int amdgpu_bo_export(amdgpu_bo_handle bo, enum amdgpu_bo_handle_type type, uint32_t *shared_handle) { int r; switch (type) { case amdgpu_bo_handle_type_gem_flink_name: r = amdgpu_bo_export_flink(bo); if (r) return r; *shared_handle = bo->flink_name; return 0; case amdgpu_bo_handle_type_kms: amdgpu_add_handle_to_table(bo); *shared_handle = bo->handle; return 0; case amdgpu_bo_handle_type_dma_buf_fd: amdgpu_add_handle_to_table(bo); return drmPrimeHandleToFD(bo->dev->fd, bo->handle, DRM_CLOEXEC, (int*)shared_handle); } return -EINVAL; }
int radeon_gem_prime_share_bo(struct radeon_bo *bo, int *handle) { struct radeon_bo_gem *bo_gem = (struct radeon_bo_gem*)bo; int ret; ret = drmPrimeHandleToFD(bo_gem->base.bom->fd, bo->handle, DRM_CLOEXEC, handle); return ret; }
static int amdgpu_bo_export_flink(amdgpu_bo_handle bo) { struct drm_gem_flink flink; int fd, dma_fd; uint32_t handle; int r; fd = bo->dev->fd; handle = bo->handle; if (bo->flink_name) return 0; if (bo->dev->flink_fd != bo->dev->fd) { r = drmPrimeHandleToFD(bo->dev->fd, bo->handle, DRM_CLOEXEC, &dma_fd); if (!r) { r = drmPrimeFDToHandle(bo->dev->flink_fd, dma_fd, &handle); close(dma_fd); } if (r) return r; fd = bo->dev->flink_fd; } memset(&flink, 0, sizeof(flink)); flink.handle = handle; r = drmIoctl(fd, DRM_IOCTL_GEM_FLINK, &flink); if (r) return r; bo->flink_name = flink.name; if (bo->dev->flink_fd != bo->dev->fd) { struct drm_gem_close args = {}; args.handle = handle; drmIoctl(bo->dev->flink_fd, DRM_IOCTL_GEM_CLOSE, &args); } pthread_mutex_lock(&bo->dev->bo_table_mutex); util_hash_table_set(bo->dev->bo_flink_names, (void*)(uintptr_t)bo->flink_name, bo); pthread_mutex_unlock(&bo->dev->bo_table_mutex); return 0; }
static boolean vmw_drm_surface_get_handle(struct svga_winsys_screen *sws, struct svga_winsys_surface *surface, unsigned stride, struct winsys_handle *whandle) { struct vmw_winsys_screen *vws = vmw_winsys_screen(sws); struct vmw_svga_winsys_surface *vsrf; int ret; if (!surface) return FALSE; vsrf = vmw_svga_winsys_surface(surface); whandle->handle = vsrf->sid; whandle->stride = stride; whandle->offset = 0; switch (whandle->type) { case DRM_API_HANDLE_TYPE_SHARED: case DRM_API_HANDLE_TYPE_KMS: whandle->handle = vsrf->sid; break; case DRM_API_HANDLE_TYPE_FD: ret = drmPrimeHandleToFD(vws->ioctl.drm_fd, vsrf->sid, DRM_CLOEXEC, (int *)&whandle->handle); if (ret) { vmw_error("Failed to get file descriptor from prime.\n"); return FALSE; } break; default: vmw_error("Attempt to export unsupported handle type %d.\n", whandle->type); return FALSE; } return TRUE; }
static boolean virgl_drm_winsys_resource_get_handle(struct virgl_winsys *qws, struct virgl_hw_res *res, uint32_t stride, struct winsys_handle *whandle) { struct virgl_drm_winsys *qdws = virgl_drm_winsys(qws); struct drm_gem_flink flink; if (!res) return FALSE; if (whandle->type == DRM_API_HANDLE_TYPE_SHARED) { if (!res->flinked) { memset(&flink, 0, sizeof(flink)); flink.handle = res->bo_handle; if (drmIoctl(qdws->fd, DRM_IOCTL_GEM_FLINK, &flink)) { return FALSE; } res->flinked = TRUE; res->flink = flink.name; mtx_lock(&qdws->bo_handles_mutex); util_hash_table_set(qdws->bo_names, (void *)(uintptr_t)res->flink, res); mtx_unlock(&qdws->bo_handles_mutex); } whandle->handle = res->flink; } else if (whandle->type == DRM_API_HANDLE_TYPE_KMS) { whandle->handle = res->bo_handle; } else if (whandle->type == DRM_API_HANDLE_TYPE_FD) { if (drmPrimeHandleToFD(qdws->fd, res->bo_handle, DRM_CLOEXEC, (int*)&whandle->handle)) return FALSE; mtx_lock(&qdws->bo_handles_mutex); util_hash_table_set(qdws->bo_handles, (void *)(uintptr_t)res->bo_handle, res); mtx_unlock(&qdws->bo_handles_mutex); } whandle->stride = stride; return TRUE; }
drm_public int drm_tegra_bo_to_dmabuf(struct drm_tegra_bo *bo, uint32_t *handle) { int prime_fd; int err; if (!bo || !handle) return -EINVAL; err = drmPrimeHandleToFD(bo->drm->fd, bo->handle, DRM_CLOEXEC, &prime_fd); if (err) { VDBG_BO(bo, "faile err %d strerror(%s)\n", err, strerror(-err)); return err; } *handle = prime_fd; VDBG_BO(bo, "success prime_fd %u\n", prime_fd); return 0; }
static struct gbm_bo *gbm_kms_bo_create(struct gbm_device *gbm, uint32_t width, uint32_t height, uint32_t format, uint32_t usage) { struct gbm_kms_device *dev = (struct gbm_kms_device*)gbm; struct gbm_kms_bo *bo; unsigned attr[] = { KMS_BO_TYPE, KMS_BO_TYPE_SCANOUT_X8R8G8B8, KMS_WIDTH, 0, KMS_HEIGHT, 0, KMS_TERMINATE_PROP_LIST }; GBM_DEBUG("%s: %s: %d\n", __FILE__, __func__, __LINE__); if (!(bo = calloc(1, sizeof(struct gbm_kms_bo)))) return NULL; switch (format) { // 32bpp case GBM_FORMAT_ARGB8888: case GBM_BO_FORMAT_ARGB8888: case GBM_FORMAT_XRGB8888: case GBM_BO_FORMAT_XRGB8888: break; default: // unsupported... goto error; } if (usage & GBM_BO_USE_CURSOR_64X64) attr[1] = KMS_BO_TYPE_CURSOR_64X64_A8R8G8B8; attr[3] = width; attr[5] = height; // Create BO if (kms_bo_create(dev->kms, attr, &bo->bo)) goto error; bo->base.gbm = gbm; bo->base.width = width; bo->base.height = height; bo->base.format = format; kms_bo_get_prop(bo->bo, KMS_HANDLE, &bo->base.handle.u32); kms_bo_get_prop(bo->bo, KMS_PITCH, &bo->base.stride); bo->size = bo->base.stride * bo->base.height; if (drmPrimeHandleToFD(dev->base.base.fd, bo->base.handle.u32, DRM_CLOEXEC, &bo->fd)) { GBM_DEBUG("%s: %s: drmPrimeHandleToFD() failed. %s\n", __FILE__, __func__, strerror(errno)); goto error; } // Map to the user space for bo_write if (usage & GBM_BO_USE_WRITE) { if (kms_bo_map(bo->bo, &bo->addr)) goto error; } return (struct gbm_bo*)bo; error: GBM_DEBUG("%s: %s: %d: ERROR!!!!\n", __FILE__, __func__, __LINE__); gbm_kms_bo_destroy((struct gbm_bo*)bo); return NULL; }
static int kmsgrab_read_packet(AVFormatContext *avctx, AVPacket *pkt) { KMSGrabContext *ctx = avctx->priv_data; drmModePlane *plane; drmModeFB *fb; AVDRMFrameDescriptor *desc; AVFrame *frame; int64_t now; int err, fd; now = av_gettime(); if (ctx->frame_last) { int64_t delay; while (1) { delay = ctx->frame_last + ctx->frame_delay - now; if (delay <= 0) break; av_usleep(delay); now = av_gettime(); } } ctx->frame_last = now; plane = drmModeGetPlane(ctx->hwctx->fd, ctx->plane_id); if (!plane) { av_log(avctx, AV_LOG_ERROR, "Failed to get plane " "%"PRIu32".\n", ctx->plane_id); return AVERROR(EIO); } if (!plane->fb_id) { av_log(avctx, AV_LOG_ERROR, "Plane %"PRIu32" no longer has " "an associated framebuffer.\n", ctx->plane_id); return AVERROR(EIO); } fb = drmModeGetFB(ctx->hwctx->fd, plane->fb_id); if (!fb) { av_log(avctx, AV_LOG_ERROR, "Failed to get framebuffer " "%"PRIu32".\n", plane->fb_id); return AVERROR(EIO); } if (fb->width != ctx->width || fb->height != ctx->height) { av_log(avctx, AV_LOG_ERROR, "Plane %"PRIu32" framebuffer " "dimensions changed: now %"PRIu32"x%"PRIu32".\n", ctx->plane_id, fb->width, fb->height); return AVERROR(EIO); } if (!fb->handle) { av_log(avctx, AV_LOG_ERROR, "No handle set on framebuffer.\n"); return AVERROR(EIO); } err = drmPrimeHandleToFD(ctx->hwctx->fd, fb->handle, O_RDONLY, &fd); if (err < 0) { err = errno; av_log(avctx, AV_LOG_ERROR, "Failed to get PRIME fd from " "framebuffer handle: %s.\n", strerror(errno)); return AVERROR(err); } desc = av_mallocz(sizeof(*desc)); if (!desc) return AVERROR(ENOMEM); *desc = (AVDRMFrameDescriptor) { .nb_objects = 1, .objects[0] = { .fd = fd, .size = fb->height * fb->pitch, .format_modifier = ctx->drm_format_modifier, }, .nb_layers = 1, .layers[0] = { .format = ctx->drm_format, .nb_planes = 1, .planes[0] = { .object_index = 0, .offset = 0, .pitch = fb->pitch, }, }, };
