INLINE_EMUL_GENERIC void emul_add_tree_hardware(device *root) { int i; int nr_cpus = device_find_integer_property(root, "/openprom/options/smp"); /* sanity check the number of processors */ if (nr_cpus > MAX_NR_PROCESSORS) error("Specified number of processors (%d) exceeds the number configured (%d).\n", nr_cpus, MAX_NR_PROCESSORS); /* add some memory */ if (device_tree_find_device(root, "/memory") == NULL) { unsigned_word memory_size = device_find_integer_property(root, "/openprom/options/oea-memory-size"); device_tree_add_parsed(root, "/memory@0/reg { 0x0 0x%lx", (unsigned long)memory_size); /* what about allocated? */ } /* our processors */ for (i = 0; i < nr_cpus; i++) { device_tree_add_parsed(root, "/cpus/cpu@%d/cpu-nr %d", i, i); } /* a fake eeprom - need to be able to write to it */ device_tree_add_parsed(root, "/openprom/memory@0xfff00000/reg { 0xfff00000 0x3000"); /* A local bus containing basic devices */ device_tree_add_parsed(root, "/iobus@0xf0000000/reg { 0xf0000000 0x0f000000"); /* NVRAM with clock */ device_tree_add_parsed(root, "/iobus/nvram@0x0/reg { 0 0x1000"); device_tree_add_parsed(root, "/iobus/nvram/timezone 0"); /* the debugging pal. Wire interrupts up directly */ device_tree_add_parsed(root, "/iobus/pal@0x0x1000/reg { 0x1000 32"); for (i = 0; i < nr_cpus; i++) { device_tree_add_parsed(root, "/iobus/pal > int%d int /cpus/cpu@%d", i, i); } #ifdef HAVE_DEVZERO /* a disk containing zero's */ device_tree_add_parsed(root, "/iobus/disk@0x2000/reg { 0x2000 0x1000"); device_tree_add_parsed(root, "/iobus/disk/file \"/dev/zero"); #endif /* chosen etc */ device_tree_add_parsed(root, "/chosen/stdin */iobus/pal"); device_tree_add_parsed(root, "/chosen/stdout !/chosen/stdin"); device_tree_add_parsed(root, "/chosen/memory */memory"); #ifdef HAVE_DEVZERO device_tree_add_parsed(root, "/chosen/disk */iobus/disk"); #endif }
static void hw_sem_init_data(device *me) { hw_sem_device *sem = (hw_sem_device*)device_data(me); const device_unit *d; int status; union semun help; /* initialize the properties of the sem */ if (device_find_property(me, "key") == NULL) error("sem_init_data() required key property is missing\n"); if (device_find_property(me, "value") == NULL) error("sem_init_data() required value property is missing\n"); sem->key = (key_t) device_find_integer_property(me, "key"); DTRACE(sem, ("semaphore key (%d)\n", sem->key) ); sem->initial = (int) device_find_integer_property(me, "value"); DTRACE(sem, ("semaphore initial value (%d)\n", sem->initial) ); d = device_unit_address(me); sem->physical_address = d->cells[ d->nr_cells-1 ]; DTRACE(sem, ("semaphore physical_address=0x%x\n", sem->physical_address)); /* Now to initialize the semaphore */ if ( sem->initial != -1 ) { sem->id = semget(sem->key, 1, IPC_CREAT | 0660); if (sem->id == -1) error("hw_sem_init_data() semget failed\n"); help.val = sem->initial; status = semctl( sem->id, 0, SETVAL, help ); if (status == -1) error("hw_sem_init_data() semctl -- set value failed\n"); } else { sem->id = semget(sem->key, 1, 0660); if (sem->id == -1) error("hw_sem_init_data() semget failed\n"); } sem->count = semctl( sem->id, 0, GETVAL, help ); if (sem->count == -1) error("hw_sem_init_data() semctl -- get value failed\n"); DTRACE(sem, ("semaphore OS value (%d)\n", sem->count) ); }
