예제 #1
0
static long klcd_ioctl( struct file *p_file, unsigned int ioctl_command, unsigned long arg)
{
    struct ioctl_mesg ioctl_arguments;

    printk(KERN_INFO "klcd Driver: ioctl\n");

    if( ((const void *)arg) == NULL) {
        printk( KERN_DEBUG "ERR: Invalid argument for klcd IOCTL \n");
        return -EINVAL;
    }

    memset( ioctl_arguments.kbuf, '\0', sizeof(char) * MAX_BUF_LENGTH );

    // copy ioctl command argument from user space
    if( copy_from_user( &ioctl_arguments, (const void *)arg, sizeof(ioctl_arguments) ) ) {
        printk( KERN_DEBUG "ERR: Failed to copy from user space buffer \n" );
        return -EFAULT;
    }

    switch( (char) ioctl_command ) {
    case IOCTL_CLEAR_DISPLAY:
        lcd_clearDisplay();
        break;

    case IOCTL_PRINT_ON_FIRSTLINE:
        lcd_print( ioctl_arguments.kbuf, LCD_FIRST_LINE);
        break;

    case IOCTL_PRINT_ON_SECONDLINE:
        lcd_print( ioctl_arguments.kbuf, LCD_SECOND_LINE);
        break;

    case IOCTL_PRINT_WITH_POSITION:
        lcd_print_WithPosition( ioctl_arguments.kbuf, ioctl_arguments.lineNumber, ioctl_arguments.nthCharacter);
        break;

    case IOCTL_CURSOR_ON:
        lcd_cursor_on();
        break;

    case IOCTL_CURSOR_OFF:
        lcd_cursor_off();
        break;

    default:
        printk(KERN_DEBUG "klcd Driver (ioctl): No such command \n");
        return -ENOTTY;
    }

    return 0;
}
예제 #2
0
int main()
{
  //SWICH_D = 0x00; // read from swich
  lcd_init();
  lcd_cursor_on();
  lcd_set_position(0,0);
  init_dcf77_interupt();
  home_init();
  /*timer_init();*/

  while (1)
  {
    handle_menu();
  }

  return 0;
}
예제 #3
0
	//begin of transistortester program
	int main(void) {
	  uint8_t ii;
	  unsigned int max_time;
	#ifdef SEARCH_PARASITIC
	  unsigned long n_cval;		// capacitor value of NPN B-E diode, for deselecting the parasitic Transistor
	  int8_t n_cpre;		// capacitor prefix of NPN B-E diode
	#endif
	#ifdef WITH_GRAPHICS
	  unsigned char options;
	#endif
        uint8_t vak_diode_nr;		// number of the protection diode of BJT
        union {
        uint16_t pw;
        uint8_t pb[2];
        } rpins;
        uint8_t x, y, z;
	  //switch on
	  ON_DDR = (1<<ON_PIN);			// switch to output
	  ON_PORT = (1<<ON_PIN); 		// switch power on 
	#ifndef PULLUP_DISABLE
	  RST_PORT |= (1<<RST_PIN); 	// enable internal Pullup for Start-Pin
	#endif
	  uint8_t tmp;
	  //ADC-Init
	  ADCSRA = (1<<ADEN) | AUTO_CLOCK_DIV;	//prescaler=8 or 64 (if 8Mhz clock)
	#ifdef __AVR_ATmega8__
	// #define WDRF_HOME MCU_STATUS_REG
	 #define WDRF_HOME MCUCSR
	#else
	 #define WDRF_HOME MCUSR
	 #if FLASHEND > 0x3fff
	  // probably was a bootloader active, disable the UART
	  UCSR0B = 0;		// disable UART, if started with bootloader
	 #endif
	#endif
          wait500ms();

