int msi_release(int *irqs, int count) { struct msi_intsrc *msi, *first; int i; mtx_lock(&msi_lock); first = (struct msi_intsrc *)intr_lookup_source(irqs[0]); if (first == NULL) { mtx_unlock(&msi_lock); return (ENOENT); } /* Make sure this isn't an MSI-X message. */ if (first->msi_msix) { mtx_unlock(&msi_lock); return (EINVAL); } /* Make sure this message is allocated to a group. */ if (first->msi_first == NULL) { mtx_unlock(&msi_lock); return (ENXIO); } /* * Make sure this is the start of a group and that we are releasing * the entire group. */ if (first->msi_first != first || first->msi_count != count) { mtx_unlock(&msi_lock); return (EINVAL); } KASSERT(first->msi_dev != NULL, ("unowned group")); /* Clear all the extra messages in the group. */ for (i = 1; i < count; i++) { msi = (struct msi_intsrc *)intr_lookup_source(irqs[i]); KASSERT(msi->msi_first == first, ("message not in group")); KASSERT(msi->msi_dev == first->msi_dev, ("owner mismatch")); msi->msi_first = NULL; msi->msi_dev = NULL; apic_free_vector(msi->msi_cpu, msi->msi_vector, msi->msi_irq); msi->msi_vector = 0; } /* Clear out the first message. */ first->msi_first = NULL; first->msi_dev = NULL; apic_free_vector(first->msi_cpu, first->msi_vector, first->msi_irq); first->msi_vector = 0; first->msi_count = 0; first->msi_maxcount = 0; free(first->msi_irqs, M_MSI); first->msi_irqs = NULL; mtx_unlock(&msi_lock); return (0); }
static void atpic_register_sources(struct pic *pic) { struct atpic *ap = (struct atpic *)pic; struct atpic_intsrc *ai; int i; /* * If any of the ISA IRQs have an interrupt source already, then * assume that the I/O APICs are being used and don't register any * of our interrupt sources. This makes sure we don't accidentally * use mixed mode. The "accidental" use could otherwise occur on * machines that route the ACPI SCI interrupt to a different ISA * IRQ (at least one machine routes it to IRQ 13) thus disabling * that APIC ISA routing and allowing the ATPIC source for that IRQ * to leak through. We used to depend on this feature for routing * IRQ0 via mixed mode, but now we don't use mixed mode at all. * * To avoid the slave not register sources after the master * registers its sources, register all IRQs when this function is * called on the master. */ if (ap != &atpics[MASTER]) return; for (i = 0; i < NUM_ISA_IRQS; i++) if (intr_lookup_source(i) != NULL) return; /* Loop through all interrupt sources and add them. */ for (i = 0, ai = atintrs; i < NUM_ISA_IRQS; i++, ai++) { if (i == ICU_SLAVEID) continue; intr_register_source(&ai->at_intsrc); } }
int msix_release(int irq) { struct msi_intsrc *msi; mtx_lock(&msi_lock); msi = (struct msi_intsrc *)intr_lookup_source(irq); if (msi == NULL) { mtx_unlock(&msi_lock); return (ENOENT); } /* Make sure this is an MSI-X message. */ if (!msi->msi_msix) { mtx_unlock(&msi_lock); return (EINVAL); } KASSERT(msi->msi_dev != NULL, ("unowned message")); /* Clear out the message. */ msi->msi_first = NULL; msi->msi_dev = NULL; apic_free_vector(msi->msi_cpu, msi->msi_vector, msi->msi_irq); msi->msi_vector = 0; msi->msi_msix = 0; msi->msi_count = 0; msi->msi_maxcount = 0; mtx_unlock(&msi_lock); return (0); }