int amdgpu_bo_import(amdgpu_device_handle dev, enum amdgpu_bo_handle_type type, uint32_t shared_handle, struct amdgpu_bo_import_result *output) { struct drm_gem_open open_arg = {}; struct amdgpu_bo *bo = NULL; int r; int dma_fd; uint64_t dma_buf_size = 0; /* Convert a DMA buf handle to a KMS handle now. */ if (type == amdgpu_bo_handle_type_dma_buf_fd) { uint32_t handle; off_t size; /* Get a KMS handle. */ r = drmPrimeFDToHandle(dev->fd, shared_handle, &handle); if (r) { return r; } /* Query the buffer size. */ size = lseek(shared_handle, 0, SEEK_END); if (size == (off_t)-1) { amdgpu_close_kms_handle(dev, handle); return -errno; } lseek(shared_handle, 0, SEEK_SET); dma_buf_size = size; shared_handle = handle; } /* We must maintain a list of pairs <handle, bo>, so that we always * return the same amdgpu_bo instance for the same handle. */ pthread_mutex_lock(&dev->bo_table_mutex); /* If we have already created a buffer with this handle, find it. */ switch (type) { case amdgpu_bo_handle_type_gem_flink_name: bo = util_hash_table_get(dev->bo_flink_names, (void*)(uintptr_t)shared_handle); break; case amdgpu_bo_handle_type_dma_buf_fd: bo = util_hash_table_get(dev->bo_handles, (void*)(uintptr_t)shared_handle); break; case amdgpu_bo_handle_type_kms: /* Importing a KMS handle in not allowed. */ pthread_mutex_unlock(&dev->bo_table_mutex); return -EPERM; default: pthread_mutex_unlock(&dev->bo_table_mutex); return -EINVAL; } if (bo) { pthread_mutex_unlock(&dev->bo_table_mutex); /* The buffer already exists, just bump the refcount. */ atomic_inc(&bo->refcount); output->buf_handle = bo; output->alloc_size = bo->alloc_size; return 0; } bo = calloc(1, sizeof(struct amdgpu_bo)); if (!bo) { pthread_mutex_unlock(&dev->bo_table_mutex); if (type == amdgpu_bo_handle_type_dma_buf_fd) { amdgpu_close_kms_handle(dev, shared_handle); } return -ENOMEM; } /* Open the handle. */ switch (type) { case amdgpu_bo_handle_type_gem_flink_name: open_arg.name = shared_handle; r = drmIoctl(dev->flink_fd, DRM_IOCTL_GEM_OPEN, &open_arg); if (r) { free(bo); pthread_mutex_unlock(&dev->bo_table_mutex); return r; } bo->handle = open_arg.handle; if (dev->flink_fd != dev->fd) { r = drmPrimeHandleToFD(dev->flink_fd, bo->handle, DRM_CLOEXEC, &dma_fd); if (r) { free(bo); pthread_mutex_unlock(&dev->bo_table_mutex); return r; } r = drmPrimeFDToHandle(dev->fd, dma_fd, &bo->handle ); close(dma_fd); if (r) { free(bo); pthread_mutex_unlock(&dev->bo_table_mutex); return r; } } bo->flink_name = shared_handle; bo->alloc_size = open_arg.size; util_hash_table_set(dev->bo_flink_names, (void*)(uintptr_t)bo->flink_name, bo); break; case amdgpu_bo_handle_type_dma_buf_fd: bo->handle = shared_handle; bo->alloc_size = dma_buf_size; break; case amdgpu_bo_handle_type_kms: assert(0); /* unreachable */ } /* Initialize it. */ atomic_set(&bo->refcount, 1); bo->dev = dev; pthread_mutex_init(&bo->cpu_access_mutex, NULL); util_hash_table_set(dev->bo_handles, (void*)(uintptr_t)bo->handle, bo); pthread_mutex_unlock(&dev->bo_table_mutex); output->buf_handle = bo; output->alloc_size = bo->alloc_size; return 0; }
int iris_bo_busy(struct iris_bo *bo) { struct iris_bufmgr *bufmgr = bo->bufmgr; struct drm_i915_gem_busy busy = { .handle = bo->gem_handle }; int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_BUSY, &busy); if (ret == 0) { bo->idle = !busy.busy; return busy.busy; } return false; } int iris_bo_madvise(struct iris_bo *bo, int state) { struct drm_i915_gem_madvise madv = { .handle = bo->gem_handle, .madv = state, .retained = 1, }; drm_ioctl(bo->bufmgr->fd, DRM_IOCTL_I915_GEM_MADVISE, &madv); return madv.retained; } /* drop the oldest entries that have been purged by the kernel */ static void iris_bo_cache_purge_bucket(struct iris_bufmgr *bufmgr, struct bo_cache_bucket *bucket) { list_for_each_entry_safe(struct iris_bo, bo, &bucket->head, head) { if (iris_bo_madvise(bo, I915_MADV_DONTNEED)) break; list_del(&bo->head); bo_free(bo); } } static struct iris_bo * bo_calloc(void) { struct iris_bo *bo = calloc(1, sizeof(*bo)); if (bo) { bo->hash = _mesa_hash_pointer(bo); } return bo; } static struct iris_bo * bo_alloc_internal(struct iris_bufmgr *bufmgr, const char *name, uint64_t size, enum iris_memory_zone memzone, unsigned flags, uint32_t tiling_mode, uint32_t stride) { struct iris_bo *bo; unsigned int page_size = getpagesize(); int ret; struct bo_cache_bucket *bucket; bool alloc_from_cache; uint64_t bo_size; bool zeroed = false; if (flags & BO_ALLOC_ZEROED) zeroed = true; if ((flags & BO_ALLOC_COHERENT) && !bufmgr->has_llc) { bo_size = MAX2(ALIGN(size, page_size), page_size); bucket = NULL; goto skip_cache; } /* Round the allocated size up to a power of two number of pages. */ bucket = bucket_for_size(bufmgr, size); /* If we don't have caching at this size, don't actually round the * allocation up. */ if (bucket == NULL) { bo_size = MAX2(ALIGN(size, page_size), page_size); } else { bo_size = bucket->size; } mtx_lock(&bufmgr->lock); /* Get a buffer out of the cache if available */ retry: alloc_from_cache = false; if (bucket != NULL && !list_empty(&bucket->head)) { /* If the last BO in the cache is idle, then reuse it. Otherwise, * allocate a fresh buffer to avoid stalling. */ bo = LIST_ENTRY(struct iris_bo, bucket->head.next, head); if (!iris_bo_busy(bo)) { alloc_from_cache = true; list_del(&bo->head); } if (alloc_from_cache) { if (!iris_bo_madvise(bo, I915_MADV_WILLNEED)) { bo_free(bo); iris_bo_cache_purge_bucket(bufmgr, bucket); goto retry; } if (bo_set_tiling_internal(bo, tiling_mode, stride)) { bo_free(bo); goto retry; } if (zeroed) { void *map = iris_bo_map(NULL, bo, MAP_WRITE | MAP_RAW); if (!map) { bo_free(bo); goto retry; } memset(map, 0, bo_size); } } } if (alloc_from_cache) { /* If the