static void hw_com_device_init_data(device *me) { hw_com_device *com = (hw_com_device*)device_data(me); /* clean up */ if (com->output.file != NULL) fclose(com->output.file); if (com->input.file != NULL) fclose(com->input.file); memset(com, 0, sizeof(hw_com_device)); /* the fifo speed */ com->output.delay = (device_find_property(me, "output-delay") != NULL ? device_find_integer_property(me, "output-delay") : 0); com->input.delay = (device_find_property(me, "input-delay") != NULL ? device_find_integer_property(me, "input-delay") : 0); /* the data source/sink */ if (device_find_property(me, "input-file") != NULL) { const char *input_file = device_find_string_property(me, "input-file"); com->input.file = fopen(input_file, "r"); if (com->input.file == NULL) device_error(me, "Problem opening input file %s\n", input_file); if (device_find_property(me, "input-buffering") != NULL) { const char *buffering = device_find_string_property(me, "input-buffering"); if (strcmp(buffering, "unbuffered") == 0) setbuf(com->input.file, NULL); } } if (device_find_property(me, "output-file") != NULL) { const char *output_file = device_find_string_property(me, "output-file"); com->output.file = fopen(output_file, "w"); if (com->output.file == NULL) device_error(me, "Problem opening output file %s\n", output_file); if (device_find_property(me, "output-buffering") != NULL) { const char *buffering = device_find_string_property(me, "output-buffering"); if (strcmp(buffering, "unbuffered") == 0) setbuf(com->output.file, NULL); } } /* ready from the start */ com->input.ready = 1; com->modem.carrier = 1; com->output.ready = 1; }
static int hw_disk_block_size(device_instance *instance, int n_stack_args, unsigned32 stack_args[/*n_stack_args*/], int n_stack_returns, unsigned32 stack_returns[/*n_stack_returns*/]) { device *me = device_instance_device(instance); if ((n_stack_args != 0) || (n_stack_returns != 1)) { device_error(me, "Incorrect number of arguments for block-size method\n"); return -1; } else { unsigned_cell block_size; if (device_find_property(me, "block-size")) block_size = device_find_integer_property(me, "block-size"); else block_size = 512; DITRACE(disk, ("block-size - instance=%ld block-size=%ld\n", (unsigned long)device_instance_to_external(instance), (long int)block_size)); stack_returns[0] = block_size; return 0; } }
static int hw_disk_max_transfer(device_instance *instance, int n_stack_args, unsigned32 stack_args[/*n_stack_args*/], int n_stack_returns, unsigned32 stack_returns[/*n_stack_returns*/]) { device *me = device_instance_device(instance); if ((n_stack_args != 0) || (n_stack_returns != 1)) { device_error(me, "Incorrect number of arguments for max-transfer method\n"); return -1; } else { unsigned_cell max_transfer; if (device_find_property(me, "max-transfer")) max_transfer = device_find_integer_property(me, "max-transfer"); else max_transfer = 512; DITRACE(disk, ("max-transfer - instance=%ld max-transfer=%ld\n", (unsigned long)device_instance_to_external(instance), (long int)max_transfer)); stack_returns[0] = max_transfer; return 0; } }
static int hw_disk_nr_blocks(device_instance *instance, int n_stack_args, unsigned32 stack_args[/*n_stack_args*/], int n_stack_returns, unsigned32 stack_returns[/*n_stack_returns*/]) { device *me = device_instance_device(instance); if ((n_stack_args != 0) || (n_stack_returns != 1)) { device_error(me, "Incorrect number of arguments for block-size method\n"); return -1; } else { unsigned_word nr_blocks; if (device_find_property(me, "#blocks")) nr_blocks = device_find_integer_property(me, "#blocks"); else nr_blocks = -1; DITRACE(disk, ("#blocks - instance=%ld #blocks=%ld\n", (unsigned long)device_instance_to_external(instance), (long int)nr_blocks)); stack_returns[0] = nr_blocks; return 0; } }
static void hw_ide_init_address(device *me) { hw_ide_device *ide = device_data(me); int controller; int drive; /* zero some things */ for (controller = 0; controller < nr_ide_controllers; controller++) { memset(&ide->controller[controller], 0, sizeof(ide_controller)); for (drive = 0; drive < nr_ide_drives_per_controller; drive++) { ide->controller[controller].drive[drive].nr = drive; } ide->controller[controller].me = me; if (device_find_property(me, "ready-delay") != NULL) ide->controller[controller].ready_delay = device_find_integer_property(me, "ready-delay"); } /* attach this device to its parent */ generic_device_init_address(me); /* determine our own address map */ build_address_decoder(me, &ide->decoder); }