static int nexus_xen_config_intr(device_t dev, int irq, enum intr_trigger trig, enum intr_polarity pol) { int ret; /* * ISA and PCI intline IRQs are not preregistered on Xen, so * intercept calls to configure those and register them on the fly. */ if ((irq < first_msi_irq) && (intr_lookup_source(irq) == NULL)) { ret = xen_register_pirq(irq, trig, pol); if (ret != 0) return (ret); nexus_add_irq(irq); } return (intr_config_intr(irq, trig, pol)); }
void evtchn_do_upcall(struct trapframe *frame) { unsigned long l1, l2; unsigned int l1i, l2i, port; int irq, cpu; shared_info_t *s; vcpu_info_t *vcpu_info; cpu = PCPU_GET(cpuid); s = HYPERVISOR_shared_info; vcpu_info = &s->vcpu_info[cpu]; vcpu_info->evtchn_upcall_pending = 0; /* NB. No need for a barrier here -- XCHG is a barrier on x86. */ l1 = xen_xchg(&vcpu_info->evtchn_pending_sel, 0); while (l1 != 0) { l1i = __ffs(l1); l1 &= ~(1 << l1i); while ((l2 = active_evtchns(cpu, s, l1i)) != 0) { l2i = __ffs(l2); port = (l1i * LONG_BIT) + l2i; if ((irq = evtchn_to_irq[port]) != -1) { struct intsrc *isrc = intr_lookup_source(irq); /* * ack */ mask_evtchn(port); clear_evtchn(port); intr_execute_handlers(isrc, frame); } else { evtchn_device_upcall(port); } } } }
int msi_map(int irq, uint64_t *addr, uint32_t *data) { struct msi_intsrc *msi; mtx_lock(&msi_lock); msi = (struct msi_intsrc *)intr_lookup_source(irq); if (msi == NULL) { mtx_unlock(&msi_lock); return (ENOENT); } /* Make sure this message is allocated to a device. */ if (msi->msi_dev == NULL) { mtx_unlock(&msi_lock); return (ENXIO); } /* * If this message isn't an MSI-X message, make sure it's part * of a group, and switch to the first message in the * group. */ if (!msi->msi_msix) { if (msi->msi_first == NULL) { mtx_unlock(&msi_lock); return (ENXIO); } msi = msi->msi_first; } *addr = INTEL_ADDR(msi); *data = INTEL_DATA(msi); mtx_unlock(&msi_lock); return (0); }
/** * @brief Main vmbus driver initialization routine. * * Here, we * - initialize the vmbus driver context * - setup various driver entry points * - invoke the vmbus hv main init routine * - get the irq resource * - invoke the vmbus to add the vmbus root device * - setup the vmbus root device * - retrieve the channel offers */ static int vmbus_bus_init(void) { struct ioapic_intsrc { struct intsrc io_intsrc; u_int io_irq; u_int io_intpin:8; u_int io_vector:8; u_int io_cpu:8; u_int io_activehi:1; u_int io_edgetrigger:1; u_int io_masked:1; int io_bus:4; uint32_t io_lowreg; }; int ret; unsigned int vector = 0; struct intsrc *isrc; struct ioapic_intsrc *intpin; if (vmbus_inited) return (0); vmbus_inited = 1; ret = hv_vmbus_init(); if (ret) { if(bootverbose) printf("Error VMBUS: Hypervisor Initialization Failed!