cached BO isn't in the right memory zone, free the old * memory and assign it a new address. */ if (memzone != iris_memzone_for_address(bo->gtt_offset)) { vma_free(bufmgr, bo->gtt_offset, bo->size); bo->gtt_offset = 0ull; } } else { skip_cache: bo = bo_calloc(); if (!bo) goto err; bo->size = bo_size; bo->idle = true; struct drm_i915_gem_create create = { .size = bo_size }; /* All new BOs we get from the kernel are zeroed, so we don't need to * worry about that here. */ ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CREATE, &create); if (ret != 0) { free(bo); goto err; } bo->gem_handle = create.handle; bo->bufmgr = bufmgr; bo->tiling_mode = I915_TILING_NONE; bo->swizzle_mode = I915_BIT_6_SWIZZLE_NONE; bo->stride = 0; if (bo_set_tiling_internal(bo, tiling_mode, stride)) goto err_free; /* Calling set_domain() will allocate pages for the BO outside of the * struct mutex lock in the kernel, which is more efficient than waiting * to create them during the first execbuf that uses the BO. */ struct drm_i915_gem_set_domain sd = { .handle = bo->gem_handle, .read_domains = I915_GEM_DOMAIN_CPU, .write_domain = 0, }; if (drm_ioctl(bo->bufmgr->fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &sd) != 0) goto err_free; } bo->name = name; p_atomic_set(&bo->refcount, 1); bo->reusable = bucket && bufmgr->bo_reuse; bo->cache_coherent = bufmgr->has_llc; bo->index = -1; bo->kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED; /* By default, capture all driver-internal buffers like shader kernels, * surface states, dynamic states, border colors, and so on. */ if (memzone < IRIS_MEMZONE_OTHER) bo->kflags |= EXEC_OBJECT_CAPTURE; if (bo->gtt_offset == 0ull) { bo->gtt_offset = vma_alloc(bufmgr, memzone, bo->size, 1); if (bo->gtt_offset == 0ull) goto err_free; } mtx_unlock(&bufmgr->lock); if ((flags & BO_ALLOC_COHERENT) && !bo->cache_coherent) { struct drm_i915_gem_caching arg = { .handle = bo->gem_handle, .caching = 1, }; if (drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_SET_CACHING, &arg) == 0) { bo->cache_coherent = true; bo->reusable = false; } } DBG("bo_create: buf %d (%s) (%s memzone) %llub\n", bo->gem_handle, bo->name, memzone_name(memzone), (unsigned long long) size); return bo; err_free: bo_free(bo); err: mtx_unlock(&bufmgr->lock); return NULL; } struct iris_bo * iris_bo_alloc(struct iris_bufmgr *bufmgr, const char *name, uint64_t size, enum iris_memory_zone memzone) { return bo_alloc_internal(bufmgr, name, size, memzone, 0, I915_TILING_NONE, 0); } struct iris_bo * iris_bo_alloc_tiled(struct iris_bufmgr *bufmgr, const char *name, uint64_t size, enum iris_memory_zone memzone, uint32_t tiling_mode, uint32_t pitch, unsigned flags) { return bo_alloc_internal(bufmgr, name, size, memzone, flags, tiling_mode, pitch); } struct iris_bo * iris_bo_create_userptr(struct iris_bufmgr *bufmgr, const char *name, void *ptr, size_t size, enum iris_memory_zone memzone) { struct iris_bo *bo; bo = bo_calloc(); if (!bo) return NULL; struct drm_i915_gem_userptr arg = { .user_ptr = (uintptr_t)ptr, .user_size = size, }; if (drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_USERPTR, &arg)) goto err_free; bo->gem_handle = arg.handle; /* Check the buffer for validity before we try and use it in a batch */ struct drm_i915_gem_set_domain sd = { .handle = bo->gem_handle, .read_domains = I915_GEM_DOMAIN_CPU, }; if (drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &sd)) goto err_close; bo->name = name; bo->size = size; bo->map_cpu = ptr; bo->bufmgr = bufmgr; bo->kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED; bo->gtt_offset = vma_alloc(bufmgr, memzone, size, 1); if (bo->gtt_offset == 0ull) goto err_close; p_atomic_set(&bo->refcount, 1); bo->userptr = true; bo->cache_coherent = true; bo->index = -1; bo->idle = true; return bo; err_close: drm_ioctl(bufmgr->fd, DRM_IOCTL_GEM_CLOSE, &bo->gem_handle); err_free: free(bo); return NULL; } /** * Returns a iris_bo wrapping the given buffer object handle. * * This can be used when one application needs to pass a buffer object * to another. */ struct iris_bo * iris_bo_gem_create_from_name(struct iris_bufmgr *bufmgr, const char *name, unsigned int handle) { struct iris_bo *bo; /* At the moment most applications only have a few named bo. * For instance, in a DRI client only the render buffers passed * between X and the client are named. And since X returns the * alternating names for the front/back buffer a linear search * provides a sufficiently fast match. */ mtx_lock(&bufmgr->lock); bo = hash_find_bo(bufmgr->name_table, handle); if (bo) { iris_bo_reference(bo); goto out; } struct drm_gem_open open_arg = { .name = handle }; int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_GEM_OPEN, &open_arg); if (ret != 0) { DBG("Couldn't reference %s handle 0x%08x: %s\n", name, handle, strerror(errno)); bo = NULL; goto out; } /* Now see if someone has used a prime handle to get this * object from the kernel before by looking through the list * again for a matching gem_handle */ bo = hash_find_bo(bufmgr->handle_table, open_arg.handle); if (bo) { iris_bo_reference(bo); goto out; } bo = bo_calloc(); if (!bo) goto out; p_atomic_set(&bo->refcount, 1); bo->size = open_arg.size; bo->gtt_offset = 0; bo->bufmgr = bufmgr; bo->gem_handle = open_arg.handle; bo->name = name; bo->global_name = handle; bo->reusable = false; bo->external = true; bo->kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED; bo->gtt_offset = vma_alloc(bufmgr, IRIS_MEMZONE_OTHER, bo->size, 1); _mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo); _mesa_hash_table_insert(bufmgr->name_table, &bo->global_name, bo); struct drm_i915_gem_get_tiling get_tiling = { .handle = bo->gem_handle }; ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_GET_TILING, &get_tiling); if (ret != 0) goto err_unref; bo->tiling_mode = get_tiling.tiling_mode; bo->swizzle_mode = get_tiling.swizzle_mode; /* XXX stride is unknown */ DBG("bo_create_from_handle: %d (%s)\n", handle, bo->name); out: mtx_unlock(&bufmgr->lock); return bo; err_unref: bo_free(bo); mtx_unlock(&bufmgr->lock); return NULL; } static void bo_free(struct iris_bo *bo) { struct iris_bufmgr *bufmgr = bo->bufmgr; if (bo->map_cpu && !bo->userptr) { VG_NOACCESS(bo->map_cpu, bo->size); munmap(bo->map_cpu, bo->size); } if (bo->map_wc) { VG_NOACCESS(bo->map_wc, bo->size); munmap(bo->map_wc, bo->size); } if (bo->map_gtt) { VG_NOACCESS(bo->map_gtt, bo->size); munmap(bo->map_gtt, bo->size); } if (bo->external) { struct hash_entry *entry; if (bo->global_name) { entry = _mesa_hash_table_search(bufmgr->name_table, &bo->global_name); _mesa_hash_table_remove(bufmgr->name_table, entry); } entry = _mesa_hash_table_search(bufmgr->handle_table, &bo->gem_handle); _mesa_hash_table_remove(bufmgr->handle_table, entry); } /* Close this object */ struct drm_gem_close close = { .handle = bo->gem_handle }; int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_GEM_CLOSE, &close); if (ret != 0) { DBG("DRM_IOCTL_GEM_CLOSE %d failed (%s): %s\n", bo->gem_handle, bo->name, strerror(errno)); } vma_free(bo->bufmgr, bo->gtt_offset, bo->size); free(bo); } /** Frees all cached buffers significantly older than @time. */ static void cleanup_bo_cache(struct iris_bufmgr *bufmgr, time_t time) { int i; if (bufmgr->time == time) return; for (i = 0; i < bufmgr->num_buckets; i++) { struct bo_cache_bucket *bucket = &bufmgr->cache_bucket[i]; list_for_each_entry_safe(struct iris_bo, bo, &bucket->head, head) { if (time - bo->free_time <= 1) break; list_del(&bo->head); bo_free(bo); } } bufmgr->time = time; } static void bo_unreference_final(struct iris_bo *bo, time_t time) { struct iris_bufmgr *bufmgr = bo->bufmgr; struct bo_cache_bucket *bucket; DBG("bo_unreference final: %d (%s)\n", bo->gem_handle, bo->name); bucket = NULL; if (bo->reusable) bucket = bucket_for_size(bufmgr, bo->size); /* Put the buffer into our internal cache for reuse if we can. */ if (bucket && iris_bo_madvise(bo, I915_MADV_DONTNEED)) { bo->free_time = time; bo->name = NULL; list_addtail(&bo->head, &bucket->head); } else { bo_free(bo); } } void iris_bo_unreference(struct iris_bo *bo) { if (bo == NULL) return; assert(p_atomic_read(&bo->refcount) > 0); if (atomic_add_unless(&bo->refcount, -1, 1)) { struct iris_bufmgr *bufmgr = bo->bufmgr; struct timespec time; clock_gettime(CLOCK_MONOTONIC, &time); mtx_lock(&bufmgr->lock); if (p_atomic_dec_zero(&bo->refcount)) { bo_unreference_final(bo, time.tv_sec); cleanup_bo_cache(bufmgr, time.tv_sec); } mtx_unlock(&bufmgr->lock); } } static void bo_wait_with_stall_warning(struct pipe_debug_callback *dbg, struct iris_bo *bo, const char *action) { bool busy = dbg && !bo->idle; double elapsed = unlikely(busy) ? -get_time() : 0.0; iris_bo_wait_rendering(bo); if (unlikely(busy)) { elapsed += get_time(); if (elapsed > 1e-5) /* 0.01ms */ { perf_debug(dbg, "%s a busy \"%s\" BO stalled and took %.03f ms.\n", action, bo->name, elapsed * 1000); } } } static void print_flags(unsigned flags) { if (flags & MAP_READ) DBG("READ "); if (flags & MAP_WRITE) DBG("WRITE "); if (flags & MAP_ASYNC) DBG("ASYNC "); if (flags & MAP_PERSISTENT) DBG("PERSISTENT "); if (flags & MAP_COHERENT) DBG("COHERENT "); if (flags & MAP_RAW) DBG("RAW "); DBG("\n"); } static void * iris_bo_map_cpu(struct pipe_debug_callback *dbg, struct iris_bo *bo, unsigned flags) { struct iris_bufmgr *bufmgr = bo->bufmgr; /* We disallow CPU maps for writing to non-coherent buffers, as the * CPU map can become invalidated when a batch is flushed out, which * can happen at unpredictable times. You should use WC maps instead. */ assert(bo->cache_coherent || !(flags & MAP_WRITE)); if (!bo->map_cpu) { DBG("iris_bo_map_cpu: %d (%s)\n", bo->gem_handle, bo->name); struct drm_i915_gem_mmap mmap_arg = { .handle = bo->gem_handle, .size = bo->size, }; int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP, &mmap_arg); if (ret != 0) { DBG("%s:%d: Error mapping buffer %d (%s): %s .\n", __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno)); return NULL; } void *map = (void *) (uintptr_t) mmap_arg.addr_ptr; VG_DEFINED(map, bo->size); if (p_atomic_cmpxchg(&bo->map_cpu, NULL, map)) { VG_NOACCESS(map, bo->size); munmap(map, bo->size); } } assert(bo->map_cpu); DBG("iris_bo_map_cpu: %d (%s) -> %p, ", bo->gem_handle, bo->name, bo->map_cpu); print_flags(flags); if (!(flags & MAP_ASYNC)) { bo_wait_with_stall_warning(dbg, bo, "CPU mapping"); } if (!bo->cache_coherent && !bo->bufmgr->has_llc) { /* If we're reusing an existing CPU mapping, the CPU caches may * contain stale data from the last time we read from that mapping. * (With the BO cache, it might even be data from a previous buffer!) * Even if it's a brand new mapping, the kernel may have zeroed the * buffer via CPU writes. * * We need to invalidate those cachelines so that we see the latest * contents, and so long as we only read from the CPU mmap we do not * need to write those cachelines back afterwards. * * On LLC, the emprical evidence suggests that writes from the GPU * that bypass the LLC (i.e. for scanout) do *invalidate* the CPU * cachelines. (Other reads, such as the display engine, bypass the * LLC entirely requiring us to keep dirty pixels for the scanout * out of any cache.) */ gen_invalidate_range(bo->map_cpu, bo->size); } return bo->map_cpu; } static void * iris_bo_map_wc(struct pipe_debug_callback *dbg, struct iris_bo *bo, unsigned flags) { struct iris_bufmgr *bufmgr = bo->bufmgr; if (!bo->map_wc) { DBG("iris_bo_map_wc: %d (%s)\n", bo->gem_handle, bo->name); struct drm_i915_gem_mmap mmap_arg = { .handle = bo->gem_handle, .size = bo->size, .flags = I915_MMAP_WC, }; int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP, &mmap_arg); if (ret != 0) { DBG("%s:%d: Error mapping buffer %d (%s): %s .\n", __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno)); return NULL; } void *map = (void *) (uintptr_t) mmap_arg.addr_ptr; VG_DEFINED(map, bo->size); if (p_atomic_cmpxchg(&bo->map_wc, NULL, map)) { VG_NOACCESS(map, bo->size); munmap(map, bo->size); } } assert(bo->map_wc); DBG("iris_bo_map_wc: %d (%s) -> %p\n", bo->gem_handle, bo->name, bo->map_wc); print_flags(flags); if (!(flags & MAP_ASYNC)) { bo_wait_with_stall_warning(dbg, bo, "WC mapping"); } return bo->map_wc; } /** * Perform an uncached mapping via the GTT. * * Write access through the GTT is not quite fully coherent. On low power * systems especially, like modern Atoms, we can observe reads from RAM before * the write via GTT has landed. A write memory barrier that flushes the Write * Combining Buffer (i.e. sfence/mfence) is not sufficient to order the later * read after the write as the GTT write suffers a small delay through the GTT * indirection. The kernel uses an uncached mmio read to ensure the GTT write * is ordered with reads (either by the GPU, WB or WC) and unconditionally * flushes prior to execbuf submission. However, if we are not informing the * kernel about our GTT writes, it will not flush before earlier access, such * as when using the cmdparser. Similarly, we need to be careful if we should * ever issue a CPU read immediately following a GTT write. * * Telling the kernel about write access also has one more important * side-effect. Upon receiving notification about the write, it cancels any * scanout buffering for FBC/PSR and friends. Later FBC/PSR is then flushed by * either SW_FINISH or DIRTYFB. The presumption is that we never write to the * actual scanout via a mmaping, only to a backbuffer and so all the FBC/PSR * tracking is handled on the buffer exchange instead. */ static void * iris_bo_map_gtt(struct pipe_debug_callback *dbg, struct iris_bo *bo, unsigned flags) { struct iris_bufmgr *bufmgr = bo->bufmgr; /* Get a mapping of the buffer if we haven't before. */ if (bo->map_gtt == NULL) { DBG("bo_map_gtt: mmap %d (%s)\n", bo->gem_handle, bo->name); struct drm_i915_gem_mmap_gtt mmap_arg = { .handle = bo->gem_handle }; /* Get the fake offset back... */ int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP_GTT, &mmap_arg); if (ret != 0) { DBG("%s:%d: Error preparing buffer map %d (%s): %s .