc >= 40) ;

	/*   Compute the power of the reconstructed short term residual
	 *   signal dp [..]
	 */
	L_power = 0 ;
	for (k = 0 ; k <= 39 ; k++)
	{	register int32_t L_temp ;

		L_temp = SASR_W (dp [k - Nc], 3) ;
		L_power += L_temp * L_temp ;
		}
	L_power <<= 1 ;	/* from L_MULT */

	/*  Normalization of L_max and L_power */

	if (L_max <= 0)
	{	*bc_out = 0 ;
		return ;
		}
	if (L_max >= L_power)
	{	*bc_out = 3 ;
		return ;
		}

	temp = gsm_norm (L_power) ;

	R = SASR (L_max << temp, 16) ;
	S = SASR (L_power << temp, 16) ;

	/*  Coding of the LTP gain
	 */

	/*  Table 4.3a must be used to obtain the level DLB [i] for the
	 *  quantization of the LTP gain b to get the coded version bc.
	 */
	for (bc = 0 ; bc <= 2 ; bc++) if (R <= gsm_mult (S, gsm_DLB [bc])) break ;
	*bc_out = bc ;
}
예제 #5
0
static void Calculation_of_the_LTP_parameters (
	register int16_t	* d,		/* [0..39]	IN	*/
	register int16_t	* dp,		/* [-120..-1]	IN	*/
	int16_t		* bc_out,	/* 		OUT	*/
	int16_t		* Nc_out	/* 		OUT	*/)
{
	register int	k, lambda ;
	int16_t		Nc, bc ;
	int16_t		wt [40] ;

	int32_t	L_max, L_power ;
	int16_t		R, S, dmax, scal ;
	register int16_t	temp ;

	/*  Search of the optimum scaling of d [0..39].
	 */
	dmax = 0 ;

	for (k = 0 ; k <= 39 ; k++)
	{	temp = d [k] ;
		temp = GSM_ABS (temp) ;
		if (temp > dmax) dmax = temp ;
		}

	temp = 0 ;
	if (dmax == 0)
		scal = 0 ;
	else
	{	assert (dmax > 0) ;
		temp = gsm_norm ((int32_t) dmax << 16) ;
		}

	if (temp > 6) scal = 0 ;
	else scal = 6 - temp ;

	assert (scal >= 0) ;

	/*  Initialization of a working array wt
	 */

	for (k = 0 ; k <= 39 ; k++) wt [k] = SASR_W (d [k], scal) ;

	/* Search for the maximum cross-correlation and coding of the LTP lag */
	L_max = 0 ;
	Nc = 40 ;	/* index for the maximum cross-correlation */

	for (lambda = 40 ; lambda <= 120 ; lambda++)
	{

# undef STEP
#		define STEP(k) 	(int32_t) wt [k] * dp [k - lambda]

		register int32_t L_result ;

		L_result = STEP (0) ; L_result += STEP (1) ;
		L_result += STEP (2) ; L_result += STEP (3) ;
		L_result += STEP (4) ; L_result += STEP (5) ;
		L_result += STEP (6) ; L_result += STEP (7) ;
		L_result += STEP (8) ; L_result += STEP (9) ;
		L_result += STEP (10) ; L_result += STEP (11) ;
		L_result += STEP (12) ; L_result += STEP (13) ;
		L_result += STEP (14) ; L_result += STEP (15) ;
		L_result += STEP (16) ; L_result += STEP (17) ;
		L_result += STEP (18) ; L_result += STEP (19) ;
		L_result += STEP (20) ; L_result += STEP (21) ;
		L_result += STEP (22) ; L_result += STEP (23) ;
		L_result += STEP (24) ; L_result += STEP (25) ;
		L_result += STEP (26) ; L_result += STEP (27) ;
		L_result += STEP (28) ; L_result += STEP (29) ;
		L_result += STEP (30) ; L_result += STEP (31) ;
		L_result += STEP (32) ; L_result += STEP (33) ;
		L_result += STEP (34) ; L_result += STEP (35) ;
		L_result += STEP (36) ; L_result += STEP (37) ;
		L_result += STEP (38) ; L_result += STEP (39) ;

		if (L_result > L_max)
		{	Nc = lambda ;
			L_max = L_result ;
			}
		}

	*Nc_out = Nc ;

	L_max <<= 1 ;