tree_find_integer_property(device *root, const char *path_to_property) { name_specifier spec; if (!split_property_specifier(root, path_to_property, &spec)) device_error(root, "Invalid property path %s", path_to_property); root = split_find_device(root, &spec); return device_find_integer_property(root, spec.property); }
static void hw_data_init_data_callback(device *me) { unsigned_word addr = device_find_integer_property(me, "real-address"); const device_property *data = device_find_property(me, "data"); const char *instance_spec = (device_find_property(me, "instance") != NULL ? device_find_string_property(me, "instance") : NULL); device_instance *instance = NULL; if (data == NULL) device_error(me, "missing property <data>\n"); if (instance_spec != NULL) instance = tree_instance(me, instance_spec); switch (data->type) { case integer_property: { unsigned_cell buf = device_find_integer_property(me, "data"); H2T(buf); if (instance == NULL) { if (device_dma_write_buffer(device_parent(me), &buf, 0 /*address-space*/, addr, sizeof(buf), /*nr-bytes*/ 1 /*violate ro*/) != sizeof(buf)) device_error(me, "Problem storing integer 0x%x at 0x%lx\n", (unsigned)buf, (unsigned long)addr); } else { if (device_instance_seek(instance, 0, addr) < 0 || device_instance_write(instance, &buf, sizeof(buf)) != sizeof(buf)) device_error(me, "Problem storing integer 0x%x at 0x%lx of instance %s\n", (unsigned)buf, (unsigned long)addr, instance_spec); } } break; default: device_error(me, "Write of this data is not yet implemented\n"); break; } if (instance != NULL) device_instance_delete(instance); }
static void hw_file_init_data_callback(device *me) { int count; const char *file_name = device_find_string_property(me, "file-name"); unsigned_word addr = device_find_integer_property(me, "real-address"); /* load the file */ count = dma_file(me, file_name, addr); if (count < 0) device_error(me, "Problem loading file %s\n", file_name); }
static void hw_nvram_init_address(device *me) { hw_nvram_device *nvram = (hw_nvram_device*)device_data(me); /* use the generic init code to attach this device to its parent bus */ generic_device_init_address(me); /* find the first non zero reg property and use that as the device size */ if (nvram->sizeof_memory == 0) { reg_property_spec reg; int reg_nr; for (reg_nr = 0; device_find_reg_array_property(me, "reg", reg_nr, ®); reg_nr++) { unsigned attach_size; if (device_size_to_attach_size(device_parent(me), ®.size, &attach_size, me)) { nvram->sizeof_memory = attach_size; break; } } if (nvram->sizeof_memory == 0) device_error(me, "reg property must contain a non-zero phys-addr:size tupple"); if (nvram->sizeof_memory < 8) device_error(me, "NVRAM must be at least 8 bytes in size"); } /* initialize the hw_nvram */ if (nvram->memory == NULL) { nvram->memory = zalloc(nvram->sizeof_memory); } else memset(nvram->memory, 0, nvram->sizeof_memory); if (device_find_property(me, "timezone") == NULL) nvram->timezone = 0; else nvram->timezone = device_find_integer_property(me, "timezone"); nvram->addr_year = nvram->sizeof_memory - 1; nvram->addr_month = nvram->sizeof_memory - 2; nvram->addr_date = nvram->sizeof_memory - 3; nvram->addr_day = nvram->sizeof_memory - 4; nvram->addr_hour = nvram->sizeof_memory - 5; nvram->addr_minutes = nvram->sizeof_memory - 6; nvram->addr_seconds = nvram->sizeof_memory - 7; nvram->addr_control = nvram->sizeof_memory - 8; }