\n", __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno)); return NULL; } /* and mmap it. */ void *map = mmap(0, bo->size, PROT_READ | PROT_WRITE, MAP_SHARED, bufmgr->fd, mmap_arg.offset); if (map == MAP_FAILED) { DBG("%s:%d: Error mapping buffer %d (%s): %s .\n", __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno)); return NULL; } /* We don't need to use VALGRIND_MALLOCLIKE_BLOCK because Valgrind will * already intercept this mmap call. However, for consistency between * all the mmap paths, we mark the pointer as defined now and mark it * as inaccessible afterwards. */ VG_DEFINED(map, bo->size); if (p_atomic_cmpxchg(&bo->map_gtt, NULL, map)) { VG_NOACCESS(map, bo->size); munmap(map, bo->size); } } assert(bo->map_gtt); DBG("bo_map_gtt: %d (%s) -> %p, ", bo->gem_handle, bo->name, bo->map_gtt); print_flags(flags); if (!(flags & MAP_ASYNC)) { bo_wait_with_stall_warning(dbg, bo, "GTT mapping"); } return bo->map_gtt; } static bool can_map_cpu(struct iris_bo *bo, unsigned flags) { if (bo->cache_coherent) return true; /* Even if the buffer itself is not cache-coherent (such as a scanout), on * an LLC platform reads always are coherent (as they are performed via the * central system agent). It is just the writes that we need to take special * care to ensure that land in main memory and not stick in the CPU cache. */ if (!(flags & MAP_WRITE) && bo->bufmgr->has_llc) return true; /* If PERSISTENT or COHERENT are set, the mmapping needs to remain valid * across batch flushes where the kernel will change cache domains of the * bo, invalidating continued access to the CPU mmap on non-LLC device. * * Similarly, ASYNC typically means that the buffer will be accessed via * both the CPU and the GPU simultaneously. Batches may be executed that * use the BO even while it is mapped. While OpenGL technically disallows * most drawing while non-persistent mappings are active, we may still use * the GPU for blits or other operations, causing batches to happen at * inconvenient times. * * If RAW is set, we expect the caller to be able to handle a WC buffer * more efficiently than the involuntary clflushes. */ if (flags & (MAP_PERSISTENT | MAP_COHERENT | MAP_ASYNC | MAP_RAW)) return false; return !(flags & MAP_WRITE); } void * iris_bo_map(struct pipe_debug_callback *dbg, struct iris_bo *bo, unsigned flags) { if (bo->tiling_mode != I915_TILING_NONE && !(flags & MAP_RAW)) return iris_bo_map_gtt(dbg, bo, flags); void *map; if (can_map_cpu(bo, flags)) map = iris_bo_map_cpu(dbg, bo, flags); else map = iris_bo_map_wc(dbg, bo, flags); /* Allow the attempt to fail by falling back to the GTT where necessary. * * Not every buffer can be mmaped directly using the CPU (or WC), for * example buffers that wrap stolen memory or are imported from other * devices. For those, we have little choice but to use a GTT mmapping. * However, if we use a slow GTT mmapping for reads where we expected fast * access, that order of magnitude difference in throughput will be clearly * expressed by angry users. * * We skip MAP_RAW because we want to avoid map_gtt's fence detiling. */ if (!map && !(flags & MAP_RAW)) { perf_debug(dbg, "Fallback GTT mapping for %s with access flags %x\n", bo->name, flags); map = iris_bo_map_gtt(dbg, bo, flags); } return map; } /** Waits for all GPU rendering with the object to have completed. */ void iris_bo_wait_rendering(struct iris_bo *bo) { /* We require a kernel recent enough for WAIT_IOCTL support. * See intel_init_bufmgr() */ iris_bo_wait(bo, -1); } /** * Waits on a BO for the given amount of time. * * @bo: buffer object to wait for * @timeout_ns: amount of time to wait in nanoseconds. * If value is less than 0, an infinite wait will occur. * * Returns 0 if the wait was successful ie. the last batch referencing the * object has completed within the allotted time. Otherwise some negative return * value describes the error. Of particular interest is -ETIME when the wait has * failed to yield the desired result. * * Similar to iris_bo_wait_rendering except a timeout parameter allows * the operation to give up after a certain amount of time. Another subtle * difference is the internal locking semantics are different (this variant does * not hold the lock for the duration of the wait). This makes the wait subject * to a larger userspace race window. * * The implementation shall wait until the object is no longer actively * referenced within a batch buffer at the time of the call. The wait will * not guarantee that the buffer is re-issued via another thread, or an flinked * handle. Userspace must make sure this race does not occur if such precision * is important. * * Note that some kernels have broken the inifite wait for negative values * promise, upgrade to latest stable kernels if this is the case. */ int iris_bo_wait(struct iris_bo *bo, int64_t timeout_ns) { struct iris_bufmgr *bufmgr = bo->bufmgr; /* If we know it's idle, don't bother with the kernel round trip */ if (bo->idle && !bo->external) return 0; struct drm_i915_gem_wait wait = { .bo_handle = bo->gem_handle, .timeout_ns = timeout_ns, }; int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_WAIT, &wait); if (ret != 0) return -errno; bo->idle = true; return ret; } void iris_bufmgr_destroy(struct iris_bufmgr *bufmgr) { mtx_destroy(&bufmgr->lock); /* Free any cached buffer objects we were going to reuse */ for (int i = 0; i < bufmgr->num_buckets; i++) { struct bo_cache_bucket *bucket = &bufmgr->cache_bucket[i]; list_for_each_entry_safe(struct iris_bo, bo, &bucket->head, head) { list_del(&bo->head); bo_free(bo); } } _mesa_hash_table_destroy(bufmgr->name_table, NULL); _mesa_hash_table_destroy(bufmgr->handle_table, NULL); for (int z = 0; z < IRIS_MEMZONE_COUNT; z++) { if (z != IRIS_MEMZONE_BINDER) util_vma_heap_finish(&bufmgr->vma_allocator[z]); } free(bufmgr); } static