	#if (PROCESSOR_TYP == 644) || (PROCESSOR_TYP == 1280)
	 #define BAUD_RATE 9600
//	  UBRR0H = (F_CPU / 16 / BAUD_RATE - 1) >> 8;
//	  UBRR0L = (F_CPU / 16 / BAUD_RATE - 1) & 0xff;
//	  UCSR0B = (1<<TXEN0);
//	  UCSR0C = (1<<USBS0) | (3<<UCSZ00);	// 2 stop bits, 8-bit
//	  while (!(UCSR0A & (1<<UDRE0))) { };	// wait for send data port ready 
         #ifdef SWUART_INVERT
	  SERIAL_PORT &= ~(1<<SERIAL_BIT);
         #else
	  SERIAL_PORT |= (1<<SERIAL_BIT);
         #endif
          SERIAL_DDR |= (1<<SERIAL_BIT);
	#endif

	  tmp = (WDRF_HOME & ((1<<WDRF)));	// save Watch Dog Flag
	  WDRF_HOME &= ~(1<<WDRF);	 	//reset Watch Dog flag
	  wdt_disable();			// disable Watch Dog
	#ifndef INHIBIT_SLEEP_MODE
	  // switch off unused Parts
	 #if PROCESSOR_TYP == 644
          #ifdef PRUSART1
	  PRR0 = (1<<PRTWI) |  (1<<PRSPI) | (1<<PRUSART1);
          #else
	  PRR0 = (1<<PRTWI) |  (1<<PRSPI) ;
          #endif
	//  PRR1 =  (1<<PRTIM3) ;
	 #elif PROCESSOR_TYP == 1280
	  PRR0 = (1<<PRTWI) |  (1<<PRSPI) | (1<<PRUSART1);
	  PRR1 = (1<<PRTIM5) | (1<<PRTIM4) | (1<<PRTIM3) | (1<<PRUSART3) | (1<<PRUSART2) | (1<<PRUSART3);
	 #else
	  PRR = (1<<PRTWI) | (1<<PRSPI) | (1<<PRUSART0);
	 #endif
//	disable digital inputs of Analog pins, but TP1-3 digital inputs must be left enabled for VGS measurement
	  DIDR0 = ((1<<ADC5D) | (1<<ADC4D) | (1<<ADC3D) | (1<<ADC2D) | (1<<ADC1D) | (1<<ADC0D)) & ~((1<<TP3) | (1<<TP2) | (1<<TP1));	
	  TCCR2A = (0<<WGM21) | (0<<WGM20);		// Counter 2 normal mode
	  TCCR2B = CNTR2_PRESCALER;	//prescaler set in autoconf
	#endif		/* INHIBIT_SLEEP_MODE */
	  sei();				// enable interrupts
	  lcd_init();				//initialize LCD
		
	//  ADC_PORT = TXD_VAL;
	//  ADC_DDR = TXD_MSK;
	  if(tmp) { 
	     // check if  Watchdog-Event 
	     // this happens, if the Watchdog is not reset for 2s
	     // can happen, if any loop in the Program doen't finish.
	     lcd_line1();
             lcd_MEM_string(TestTimedOut);	//Output Timeout
	     wait_about3s();			// time to read the Timeout message
	     switch_tester_off();
	     return 0;
	  }

	#ifdef PULLUP_DISABLE
	 #ifdef __AVR_ATmega8__
	  SFIOR = (1<<PUD);		// disable Pull-Up Resistors mega8
	 #else
	  MCUCR = (1<<PUD);		// disable Pull-Up Resistors mega168 family
	 #endif
	#endif