static void hw_shm_init_data(device *me) { hw_shm_device *shm = (hw_shm_device*)device_data(me); const device_unit *d; reg_property_spec reg; int i; /* Obtain the Key Value */ if (device_find_property(me, "key") == NULL) error("shm_init_data() required key property is missing\n"); shm->key = (key_t) device_find_integer_property(me, "key"); DTRACE(shm, ("shm key (0x%08x)\n", shm->key) ); /* Figure out where this memory is in address space and how long it is */ if ( !device_find_reg_array_property(me, "reg", 0, ®) ) error("hw_shm_init_data() no address registered\n"); /* Determine the address and length being as paranoid as possible */ shm->physical_address = 0xffffffff; shm->sizeof_memory = 0xffffffff; for ( i=0 ; i<reg.address.nr_cells; i++ ) { if (reg.address.cells[0] == 0 && reg.size.cells[0] == 0) continue; if ( shm->physical_address != 0xffffffff ) device_error(me, "Only single celled address ranges supported\n"); shm->physical_address = reg.address.cells[i]; DTRACE(shm, ("shm physical_address=0x%x\n", shm->physical_address)); shm->sizeof_memory = reg.size.cells[i]; DTRACE(shm, ("shm length=0x%x\n", shm->sizeof_memory)); } if ( shm->physical_address == 0xffffffff ) device_error(me, "Address not specified\n" ); if ( shm->sizeof_memory == 0xffffffff ) device_error(me, "Length not specified\n" ); /* Now actually attach to or create the shared memory area */ shm->id = shmget(shm->key, shm->sizeof_memory, IPC_CREAT | 0660); if (shm->id == -1) error("hw_shm_init_data() shmget failed\n"); shm->shm_address = shmat(shm->id, (char *)0, SHM_RND); if (shm->shm_address == (void *)-1) error("hw_shm_init_data() shmat failed\n"); }
static void hw_ide_attach_address(device *me, attach_type type, int space, unsigned_word addr, unsigned nr_bytes, access_type access, device *client) /*callback/default*/ { hw_ide_device *ide = (hw_ide_device*)device_data(me); int controller_nr = addr / nr_ide_drives_per_controller; int drive_nr = addr % nr_ide_drives_per_controller; ide_controller *controller; ide_drive *drive; if (controller_nr >= nr_ide_controllers) device_error(me, "no controller for disk %s", device_path(client)); controller = &ide->controller[controller_nr]; drive = &controller->drive[drive_nr]; drive->device = client; if (device_find_property(client, "ide-byte-count") != NULL) drive->geometry.byte = device_find_integer_property(client, "ide-byte-count"); else drive->geometry.byte = 512; if (device_find_property(client, "ide-sector-count") != NULL) drive->geometry.sector = device_find_integer_property(client, "ide-sector-count"); if (device_find_property(client, "ide-head-count") != NULL) drive->geometry.head = device_find_integer_property(client, "ide-head-count"); drive->default_geometry = drive->geometry; DTRACE(ide, ("controller %d:%d %s byte-count %d, sector-count %d, head-count %d\n", controller_nr, drive->nr, device_path(client), drive->geometry.byte, drive->geometry.sector, drive->geometry.head)); }
static void hw_vm_init_address_callback(device *me) { hw_vm_device *vm = (hw_vm_device*)device_data(me); /* revert the stack/heap variables to their defaults */ vm->stack_base = device_find_integer_property(me, "stack-base"); vm->stack_bound = (vm->stack_base + device_find_integer_property(me, "nr-bytes")); vm->stack_lower_limit = vm->stack_bound; vm->heap_base = 0; vm->heap_bound = 0; vm->heap_upper_limit = 0; /* establish this device as the default memory handler */ device_attach_address(device_parent(me), attach_callback + 1, 0 /*address space - ignore*/, 0 /*addr - ignore*/, (((unsigned)0)-1) /*nr_bytes - ignore*/, access_read_write /*access*/, me); }