int bo_set_tiling_internal(struct iris_bo *bo, uint32_t tiling_mode, uint32_t stride) { struct iris_bufmgr *bufmgr = bo->bufmgr; struct drm_i915_gem_set_tiling set_tiling; int ret; if (bo->global_name == 0 && tiling_mode == bo->tiling_mode && stride == bo->stride) return 0; memset(&set_tiling, 0, sizeof(set_tiling)); do { /* set_tiling is slightly broken and overwrites the * input on the error path, so we have to open code * drm_ioctl. */ set_tiling.handle = bo->gem_handle; set_tiling.tiling_mode = tiling_mode; set_tiling.stride = stride; ret = ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_SET_TILING, &set_tiling); } while (ret == -1 && (errno == EINTR || errno == EAGAIN)); if (ret == -1) return -errno; bo->tiling_mode = set_tiling.tiling_mode; bo->swizzle_mode = set_tiling.swizzle_mode; bo->stride = set_tiling.stride; return 0; } int iris_bo_get_tiling(struct iris_bo *bo, uint32_t *tiling_mode, uint32_t *swizzle_mode) { *tiling_mode = bo->tiling_mode; *swizzle_mode = bo->swizzle_mode; return 0; } struct iris_bo * iris_bo_import_dmabuf(struct iris_bufmgr *bufmgr, int prime_fd) { uint32_t handle; struct iris_bo *bo; mtx_lock(&bufmgr->lock); int ret = drmPrimeFDToHandle(bufmgr->fd, prime_fd, &handle); if (ret) { DBG("import_dmabuf: failed to obtain handle from fd: %s\n", strerror(errno)); mtx_unlock(&bufmgr->lock); return NULL; } /* * See if the kernel has already returned this buffer to us. Just as * for named buffers, we must not create two bo's pointing at the same * kernel object */ bo = hash_find_bo(bufmgr->handle_table, handle); if (bo) { iris_bo_reference(bo); goto out; } bo = bo_calloc(); if (!bo) goto out; p_atomic_set(&bo->refcount, 1); /* Determine size of bo. The fd-to-handle ioctl really should * return the size, but it doesn't. If we have kernel 3.12 or * later, we can lseek on the prime fd to get the size. Older * kernels will just fail, in which case we fall back to the * provided (estimated or guess size). */ ret = lseek(prime_fd, 0, SEEK_END); if (ret != -1) bo->size = ret; bo->bufmgr = bufmgr; bo->gem_handle = handle; _mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo); bo->name = "prime"; bo->reusable = false; bo->external = true; bo->kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED; bo->gtt_offset = vma_alloc(bufmgr, IRIS_MEMZONE_OTHER, bo->size, 1); struct drm_i915_gem_get_tiling get_tiling = { .handle = bo->gem_handle }; if (drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_GET_TILING, &get_tiling)) goto err; bo->tiling_mode = get_tiling.tiling_mode; bo->swizzle_mode = get_tiling.swizzle_mode; /* XXX stride is unknown */ out: mtx_unlock(&bufmgr->lock); return bo; err: bo_free(bo); mtx_unlock(&bufmgr->lock); return NULL; } static void iris_bo_make_external_locked(struct iris_bo *bo) { if (!bo->external) { _mesa_hash_table_insert(bo->bufmgr->handle_table, &bo->gem_handle, bo); bo->external = true; } } static void iris_bo_make_external(struct iris_bo *bo) { struct iris_bufmgr *bufmgr = bo->bufmgr; if (bo->external) return; mtx_lock(&bufmgr->lock); iris_bo_make_external_locked(bo); mtx_unlock(&bufmgr->lock); } int iris_bo_export_dmabuf(struct iris_bo *bo, int *prime_fd) { struct iris_bufmgr *bufmgr = bo->bufmgr; iris_bo_make_external(bo); if (drmPrimeHandleToFD(bufmgr->fd, bo->gem_handle, DRM_CLOEXEC, prime_fd) != 0) return -errno; bo->reusable = false; return 0; } uint32_t iris_bo_export_gem_handle(struct iris_bo *bo) { iris_bo_make_external(bo); return bo->gem_handle; } int iris_bo_flink(struct iris_bo *bo, uint32_t *name) { struct iris_bufmgr *bufmgr = bo->bufmgr; if (!bo->global_name) { struct drm_gem_flink flink = { .handle = bo->gem_handle }; if (drm_ioctl(bufmgr->fd, DRM_IOCTL_GEM_FLINK, &flink)) return -errno; mtx_lock(&bufmgr->lock); if (!bo->global_name) { iris_bo_make_external_locked(bo); bo->global_name = flink.name; _mesa_hash_table_insert(bufmgr->name_table, &bo->global_name, bo); } mtx_unlock(&bufmgr->lock); bo->reusable = false; } *name = bo->global_name; return 0; } static void add_bucket(struct iris_bufmgr *bufmgr, int size) { unsigned int i = bufmgr->num_buckets; assert(i < ARRAY_SIZE(bufmgr->cache_bucket)); list_inithead(&bufmgr->cache_bucket[i].head); bufmgr->cache_bucket[i].size = size; bufmgr->num_buckets++; assert(bucket_for_size(bufmgr, size) == &bufmgr->cache_bucket[i]); assert(bucket_for_size(bufmgr, size - 2048) == &bufmgr->cache_bucket[i]); assert(bucket_for_size(bufmgr, size + 1) != &bufmgr->cache_bucket[i]); } static void init_cache_buckets(struct iris_bufmgr *bufmgr) { uint64_t size, cache_max_size = 64 * 1024 * 1024; /* OK, so power of two buckets was too wasteful of memory. * Give 3 other sizes between each power of two, to hopefully * cover things accurately enough. (The alternative is * probably to just go for exact matching of sizes, and assume * that for things like composited window resize the tiled * width/height alignment and rounding of sizes to pages will * get us useful cache hit rates anyway) */ add_bucket(bufmgr, PAGE_SIZE); add_bucket(bufmgr, PAGE_SIZE * 2); add_bucket(bufmgr, PAGE_SIZE * 3); /* Initialize the linked lists for BO reuse cache. */ for (size = 4 * PAGE_SIZE; size <= cache_max_size; size *= 2) { add_bucket(bufmgr, size); add_bucket(bufmgr, size + size * 1 / 4); add_bucket(bufmgr, size + size * 2 / 4); add_bucket(bufmgr, size + size * 3 / 4); } }
/* * Destroy a exynos buffer object. * * @bo: a exynos buffer object to be destroyed. */ drm_public void exynos_bo_destroy(struct exynos_bo *bo) { if (!bo) return; if (bo->vaddr) munmap(bo->vaddr, bo->size); if (bo->handle) { struct drm_gem_close req = { .handle = bo->handle, }; drmIoctl(bo->dev->fd, DRM_IOCTL_GEM_CLOSE, &req); } free(bo); } /* * Get a exynos buffer object from a gem global object name. * * @dev: a exynos device object. * @name: a gem global object name exported by another process. * * this interface is used to get a exynos buffer object from a gem * global object name sent by another process for buffer sharing. * * if true, return a exynos buffer object else NULL. * */ drm_public struct exynos_bo * exynos_bo_from_name(struct exynos_device *dev, uint32_t name) { struct exynos_bo *bo; struct drm_gem_open req = { .name = name, }; bo = calloc(sizeof(*bo), 1); if (!bo) { fprintf(stderr, "failed to allocate bo[%s].\n", strerror(errno)); return NULL; } if (drmIoctl(dev->fd, DRM_IOCTL_GEM_OPEN, &req)) { fprintf(stderr, "failed to open gem object[%s].