	/*  Rescaling of L_max
	 */
	assert (scal <= 100 && scal >= -100) ;
	L_max = L_max >> (6 - scal) ;	/* sub (6, scal) */

	assert (Nc <= 120 && Nc >= 40) ;

	/*   Compute the power of the reconstructed short term residual
	 *   signal dp [..]
	 */
	L_power = 0 ;
	for (k = 0 ; k <= 39 ; k++)
	{	register int32_t L_temp ;

		L_temp = SASR_W (dp [k - Nc], 3) ;
		L_power += L_temp * L_temp ;
		}
	L_power <<= 1 ;	/* from L_MULT */

	/*  Normalization of L_max and L_power
	 */

	if (L_max <= 0)
	{	*bc_out = 0 ;
		return ;
		}
	if (L_max >= L_power)
	{	*bc_out = 3 ;
		return ;
		}

	temp = gsm_norm (L_power) ;

	R = SASR_L (L_max << temp, 16) ;
	S = SASR_L (L_power << temp, 16) ;

	/*  Coding of the LTP gain
	 */

	/*  Table 4.3a must be used to obtain the level DLB [i] for the
	 *  quantization of the LTP gain b to get the coded version bc.
	 */
	for (bc = 0 ; bc <= 2 ; bc++) if (R <= gsm_mult (S, gsm_DLB [bc])) break ;
	*bc_out = bc ;
}
예제 #6
0
파일: rpe.c 프로젝트: 5in4/libsox.dll
static void APCM_quantization (
	word		* xM,		/* [0..12]		IN	*/

	word		* xMc,		/* [0..12]		OUT	*/
	word		* mant_out,	/* 			OUT	*/
	word		* exp_out,	/*			OUT	*/
	word		* xmaxc_out	/*			OUT	*/
)
{
	int	i, itest;

	word	xmax, xmaxc, temp, temp1, temp2;
	word	exp, mant;


	/*  Find the maximum absolute value xmax of xM[0..12].
	 */

	xmax = 0;
	for (i = 0; i <= 12; i++) {
		temp = xM[i];
		temp = GSM_ABS(temp);
		if (temp > xmax) xmax = temp;
	}

	/*  Qantizing and coding of xmax to get xmaxc.
	 */

	exp   = 0;
	temp  = SASR( xmax, 9 );
	itest = 0;

	for (i = 0; i <= 5; i++) {

		itest |= (temp <= 0);
		temp = SASR( temp, 1 );

		assert(exp <= 5);
		if (itest == 0) exp++;		/* exp = add (exp, 1) */
	}

	assert(exp <= 6 && exp >= 0);
	temp = exp + 5;

	assert(temp <= 11 && temp >= 0);
	xmaxc = gsm_add( SASR(xmax, temp), exp << 3 );

	/*   Quantizing and coding of the xM[0..12] RPE sequence
	 *   to get the xMc[0..12]
	 */

	APCM_quantization_xmaxc_to_exp_mant( xmaxc, &exp, &mant );

	/*  This computation uses the fact that the decoded version of xmaxc
	 *  can be calculated by using the exponent and the mantissa part of
	 *  xmaxc (logarithmic table).
	 *  So, this method avoids any division and uses only a scaling
	 *  of the RPE samples by a function of the exponent.  A direct 
	 *  multiplication by the inverse of the mantissa (NRFAC[0..7]
	 *  found in table 4.5) gives the 3 bit coded version xMc[0..12]
	 *  of the RPE samples.
	 */


	/* Direct computation of xMc[0..12] using table 4.5
	 */

	assert( exp <= 4096 && exp >= -4096);
	assert( mant >= 0 && mant <= 7 ); 

	temp1 = 6 - exp;		/* normalization by the exponent */
	temp2 = gsm_NRFAC[ mant ];  	/* inverse mantissa 		 */

	for (i = 0; i <= 12; i++) {

		assert(temp1 >= 0 && temp1 < 16);

		temp = xM[i] << temp1;
		temp = GSM_MULT( temp, temp2 );
		temp = SASR(temp, 12);
		xMc[i] = temp + 4;		/* see note below */
	}

	/*  NOTE: This equation is used to make all the xMc[i] positive.
	 */

	*mant_out  = mant;
	*exp_out   = exp;
	*xmaxc_out = xmaxc;
}