static void hw_eeprom_init_data(device *me) { hw_eeprom_device *eeprom = (hw_eeprom_device*)device_data(me); /* have we any input or output files */ if (device_find_property(me, "input-file") != NULL) eeprom->input_file_name = device_find_string_property(me, "input-file"); if (device_find_property(me, "output-file") != NULL) eeprom->input_file_name = device_find_string_property(me, "output-file"); /* figure out the sectors in the eeprom */ if (eeprom->sectors == NULL) { eeprom->nr_sectors = device_find_integer_property(me, "nr-sectors"); eeprom->sizeof_sector = device_find_integer_property(me, "sector-size"); eeprom->sectors = zalloc(eeprom->nr_sectors); } else memset(eeprom->sectors, 0, eeprom->nr_sectors); /* initialize the eeprom */ if (eeprom->memory == NULL) { eeprom->sizeof_memory = eeprom->sizeof_sector * eeprom->nr_sectors; eeprom->memory = zalloc(eeprom->sizeof_memory); } else memset(eeprom->memory, 0, eeprom->sizeof_memory); if (eeprom->input_file_name != NULL) { int i; FILE *input_file = fopen(eeprom->input_file_name, "r"); if (input_file == NULL) { perror("eeprom"); device_error(me, "Failed to open input file %s\n", eeprom->input_file_name); } for (i = 0; i < eeprom->sizeof_memory; i++) { if (fread(&eeprom->memory[i], 1, 1, input_file) != 1) break; } fclose(input_file); } /* timing */ eeprom->byte_write_delay = device_find_integer_property(me, "byte-write-delay"); eeprom->sector_start_delay = device_find_integer_property(me, "sector-start-delay"); eeprom->erase_delay = device_find_integer_property(me, "erase-delay"); /* misc */ eeprom->manufacture_code = device_find_integer_property(me, "manufacture-code"); eeprom->device_code = device_find_integer_property(me, "device-code"); }
static void do_register_init(device *me, const device_property *prop) { psim *system = device_system(me); if (prop != NULL) { const char *name = prop->name; unsigned32 value = device_find_integer_property(me, name); int processor; do_register_init(me, device_next_property(prop)); if (strchr(name, '.') == NULL) { processor = -1; DTRACE(register, ("%s=0x%lx\n", name, (unsigned long)value)); } else {
print_properties(device *me) { const device_property *property; for (property = device_find_property(me, NULL); property != NULL; property = device_next_property(property)) { printf_filtered("%s/%s", device_path(me), property->name); if (property->original != NULL) { printf_filtered(" !"); printf_filtered("%s/%s", device_path(property->original->owner), property->original->name); } else { switch (property->type) { case array_property: if ((property->sizeof_array % sizeof(signed_cell)) == 0) { unsigned_cell *w = (unsigned_cell*)property->array; int cell_nr; for (cell_nr = 0; cell_nr < (property->sizeof_array / sizeof(unsigned_cell)); cell_nr++) { printf_filtered(" 0x%lx", (unsigned long)BE2H_cell(w[cell_nr])); } } else { unsigned8 *w = (unsigned8*)property->array; printf_filtered(" ["); while ((char*)w - (char*)property->array < property->sizeof_array) { printf_filtered(" 0x%2x", BE2H_1(*w)); w++; } } break; case boolean_property: { int b = device_find_boolean_property(me, property->name); printf_filtered(" %s", b ? "true" : "false"); } break; case ihandle_property: { if (property->array != NULL) { device_instance *instance = device_find_ihandle_property(me, property->name); printf_filtered(" *%s", device_instance_path(instance)); } else { /* not yet initialized, ask the device for the path */ ihandle_runtime_property_spec spec; device_find_ihandle_runtime_property(me, property->name, &spec); printf_filtered(" *%s", spec.full_path); } } break; case integer_property: { unsigned_word w = device_find_integer_property(me, property->name); printf_filtered(" 0x%lx", (unsigned long)w); } break; case range_array_property: print_ranges_property(me, property); break; case reg_array_property: print_reg_property(me, property); break; case string_property: { const char *s = device_find_string_property(me, property->name); print_string(s); } break; case string_array_property: print_string_array_property(me, property); break; } } printf_filtered("\n"); } }