\n", strerror(errno)); goto err_free_bo; } bo->dev = dev; bo->name = name; bo->handle = req.handle; return bo; err_free_bo: free(bo); return NULL; } /* * Get a gem global object name from a gem object handle. * * @bo: a exynos buffer object including gem handle. * @name: a gem global object name to be got by kernel driver. * * this interface is used to get a gem global object name from a gem object * handle to a buffer that wants to share it with another process. * * if true, return 0 else negative. */ drm_public int exynos_bo_get_name(struct exynos_bo *bo, uint32_t *name) { if (!bo->name) { struct drm_gem_flink req = { .handle = bo->handle, }; int ret; ret = drmIoctl(bo->dev->fd, DRM_IOCTL_GEM_FLINK, &req); if (ret) { fprintf(stderr, "failed to get gem global name[%s].\n", strerror(errno)); return ret; } bo->name = req.name; } *name = bo->name; return 0; } drm_public uint32_t exynos_bo_handle(struct exynos_bo *bo) { return bo->handle; } /* * Mmap a buffer to user space. * * @bo: a exynos buffer object including a gem object handle to be mmapped * to user space. * * if true, user pointer mmaped else NULL. */ drm_public void *exynos_bo_map(struct exynos_bo *bo) { if (!bo->vaddr) { struct exynos_device *dev = bo->dev; struct drm_exynos_gem_mmap req = { .handle = bo->handle, .size = bo->size, }; int ret; ret = drmIoctl(dev->fd, DRM_IOCTL_EXYNOS_GEM_MMAP, &req); if (ret) { fprintf(stderr, "failed to mmap[%s].\n", strerror(errno)); return NULL; } bo->vaddr = (void *)(uintptr_t)req.mapped; } return bo->vaddr; } /* * Export gem object to dmabuf as file descriptor. * * @dev: exynos device object * @handle: gem handle to export as file descriptor of dmabuf * @fd: file descriptor returned from kernel * * @return: 0 on success, -1 on error, and errno will be set */ drm_public int exynos_prime_handle_to_fd(struct exynos_device *dev, uint32_t handle, int *fd) { return drmPrimeHandleToFD(dev->fd, handle, 0, fd); } /* * Import file descriptor into gem handle. * * @dev: exynos device object * @fd: file descriptor of dmabuf to import * @handle: gem handle returned from kernel * * @return: 0 on success, -1 on error, and errno will be set */ drm_public int exynos_prime_fd_to_handle(struct exynos_device *dev, int fd, uint32_t *handle) { return drmPrimeFDToHandle(dev->fd, fd, handle); } /* * Request Wireless Display connection or disconnection. * * @dev: a exynos device object. * @connect: indicate whether connectoin or disconnection request. * @ext: indicate whether edid data includes extentions data or not. * @edid: a pointer to edid data from Wireless Display device. * * this interface is used to request Virtual Display driver connection or * disconnection. for this, user should get a edid data from the Wireless * Display device and then send that data to kernel driver with connection * request * * if true, return 0 else negative. */ drm_public int exynos_vidi_connection(struct exynos_device *dev, uint32_t connect, uint32_t ext, void *edid) { struct drm_exynos_vidi_connection req = { .connection = connect, .extensions = ext, .edid = (uint64_t)(uintptr_t)edid, }; int ret; ret = drmIoctl(dev->fd, DRM_IOCTL_EXYNOS_VIDI_CONNECTION, &req); if (ret) { fprintf(stderr, "failed to request vidi connection[%s].\n", strerror(errno)); return ret; } return 0; }
/* Called under table_lock */ drm_private void bo_del(struct fd_bo *bo) { VG_BO_FREE(bo); if (bo->map) drm_munmap(bo->map, bo->size); /* TODO probably bo's in bucket list get removed from * handle table?? */ if (bo->handle) { struct drm_gem_close req = { .handle = bo->handle, }; drmHashDelete(bo->dev->handle_table, bo->handle); if (bo->name) drmHashDelete(bo->dev->name_table, bo->name); drmIoctl(bo->dev->fd, DRM_IOCTL_GEM_CLOSE, &req); } bo->funcs->destroy(bo); } int fd_bo_get_name(struct fd_bo *bo, uint32_t *name) { if (!bo->name) { struct drm_gem_flink req = { .handle = bo->handle, }; int ret; ret = drmIoctl(bo->dev->fd, DRM_IOCTL_GEM_FLINK, &req); if (ret) { return ret; } pthread_mutex_lock(&table_lock); set_name(bo, req.name); pthread_mutex_unlock(&table_lock); bo->bo_reuse = FALSE; } *name = bo->name; return 0; } uint32_t fd_bo_handle(struct fd_bo *bo) { return bo->handle; } int fd_bo_dmabuf(struct fd_bo *bo) { int ret, prime_fd; ret = drmPrimeHandleToFD(bo->dev->fd, bo->handle, DRM_CLOEXEC, &prime_fd); if (ret) { ERROR_MSG("failed to get dmabuf fd: %d", ret); return ret; } bo->bo_reuse = FALSE; return prime_fd; } uint32_t fd_bo_size(struct fd_bo *bo) { return bo->size; } void * fd_bo_map(struct fd_bo *bo) { if (!bo->map) { uint64_t offset; int ret; ret = bo->funcs->offset(bo, &offset); if (ret) { return NULL; } bo->map = drm_mmap(0, bo->size, PROT_READ | PROT_WRITE, MAP_SHARED, bo->dev->fd, offset); if (bo->map == MAP_FAILED) { ERROR_MSG("mmap failed: %s", strerror(errno)); bo->map = NULL; } } return bo->map; } /* a bit odd to take the pipe as an arg, but it's a, umm, quirk of kgsl.. */ int fd_bo_cpu_prep(struct fd_bo *bo, struct fd_pipe *pipe, uint32_t op) { return bo->funcs->cpu_prep(bo, pipe, op); } void fd_bo_cpu_fini(struct fd_bo *bo) { bo->funcs->cpu_fini(bo); }
struct renderonly_scanout * renderonly_create_kms_dumb_buffer_for_resource(struct pipe_resource *rsc, struct renderonly *ro) { struct pipe_screen *screen = rsc->screen; struct renderonly_scanout *scanout; struct winsys_handle handle; int prime_fd, err; struct drm_mode_create_dumb create_dumb = { .width = rsc->width0, .height = rsc->height0, .bpp = 32, }; struct drm_mode_destroy_dumb destroy_dumb = { }; scanout = CALLOC_STRUCT(renderonly_scanout); if (!scanout) return NULL; /* create dumb buffer at scanout GPU */ err = ioctl(ro->kms_fd, DRM_IOCTL_MODE_CREATE_DUMB, &create_dumb); if (err < 0) { fprintf(stderr, "DRM_IOCTL_MODE_CREATE_DUMB failed: %s\n", strerror(errno)); goto free_scanout; } scanout->handle = create_dumb.handle; scanout->stride = create_dumb.pitch; /* export dumb buffer */ err = drmPrimeHandleToFD(ro->kms_fd, create_dumb.handle, O_CLOEXEC, &prime_fd); if (err < 0) { fprintf(stderr, "failed to export dumb buffer: %s\n", strerror(errno)); goto free_dumb; } /* import dumb buffer */ handle.type = DRM_API_HANDLE_TYPE_FD; handle.handle = prime_fd; handle.stride = create_dumb.pitch; scanout->prime = screen->resource_from_handle(screen, rsc, &handle, PIPE_HANDLE_USAGE_READ_WRITE); if (!scanout->prime) { fprintf(stderr, "failed to create resource_from_handle: %s\n", strerror(errno)); goto free_dumb; } return scanout; free_dumb: destroy_dumb.handle = scanout->handle; ioctl(ro->kms_fd, DRM_IOCTL_MODE_DESTROY_DUMB, &destroy_dumb); free_scanout: FREE(scanout); return NULL; } struct renderonly_scanout * renderonly_create_gpu_import_for_resource(struct pipe_resource *rsc, struct renderonly *ro) { struct pipe_screen *screen = rsc->screen; struct renderonly_scanout *scanout; boolean status; int fd, err; struct winsys_handle handle = { .type = DRM_API_HANDLE_TYPE_FD }; scanout = CALLOC_STRUCT(renderonly_scanout); if (!scanout) return NULL; status = screen->resource_get_handle(screen, NULL, rsc, &handle, PIPE_HANDLE_USAGE_READ_WRITE); if (!status) goto free_scanout; scanout->stride = handle.stride; fd = handle.handle; err = drmPrimeFDToHandle(ro->kms_fd, fd, &scanout->handle); close(fd); if (err < 0) { fprintf(stderr, "drmPrimeFDToHandle() failed: %s\n", strerror(errno)); goto free_scanout; } return scanout; free_scanout: FREE(scanout); return NULL; }