	//#if POWER_OFF+0 > 1
	  // tester display time selection
	#ifndef USE_EEPROM
	  EE_check_init();		// init EEprom, if unset
	#endif
	#ifdef WITH_ROTARY_SWITCH
	//  rotary_switch_present = eeprom_read_byte(&EE_RotarySwitch);
	  rotary.ind = ROT_MSK+1;		//initilize state history with next call of check_rotary()
	#endif
#ifdef WITH_HARDWARE_SERIAL
//	ii = 60;
	ii = 30;
#else
	#if 1
	  for (ii=0; ii<60; ii++) {
		if (RST_PIN_REG & (1 << RST_PIN))
			break;	// button is released
	     wait_about10ms();
	  }
	#else
	  ii = 0;
	  if (!(RST_PIN_REG & (1<<RST_PIN))) {
	     // key is still pressed
	     ii = wait_for_key_ms(700);	
	  }
	#endif
	  display_time = OFF_WAIT_TIME;		// LONG_WAIT_TIME for single mode, else SHORT_WAIT_TIME
	  if (ii > 30) {
	     display_time = LONG_WAIT_TIME;	// ... set long time display anyway
	  }
#endif // WITH_HARDWARE_SERIAL
	#if POWER_OFF+0 > 1
	  empty_count = 0;
	  mess_count = 0;
	#endif
	  ADCconfig.RefFlag = 0;
	  Calibrate_UR();		// get Ref Voltages and Pin resistance
	#ifdef WDT_enabled
	  wdt_enable(WDTO_2S);		//Watchdog on
	#endif
	#ifdef WITH_MENU
	  if (ii >= 60) {
		while(function_menu());		// selection of function
	  }
	#endif

	//*****************************************************************
	//Entry: if start key is pressed before shut down
	loop_start:
	#if ((LCD_ST_TYPE == 7565) || (LCD_ST_TYPE == 1306))
	  lcd_command(CMD_DISPLAY_ON);
	  lcd_command(CMD_SET_ALLPTS_NORMAL);		// 0xa4
	#endif
	  lcd_clear();			// clear the LCD
	  ADC_DDR = TXD_MSK;		// activate Software-UART 
          init_parts();			// reset parts info to nothing found
	  Calibrate_UR();		// get Ref Voltages and Pin resistance
	  lcd_line1();			// Cursor to 1. row, column 1
	  
	#ifdef BAT_CHECK
	  // Battery check is selected
        Battery_check();
	#else
	  lcd_MEM_string(VERSION_str);		// if no Battery check, Version .. in row 1
	#endif	/* BAT_CHECK */

	  // begin tests
	#if FLASHEND > 0x1fff
	  if (WithReference) {
	     /* 2.5V precision reference is checked OK */
	 #if POWER_OFF+0 > 1
	     if ((mess_count == 0) && (empty_count == 0))
	 #endif
	     {
		 /* display VCC= only first time */
		 lcd_line2();
		 lcd_MEM_string(VCC_str);		// VCC=
		 Display_mV(ADCconfig.U_AVCC,3);	// Display 3 Digits of this mV units
		 lcd_refresh();			// write the pixels to display, ST7920 only
		 wait_about1s();		// time to read the VCC= message
	     }
	  }
	#endif
	#ifdef WITH_VEXT
	  unsigned int Vext;
	  // show the external voltage
	  while (!(RST_PIN_REG & (1<<RST_PIN))) {
	     lcd_clear_line2();
	     lcd_MEM_string(Vext_str);		// Vext=
	     ADC_DDR = 0;		//deactivate Software-UART
	     Vext = W5msReadADC(TPext);	// read external voltage 
	//     ADC_DDR = TXD_MSK;		//activate Software-UART 
	    uart_newline();		// MAURO replaced uart_putc(' ') by uart_newline(), 'Z'
	 #if EXT_NUMERATOR <= (0xffff/U_VCC)
	     Display_mV(Vext*EXT_NUMERATOR/EXT_DENOMINATOR,3);	// Display 3 Digits of this mV units
	 #else
             DisplayValue((unsigned long)Vext*EXT_NUMERATOR/EXT_DENOMINATOR,-3,'V',3);  // Display 3 Digits of this mV units
	 #endif
	     lcd_refresh();		// write the pixels to display, ST7920 only
	     wait_about300ms();		// delay to read the Vext= message
	  }
	#endif /* WITH_VEXT */