\n"); return (ret); } ret = swi_add(&hv_msg_intr_event, "hv_msg", vmbus_msg_swintr, NULL, SWI_CLOCK, 0, &msg_swintr); if (ret) goto cleanup; /* * Message SW interrupt handler checks a per-CPU page and * thus the thread needs to be bound to CPU-0 - which is where * all interrupts are processed. */ ret = intr_event_bind(hv_msg_intr_event, 0); if (ret) goto cleanup1; ret = swi_add(&hv_event_intr_event, "hv_event", hv_vmbus_on_events, NULL, SWI_CLOCK, 0, &event_swintr); if (ret) goto cleanup1; intr_res = bus_alloc_resource(vmbus_devp, SYS_RES_IRQ, &vmbus_rid, vmbus_irq, vmbus_irq, 1, RF_ACTIVE); if (intr_res == NULL) { ret = ENOMEM; /* XXXKYS: Need a better errno */ goto cleanup2; } /* * Setup interrupt filter handler */ ret = bus_setup_intr(vmbus_devp, intr_res, INTR_TYPE_NET | INTR_MPSAFE, hv_vmbus_isr, NULL, NULL, &vmbus_cookiep); if (ret != 0) goto cleanup3; ret = bus_bind_intr(vmbus_devp, intr_res, 0); if (ret != 0) goto cleanup4; isrc = intr_lookup_source(vmbus_irq); if ((isrc == NULL) || (isrc->is_event == NULL)) { ret = EINVAL; goto cleanup4; } /* vector = isrc->is_event->ie_vector; */ intpin = (struct ioapic_intsrc *)isrc; vector = intpin->io_vector; if(bootverbose) printf("VMBUS: irq 0x%x vector 0x%x\n", vmbus_irq, vector); /** * Notify the hypervisor of our irq. */ smp_rendezvous(NULL, hv_vmbus_synic_init, NULL, &vector); /** * Connect to VMBus in the root partition */ ret = hv_vmbus_connect(); if (ret) goto cleanup4; hv_vmbus_request_channel_offers(); return (ret); cleanup4: /* * remove swi, bus and intr resource */ bus_teardown_intr(vmbus_devp, intr_res, vmbus_cookiep); cleanup3: bus_release_resource(vmbus_devp, SYS_RES_IRQ, vmbus_rid, intr_res); cleanup2: swi_remove(event_swintr); cleanup1: swi_remove(msg_swintr); cleanup: hv_vmbus_cleanup(); return (ret); }
void nexus_init_resources(void) { int irq; /* * XXX working notes: * * - IRQ resource creation should be moved to the PIC/APIC driver. * - DRQ resource creation should be moved to the DMAC driver. * - The above should be sorted to probe earlier than any child busses. * * - Leave I/O and memory creation here, as child probes may need them. * (especially eg. ACPI) */ /* * IRQ's are on the mainboard on old systems, but on the ISA part * of PCI->ISA bridges. There would be multiple sets of IRQs on * multi-ISA-bus systems. PCI interrupts are routed to the ISA * component, so in a way, PCI can be a partial child of an ISA bus(!). * APIC interrupts are global though. */ irq_rman.rm_start = 0; irq_rman.rm_type = RMAN_ARRAY; irq_rman.rm_descr = "Interrupt request lines"; irq_rman.rm_end = NUM_IO_INTS - 1; if (rman_init(&irq_rman)) panic("nexus_init_resources irq_rman"); /* * We search for regions of existing IRQs and add those to the IRQ * resource manager. */ for (irq = 0; irq < NUM_IO_INTS; irq++) if (intr_lookup_source(irq) != NULL) if (rman_manage_region(&irq_rman, irq, irq) != 0) panic("nexus_init_resources irq_rman add"); /* * ISA DMA on PCI systems is implemented in the ISA part of each * PCI->ISA bridge and the channels can be duplicated if there are * multiple bridges. (eg: laptops with docking stations) */ drq_rman.rm_start = 0; #ifdef PC98 drq_rman.rm_end = 3; #else drq_rman.rm_end = 7; #endif drq_rman.rm_type = RMAN_ARRAY; drq_rman.rm_descr = "DMA request lines"; /* XXX drq 0 not available