/* * Destroy a exynos buffer object. * * @bo: a exynos buffer object to be destroyed. */ drm_public void exynos_bo_destroy(struct exynos_bo *bo) { if (!bo) return; if (bo->vaddr) munmap(bo->vaddr, bo->size); if (bo->handle) { struct drm_gem_close req = { .handle = bo->handle, }; drmIoctl(bo->dev->fd, DRM_IOCTL_GEM_CLOSE, &req); } free(bo); } /* * Get a exynos buffer object from a gem global object name. * * @dev: a exynos device object. * @name: a gem global object name exported by another process. * * this interface is used to get a exynos buffer object from a gem * global object name sent by another process for buffer sharing. * * if true, return a exynos buffer object else NULL. * */ drm_public struct exynos_bo * exynos_bo_from_name(struct exynos_device *dev, uint32_t name) { struct exynos_bo *bo; struct drm_gem_open req = { .name = name, }; bo = calloc(sizeof(*bo), 1); if (!bo) { fprintf(stderr, "failed to allocate bo[%s].\n", strerror(errno)); return NULL; } if (drmIoctl(dev->fd, DRM_IOCTL_GEM_OPEN, &req)) { fprintf(stderr, "failed to open gem object[%s].\n", strerror(errno)); goto err_free_bo; } bo->dev = dev; bo->name = name; bo->handle = req.handle; return bo; err_free_bo: free(bo); return NULL; } /* * Get a gem global object name from a gem object handle. * * @bo: a exynos buffer object including gem handle. * @name: a gem global object name to be got by kernel driver. * * this interface is used to get a gem global object name from a gem object * handle to a buffer that wants to share it with another process. * * if true, return 0 else negative. */ drm_public int exynos_bo_get_name(struct exynos_bo *bo, uint32_t *name) { if (!bo->name) { struct drm_gem_flink req = { .handle = bo->handle, }; int ret; ret = drmIoctl(bo->dev->fd, DRM_IOCTL_GEM_FLINK, &req); if (ret) { fprintf(stderr, "failed to get gem global name[%s].\n", strerror(errno)); return ret; } bo->name = req.name; } *name = bo->name; return 0; } drm_public uint32_t exynos_bo_handle(struct exynos_bo *bo) { return bo->handle; } /* * Mmap a buffer to user space. * * @bo: a exynos buffer object including a gem object handle to be mmapped * to user space. * * if true, user pointer mmapped else NULL. */ drm_public void *exynos_bo_map(struct exynos_bo *bo) { if (!bo->vaddr) { struct exynos_device *dev = bo->dev; struct drm_mode_map_dumb arg; void *map = NULL; int ret; memset(&arg, 0, sizeof(arg)); arg.handle = bo->handle; ret = drmIoctl(dev->fd, DRM_IOCTL_MODE_MAP_DUMB, &arg); if (ret) { fprintf(stderr, "failed to map dumb buffer[%s].\n", strerror(errno)); return NULL; } map = drm_mmap(0, bo->size, PROT_READ | PROT_WRITE, MAP_SHARED, dev->fd, arg.offset); if (map != MAP_FAILED) bo->vaddr = map; } return bo->vaddr; } /* * Export gem object to dmabuf as file descriptor. * * @dev: exynos device object * @handle: gem handle to export as file descriptor of dmabuf * @fd: file descriptor returned from kernel * * @return: 0 on success, -1 on error, and errno will be set */ drm_public int exynos_prime_handle_to_fd(struct exynos_device *dev, uint32_t handle, int *fd) { return drmPrimeHandleToFD(dev->fd, handle, 0, fd); } /* * Import file descriptor into gem handle. * * @dev: exynos device object * @fd: file descriptor of dmabuf to import * @handle: gem handle returned from kernel * * @return: 0 on success, -1 on error, and errno will be set */ drm_public int exynos_prime_fd_to_handle(struct exynos_device *dev, int fd, uint32_t *handle) { return drmPrimeFDToHandle(dev->fd, fd, handle); } /* * Request Wireless Display connection or disconnection. * * @dev: a exynos device object. * @connect: indicate whether connectoin or disconnection request. * @ext: indicate whether edid data includes extensions data or not. * @edid: a pointer to edid data from Wireless Display device. * * this interface is used to request Virtual Display driver connection or * disconnection. for this, user should get a edid data from the Wireless * Display device and then send that data to kernel driver with connection * request * * if true, return 0 else negative. */ drm_public int exynos_vidi_connection(struct exynos_device *dev, uint32_t connect, uint32_t ext, void *edid) { struct drm_exynos_vidi_connection req = { .connection = connect, .extensions = ext, .edid = (uint64_t)(uintptr_t)edid, }; int ret; ret = drmIoctl(dev->fd, DRM_IOCTL_EXYNOS_VIDI_CONNECTION, &req); if (ret) { fprintf(stderr, "failed to request vidi connection[%s].\n", strerror(errno)); return ret; } return 0; } static void exynos_handle_vendor(int fd, struct drm_event *e, void *ctx) { struct drm_exynos_g2d_event *g2d; struct exynos_event_context *ectx = ctx; switch (e->type) { case DRM_EXYNOS_G2D_EVENT: if (ectx->version < 1 || ectx->g2d_event_handler == NULL) break; g2d = (struct drm_exynos_g2d_event *)e; ectx->g2d_event_handler(fd, g2d->cmdlist_no, g2d->tv_sec, g2d->tv_usec, U642VOID(g2d->user_data)); break; default: break; } } drm_public int exynos_handle_event(struct exynos_device *dev, struct exynos_event_context *ctx) { char buffer[1024]; int len, i; struct drm_event *e; struct drm_event_vblank *vblank; drmEventContextPtr evctx = &ctx->base; /* The DRM read semantics guarantees that we always get only * complete events. */ len = read(dev->fd, buffer, sizeof buffer); if (len == 0) return 0; if (len < (int)sizeof *e) return -1; i = 0; while (i < len) { e = (struct drm_event *)(buffer + i); switch (e->type) { case DRM_EVENT_VBLANK: if (evctx->version < 1 || evctx->vblank_handler == NULL) break; vblank = (struct drm_event_vblank *) e; evctx->vblank_handler(dev->fd, vblank->sequence, vblank->tv_sec, vblank->tv_usec, U642VOID (vblank->user_data)); break; case DRM_EVENT_FLIP_COMPLETE: if (evctx->version < 2 || evctx->page_flip_handler == NULL) break; vblank = (struct drm_event_vblank *) e; evctx->page_flip_handler(dev->fd, vblank->sequence, vblank->tv_sec, vblank->tv_usec, U642VOID (vblank->user_data)); break; default: exynos_handle_vendor(dev->fd, e, evctx); break; } i += e->length; } return 0; }