	#ifndef DebugOut
	  lcd_line2();			//LCD position row 2, column 1
	#endif
	  EntladePins();		// discharge all capacitors!
	  if(PartFound == PART_CELL) {
	    lcd_clear();
	    lcd_MEM_string(Cell_str);	// display "Cell!"
	#if FLASHEND > 0x3fff
	    lcd_line2();		// use LCD line 2
	    Display_mV(cell_mv[0],3);
	    lcd_space();
	    Display_mV(cell_mv[1],3);
	    lcd_space();
	    Display_mV(cell_mv[2],3);
	#endif
	#ifdef WITH_SELFTEST
	    lcd_refresh();			// write the pixels to display, ST7920 only
	    wait_about2s();
	    AutoCheck(0x11);		// full Selftest with "Short probes" message
	#endif
	    goto tt_end;
	  }

	#ifdef WITH_SELFTEST
	 #ifdef AUTO_CAL
	  lcd_cursor_off();
	  UnCalibrated = (eeprom_read_byte(&c_zero_tab[3]) - eeprom_read_byte(&c_zero_tab[0]));
	  if (UnCalibrated != 0) {
	     // if calibrated, both c_zero_tab values are identical! c_zero_tab[3] is not used otherwise
	     lcd_cursor_on();
	  }
	 #endif
	 #ifdef WITH_MENU
	  AutoCheck(0x00);			//check, if selftest should be done, only calibration
	 #else
	  AutoCheck(0x01);			//check, if selftest should be done, full selftest without MENU
	 #endif
	#endif
	#if FLASHEND > 0x1fff
          lcd_clear_line2();			//LCD position row2, column 1
        #else
          lcd_line2();				//LCD position row2, column 1
        #endif
	  lcd_MEM_string(TestRunning);		//String: testing...
	  lcd_refresh();			// write the pixels to display, ST7920 only
	 #ifdef WITH_UART
	    uart_putc(0x03);		// ETX, start of new measurement 
	    uart_newline();			 // MAURO Added
	 #endif
//
	  // check all 6 combinations for the 3 pins 
	//         High  Low  Tri
	  CheckPins(TP1, TP2, TP3);
	  CheckPins(TP2, TP1, TP3);

	  CheckPins(TP1, TP3, TP2);
	  CheckPins(TP3, TP1, TP2);

	  CheckPins(TP2, TP3, TP1);
	  CheckPins(TP3, TP2, TP1);

	  // Capacity measurement is only possible correctly with two Pins connected.
	  // A third connected pin will increase the capacity value!
	//  if(((PartFound == PART_NONE) || (PartFound == PART_RESISTOR) || (PartFound == PART_DIODE)) ) {
	  if(PartFound == PART_NONE) {
	     // If no part is found yet, check separate if is is a capacitor
#ifdef DebugOut
	     lcd_data('C');
#endif
	     EntladePins();		// discharge capacities
	     //measurement of capacities in all 3 combinations
	     ReadCapacity(TP3, TP1);
#ifdef DebugOut
	     lcd_data('K');
#endif
	#if DebugOut != 10
	     ReadCapacity(TP3, TP2);
#ifdef DebugOut
	     lcd_data('K');
#endif
	     ReadCapacity(TP2, TP1);
#ifdef DebugOut
	     lcd_data('K');
#endif
	#endif
	  }

#ifdef WITH_UJT
// check for UJT
        if (PartFound==PART_DIODE       
            && NumOfDiodes==2                // UJT is detected as 2 diodes E-B1 and E-B2...
//            && ResistorsFound==1             // ...and a resistor B1-B2
            && diodes.Anode[0]==diodes.Anode[1]      // check diodes have common anode
//            && (unsigned char)(ResistorList[0]+diodes.Anode[0])==2    // and resistor is between cathodes
           ) 
           // note: there also exist CUJTs (complementary UJTs); they seem to be (even) rarer than UJTs, and are not supported for now
           {
            CheckUJT();
        }
#endif		/* defined WITH_UJT */

#ifdef WITH_XTAL
        if (PartFound==PART_NONE || ((PartFound==PART_CAPACITOR) && (cap.cpre_max == -12))) {
           // still not recognized anything? then check for ceramic resonator or crystal
           // these tests are time-consuming, so we do them last, and only on TP1/TP3
           sampling_test_xtal();
        }
#endif