on some machines */ if (rman_init(&drq_rman) || rman_manage_region(&drq_rman, drq_rman.rm_start, drq_rman.rm_end)) panic("nexus_init_resources drq_rman"); /* * However, IO ports and Memory truely are global at this level, * as are APIC interrupts (however many IO APICS there turn out * to be on large systems..) */ port_rman.rm_start = 0; port_rman.rm_end = 0xffff; port_rman.rm_type = RMAN_ARRAY; port_rman.rm_descr = "I/O ports"; if (rman_init(&port_rman) || rman_manage_region(&port_rman, 0, 0xffff)) panic("nexus_init_resources port_rman"); mem_rman.rm_start = 0; mem_rman.rm_end = ~0ul; mem_rman.rm_type = RMAN_ARRAY; mem_rman.rm_descr = "I/O memory addresses"; if (rman_init(&mem_rman) || rman_manage_region(&mem_rman, 0, ~0)) panic("nexus_init_resources mem_rman"); }
int msix_alloc(device_t dev, int *irq) { struct msi_intsrc *msi; u_int cpu; int i, vector; if (!msi_enabled) return (ENXIO); again: mtx_lock(&msi_lock); /* Find a free IRQ. */ for (i = FIRST_MSI_INT; i < FIRST_MSI_INT + NUM_MSI_INTS; i++) { msi = (struct msi_intsrc *)intr_lookup_source(i); /* End of allocated sources, so break. */ if (msi == NULL) break; /* Stop at the first free source. */ if (msi->msi_dev == NULL) break; } /* Do we need to create a new source? */ if (msi == NULL) { /* If we would exceed the max, give up. */ if (i + 1 > FIRST_MSI_INT + NUM_MSI_INTS) { mtx_unlock(&msi_lock); return (ENXIO); } mtx_unlock(&msi_lock); /* Create a new source. */ msi_create_source(); goto again; } /* Allocate an IDT vector. */ cpu = intr_next_cpu(); vector = apic_alloc_vector(cpu, i); if (vector == 0) { mtx_unlock(&msi_lock); return (ENOSPC); } if (bootverbose) printf("msi: routing MSI-X IRQ %d to local APIC %u vector %u\n", msi->msi_irq, cpu, vector); /* Setup source. */ msi->msi_cpu = cpu; msi->msi_dev = dev; msi->msi_first = msi; msi->msi_vector = vector; msi->msi_msix = 1; msi->msi_count = 1; msi->msi_maxcount = 1; msi->msi_irqs = NULL; KASSERT(msi->msi_intsrc.is_handlers == 0, ("dead MSI-X has handlers")); mtx_unlock(&msi_lock); *irq = i; return (0); }
/* * Try to allocate 'count' interrupt sources with contiguous IDT values. */ int msi_alloc(device_t dev, int count, int maxcount, int *irqs) { struct msi_intsrc *msi, *fsrc; u_int cpu; int cnt, i, *mirqs, vector; if (!msi_enabled) return (ENXIO); if (count > 1) mirqs = malloc(count * sizeof(*mirqs), M_MSI, M_WAITOK); else mirqs = NULL; again: mtx_lock(&msi_lock); /* Try to find 'count' free IRQs. */ cnt = 0; for (i = FIRST_MSI_INT; i < FIRST_MSI_INT + NUM_MSI_INTS; i++) { msi = (struct msi_intsrc *)intr_lookup_source(i); /* End of allocated sources, so break. */ if (msi == NULL) break; /* If this is a free one, save its IRQ in the array. */ if (msi->msi_dev == NULL) { irqs[cnt] = i; cnt++; if (cnt == count) break; } } /* Do we need to create some new sources? */ if (cnt < count) { /* If we would exceed the max, give up. */ if (i + (count - cnt) > FIRST_MSI_INT + NUM_MSI_INTS) { mtx_unlock(&msi_lock); free(mirqs, M_MSI); return (ENXIO); } mtx_unlock(&msi_lock); /* We need count - cnt more sources. */ while (cnt < count) { msi_create_source(); cnt++; } goto again; } /* Ok, we now have the IRQs allocated. */ KASSERT(cnt == count, ("count mismatch")); /* Allocate 'count' IDT vectors. */ cpu = intr_next_cpu(); vector = apic_alloc_vectors(cpu, irqs, count, maxcount); if (vector == 0) { mtx_unlock(&msi_lock); free(mirqs, M_MSI); return (ENOSPC); } /* Assign IDT vectors and make these messages owned by 'dev'. */ fsrc = (struct msi_intsrc *)intr_lookup_source(irqs[0]); for (i = 0; i < count; i++) { msi = (struct msi_intsrc *)intr_lookup_source(irqs[i]); msi->msi_cpu = cpu; msi->msi_dev = dev; msi->msi_vector = vector + i; if (bootverbose) printf( "msi: routing MSI IRQ %d to local APIC %u vector %u\n", msi->msi_irq, msi->msi_cpu, msi->msi_vector); msi->msi_first = fsrc; KASSERT(msi->msi_intsrc.is_handlers == 0, ("dead MSI has handlers")); } fsrc->msi_count = count; fsrc->msi_maxcount = maxcount; if (count > 1) bcopy(irqs, mirqs, count * sizeof(*mirqs)); fsrc->msi_irqs = mirqs; mtx_unlock(&msi_lock); return (0); }
static int msi_assign_cpu(struct intsrc *isrc, u_int apic_id) { struct msi_intsrc *sib, *msi = (struct msi_intsrc *)isrc; int old_vector; u_int old_id; int i, vector; /* * Only allow CPUs to be assigned to the first message for an * MSI group. */ if (msi->msi_first != msi) return (EINVAL); /* Store information to free existing irq. */ old_vector = msi->msi_vector; old_id = msi->msi_cpu; if (old_id == apic_id) return (0); /* Allocate IDT vectors on this cpu. */ if (msi->msi_count > 1) { KASSERT(msi->msi_msix == 0, ("MSI-X message group")); vector = apic_alloc_vectors(apic_id, msi->msi_irqs, msi->msi_count, msi->msi_maxcount); } else vector = apic_alloc_vector(apic_id, msi->msi_irq); if (vector == 0) return (ENOSPC); msi->msi_cpu = apic_id; msi->msi_vector = vector; if (msi->msi_intsrc.is_handlers > 0) apic_enable_vector(msi->msi_cpu, msi->msi_vector); if (bootverbose) printf("msi: Assigning %s IRQ %d to local APIC %u vector %u\n", msi->msi_msix ? "MSI-X" : "MSI", msi->msi_irq, msi->msi_cpu, msi->msi_vector); for (i = 1; i < msi->msi_count; i++) { sib = (struct msi_intsrc *)intr_lookup_source(msi->msi_irqs[i]); sib->msi_cpu = apic_id; sib->msi_vector = vector + i; if (sib->msi_intsrc.is_handlers > 0) apic_enable_vector(sib->msi_cpu, sib->msi_vector); if (bootverbose) printf( "msi: Assigning MSI IRQ %d to local APIC %u vector %u\n", sib->msi_irq, sib->msi_cpu, sib->msi_vector); } BUS_REMAP_INTR(device_get_parent(msi->msi_dev), msi->msi_dev, msi->msi_irq); /* * Free the old vector after the new one is established. This is done * to prevent races where we could miss an interrupt. */ if (msi->msi_intsrc.is_handlers > 0) apic_disable_vector(old_id, old_vector); apic_free_vector(old_id, old_vector, msi->msi_irq); for (i = 1; i < msi->msi_count; i++) { sib = (struct msi_intsrc *)intr_lookup_source(msi->msi_irqs[i]); if (sib->msi_intsrc.is_handlers > 0) apic_disable_vector(old_id, old_vector + i); apic_free_vector(old_id, old_vector + i, msi->msi_irqs[i]); } return (0); }