	  //All checks are done, output result to display

	#ifdef DebugOut 
	  // only clear two lines of LCD

	  lcd_clear_line1();
	#else
	  lcd_clear();				// clear total display
	#endif

	  _trans = &ntrans;			// default transistor structure to show
	  if (PartFound == PART_THYRISTOR) {
#ifdef WITH_GRAPHICS
            lcd_big_icon(THYRISTOR|LCD_UPPER_LEFT);
            lcd_draw_trans_pins(-8, 16);
            lcd_set_cursor(0,TEXT_RIGHT_TO_ICON);		// position behind the icon, Line 1
	    lcd_MEM_string(Thyristor);		//"Thyristor"
#else
	    lcd_MEM_string(Thyristor);		//"Thyristor"
            PinLayout(Cathode_char,'G','A'); 	// CGA= or 123=...
#endif
            goto TyUfAusgabe;
          }

  if (PartFound == PART_TRIAC) {
#ifdef WITH_GRAPHICS
    lcd_big_icon(TRIAC|LCD_UPPER_LEFT);
    lcd_draw_trans_pins(-8, 16);
    lcd_set_cursor(0,TEXT_RIGHT_TO_ICON);		// position behind the icon, Line 1
    lcd_MEM_string(Triac);		//"Triac"
#else
    lcd_MEM_string(Triac);		//"Triac"
    PinLayout('1','G','2'); 	// CGA= or 123=...
#endif
    goto TyUfAusgabe;
  }

#ifdef WITH_PUT
   if (PartFound == PART_PUT) {
      static const unsigned char PUT_str[] MEM_TEXT = "PUT";
      lcd_MEM_string(PUT_str);
      _trans=&ptrans;
      PinLayout('A','G',Cathode_char);
      goto TyUfAusgabe;
   }
#endif

#ifdef WITH_UJT
   if (PartFound == PART_UJT) {
      static const unsigned char UJT_str[] MEM_TEXT = "UJT";
      lcd_MEM_string(UJT_str);
      PinLayout('1','E','2');
 #ifdef SamplingADC
      static const unsigned char eta_str[] MEM_TEXT = " eta=";
      lcd_next_line(0);
      ResistorChecked[ntrans.e - TP_MIN + ntrans.c - TP_MIN - 1] = 0;	// forget last resistance measurement
      GetResistance(ntrans.c, ntrans.e);	// resistor value is in ResistorVal[resnum]
      DisplayValue(ResistorVal[ntrans.e - TP_MIN + ntrans.c - TP_MIN - 1],-1,LCD_CHAR_OMEGA,2);
      lcd_MEM_string(eta_str);		//"eta="
      DisplayValue(ntrans.gthvoltage,0,'%',3);
 #else /* ! SamplingADC */
      static const unsigned char R12_str[] MEM_TEXT = "R12=";
      lcd_next_line(0);
      lcd_MEM_string(R12_str);		//"R12="
      DisplayValue(ResistorVal[ntrans.e - TP_MIN + ntrans.c - TP_MIN - 1],-1,LCD_CHAR_OMEGA,2);
      lcd_data(',');
      DisplayValue(((RR680PL * (unsigned long)(ADCconfig.U_AVCC - ntrans.uBE)) / ntrans.uBE)-RRpinPL,-1,LCD_CHAR_OMEGA,3);
 #endif	 /* SamplingADC */
      goto tt_end;
   }
#endif /* WITH_UJT */

  if (PartFound == PART_CAPACITOR) {
#if FLASHEND > 0x3fff
     if ((cap.ca + cap.cb) == (TP1 + TP3)) {
        show_Cap13();		// repeated capacity measurement
        goto shut_off;		// key was pressed or timeout
     }
     show_cap(0);		// show capacity in normal way and measure additional parameters
#else
     show_cap_simple();		// show capacity in normal way and measure additional parameters
#endif
     goto tt_end;
  } /* end PartFound == PART_CAPACITOR */

#ifdef WITH_XTAL
  if (PartFound == PART_CERAMICRESONATOR) {
//      static const unsigned char cerres_str[] MEM_TEXT = "Cer.resonator  ";
      lcd_MEM_string(cerres_str);
      if (sampling_measure_xtal()) goto loop_start;
      goto tt_end;
  }
  if (PartFound == PART_XTAL) {
//      static const unsigned char xtal_str[] MEM_TEXT = "Crystal  ";
      lcd_MEM_string(xtal_str);
      if (sampling_measure_xtal()) goto loop_start;
      goto tt_end;
  }
#endif

  // ========================================
  if(PartFound == PART_DIODE) {
  // ========================================
     if(NumOfDiodes == 1) {		//single Diode
//        lcd_MEM_string(Diode);		//"Diode: "
#if FLASHEND > 0x1fff
        // enough memory (>8k) to sort the pins and additional Ir=
        DiodeSymbol_withPins(0);
	GetIr(diodes.Cathode[0],diodes.Anode[0]);	// measure and output Ir=x.xuA
#else
        // too less memory to sort the pins
        DiodeSymbol_withPins(0);
#endif
        UfAusgabe(0x70);		// mark for additional resistor and output Uf= in line 2
#ifndef SamplingADC
        /* load current of capacity is (5V-1.1V)/(470000 Ohm) = 8298nA */
        ReadCapacity(diodes.Cathode[0],diodes.Anode[0]);	// Capacity opposite flow direction
        if (cap.cpre < -3) {	/* capacity is measured */
 #if (LCD_LINES > 2)
           lcd_line3();		// output Capacity in line 3
 #endif
           lcd_MEM_string(Cap_str);	//"C="
 #if LCD_LINE_LENGTH > 16
           DisplayValue(cap.cval,cap.cpre,'F',3);
 #else
           DisplayValue(cap.cval,cap.cpre,'F',2);
 #endif
        }
#else  // SamplingADC
showdiodecap:
        cap.cval=sampling_cap(diodes.Cathode[0],diodes.Anode[0],0);   // at low voltage
        lcd_next_line_wait(0);		// next line, wait 5s and clear line 2
        DisplayValue(cap.cval,sampling_cap_pre,'F',2);
 #ifdef PULLUP_DISABLE
        lcd_data('-');
        cap.cval=sampling_cap(diodes.Cathode[0],diodes.Anode[0],1);   // at high voltage
        if (cap.cval < 0) cap.cval = 0;		// don't show negativ value
        DisplayValue(cap.cval,sampling_cap_pre,'F',2);
  #if LCD_LINE_LENGTH > 16
        lcd_MEM_string(AT05volt);	// " @0-5V"
  #else
        lcd_MEM_string(AT05volt+1);	// "@0-5V"
  #endif
        uart_newline();			// MAURO Diode ('A')
 #else
  #warning Capacity measurement from high to low not possible for diodes without PULLUP_DISABLE option!
 #endif  /* PULLUP_DISABLE */
#endif
        goto end3;
     } else if(NumOfDiodes == 2) { // double diode
        lcd_data('2');
        lcd_MEM_string(Dioden);		//"diodes "
        if(diodes.Anode[0] == diodes.Anode[1]) { //Common Anode
           DiodeSymbol_CpinApin(0);	// 1-|<-2
           DiodeSymbol_ACpin(1);	//  ->|-3
           UfAusgabe(0x01);
#ifdef SamplingADC
           goto showdiodecap;   // double diodes are often varicap; measure capacitance of one of them
#else
           goto end3;
#endif
        } 
        if(diodes.Cathode[0] == diodes.Cathode[1]) { //Common Cathode
           DiodeSymbol_ApinCpin(0);	// 1->|-2
           DiodeSymbol_CApin(1);	//  -|<-3
           UfAusgabe(0x01);
#ifdef SamplingADC
           goto showdiodecap;   // double diodes are often varicap; measure capacitance of one of them
#else
           goto end3;
#endif
//        else if ((diodes.Cathode[0] == diodes.Anode[1]) && (diodes.Cathode[1] == diodes.Anode[0])) 
        } 
        if (diodes.Cathode[0] == diodes.Anode[1]) {
           // normaly two serial diodes are detected as three diodes, but if the threshold is high