int msix_alloc(device_t dev, int *irq) { struct msi_intsrc *msi; u_int cpu; int i, vector; #ifdef ACPI_DMAR u_int cookie; int error; #endif if (!msi_enabled) { printf("%s:%d MSIX disabled - thus MSIX\n", __FILE__, __LINE__); return (ENXIO); } again: mtx_lock(&msi_lock); /* Find a free IRQ. */ for (i = FIRST_MSI_INT; i < FIRST_MSI_INT + NUM_MSI_INTS; i++) { msi = (struct msi_intsrc *)intr_lookup_source(i); /* End of allocated sources, so break. */ if (msi == NULL) break; /* Stop at the first free source. */ if (msi->msi_dev == NULL) break; } /* Do we need to create a new source? */ if (msi == NULL) { /* If we would exceed the max, give up. */ if (i + 1 > FIRST_MSI_INT + NUM_MSI_INTS) { mtx_unlock(&msi_lock); printf("%s:%d MSIX allocation failure\n", __FILE__, __LINE__); return (ENXIO); } mtx_unlock(&msi_lock); /* Create a new source. */ msi_create_source(); goto again; } /* Allocate an IDT vector. */ cpu = intr_next_cpu(); vector = apic_alloc_vector(cpu, i); if (vector == 0) { mtx_unlock(&msi_lock); return (ENOSPC); } msi->msi_dev = dev; #ifdef ACPI_DMAR mtx_unlock(&msi_lock); error = iommu_alloc_msi_intr(dev, &cookie, 1); mtx_lock(&msi_lock); if (error == EOPNOTSUPP) error = 0; if (error != 0) { msi->msi_dev = NULL; apic_free_vector(cpu, vector, i); return (error); } msi->msi_remap_cookie = cookie; #endif if (bootverbose) printf("msi: routing MSI-X IRQ %d to local APIC %u vector %u\n", msi->msi_irq, cpu, vector); /* Setup source. */ msi->msi_cpu = cpu; msi->msi_first = msi; msi->msi_vector = vector; msi->msi_msix = 1; msi->msi_count = 1; msi->msi_maxcount = 1; msi->msi_irqs = NULL; KASSERT(msi->msi_intsrc.is_handlers == 0, ("dead MSI-X has handlers")); mtx_unlock(&msi_lock); *irq = i; return (0); }
int msi_map(int irq, uint64_t *addr, uint32_t *data) { struct msi_intsrc *msi; int error; #ifdef ACPI_DMAR struct msi_intsrc *msi1; int i, k; #endif mtx_lock(&msi_lock); msi = (struct msi_intsrc *)intr_lookup_source(irq); if (msi == NULL) { mtx_unlock(&msi_lock); return (ENOENT); } /* Make sure this message is allocated to a device. */ if (msi->msi_dev == NULL) { mtx_unlock(&msi_lock); return (ENXIO); } /* * If this message isn't an MSI-X message, make sure it's part * of a group, and switch to the first message in the * group. */ if (!msi->msi_msix) { if (msi->msi_first == NULL) { mtx_unlock(&msi_lock); return (ENXIO); } msi = msi->msi_first; } #ifdef ACPI_DMAR if (!msi->msi_msix) { for (k = msi->msi_count - 1, i = FIRST_MSI_INT; k > 0 && i < FIRST_MSI_INT + NUM_MSI_INTS; i++) { if (i == msi->msi_irq) continue; msi1 = (struct msi_intsrc *)intr_lookup_source(i); if (!msi1->msi_msix && msi1->msi_first == msi) { mtx_unlock(&msi_lock); iommu_map_msi_intr(msi1->msi_dev, msi1->msi_cpu, msi1->msi_vector, msi1->msi_remap_cookie, NULL, NULL); k--; mtx_lock(&msi_lock); } } } mtx_unlock(&msi_lock); error = iommu_map_msi_intr(msi->msi_dev, msi->msi_cpu, msi->msi_vector, msi->msi_remap_cookie, addr, data); #else mtx_unlock(&msi_lock); error = EOPNOTSUPP; #endif if (error == EOPNOTSUPP) { *addr = INTEL_ADDR(msi); *data = INTEL_DATA(msi); error = 0; } return (error); }