           // for both diodes, the third diode is not detected.
           // can also be Antiparallel
           diode_sequence = 0x01;	// 0 1
           SerienDiodenAusgabe();
           goto end3;
        } 
        if (diodes.Cathode[1] == diodes.Anode[0]) {
           diode_sequence = 0x10;	// 1 0
           SerienDiodenAusgabe();
           goto end3;
        }
     } else if(NumOfDiodes == 3) {
        //Serial of 2 Diodes; was detected as 3 Diodes 
        diode_sequence = 0x33;	// 3 3
        /* Check for any constellation of 2 serial diodes:
          Only once the pin No of anyone Cathode is identical of another anode.
          two diodes in series is additionally detected as third big diode.
        */
			if (diodes.Cathode[0] == diodes.Anode[1]) {
           diode_sequence = 0x01;	// 0 1
          }
			if (diodes.Anode[0] == diodes.Cathode[1]) {
           diode_sequence = 0x10;	// 1 0
          }
			if (diodes.Cathode[0] == diodes.Anode[2]) {
           diode_sequence = 0x02;	// 0 2
          }
			if (diodes.Anode[0] == diodes.Cathode[2]) {
           diode_sequence = 0x20;	// 2 0
          }
			if (diodes.Cathode[1] == diodes.Anode[2]) {
           diode_sequence = 0x12;	// 1 2
          }
			if (diodes.Anode[1] == diodes.Cathode[2]) {
           diode_sequence = 0x21;	// 2 1
          }
//        if((ptrans.b<3) && (ptrans.c<3)) 
        if(diode_sequence < 0x22) {
           lcd_data('3');
           lcd_MEM_string(Dioden);	//"Diodes "
           SerienDiodenAusgabe();
           goto end3;
        }
     }  // end (NumOfDiodes == 3)
     lcd_MEM_string(Bauteil);		//"Bauteil"
     lcd_MEM_string(Unknown); 		//" unbek."
     lcd_line2(); //2. row 
     lcd_data(NumOfDiodes + '0');
     lcd_data('*');
     lcd_MEM_string(AnKat_str);		//"->|-"
     lcd_MEM_string(Detected);		//" detected"
     goto not_known;
     // end (PartFound == PART_DIODE)
  // ========================================
  } else if (PartFound == PART_TRANSISTOR) {
  // ========================================
#ifdef SEARCH_PARASITIC
    if ((ptrans.count != 0) && (ntrans.count !=0)) {
       // Special Handling of NPNp and PNPn Transistor.
       // If a protection diode is built on the same structur as the NPN-Transistor,
       // a parasitic PNP-Transistor will be detected. 
       ReadCapacity(ntrans.e, ntrans.b);	// read capacity of NPN base-emitter
       n_cval = cap.cval;			// save the found capacity value
       n_cpre  = cap.cpre;			// and dimension
       ReadCapacity(ptrans.b, ptrans.e);	// read capacity of PNP base-emitter
       // check if one hfe is very low. If yes, simulate a very low BE capacity
       if ((ntrans.hfe < 500) && (ptrans.hfe >= 500)) n_cpre = -16; // set NPN BE capacity to low value
       if ((ptrans.hfe < 500) && (ntrans.hfe >= 500)) cap.cpre = -16; // set PNP BE capacity to low value

       if (((n_cpre == cap.cpre) && (cap.cval > n_cval))
					|| (cap.cpre > n_cpre)) {
          // the capacity value or dimension of the PNP B-E is greater than the NPN B-E
          PartMode = PART_MODE_PNP;
       } else {
          PartMode = PART_MODE_NPN;
       }
    }  /* end ((ptrans.count != 0) && (ntrans.count !=0)) */
#endif
    // not possible for mega8, change Pin sequence instead.
		if ((ptrans.count != 0) && (ntrans.count != 0)
				&& (!(RST_PIN_REG & (1 << RST_PIN)))) {
       // if the Start key is still pressed, use the other Transistor
#if 0
       if (PartMode == PART_MODE_NPN) {
          PartMode = PART_MODE_PNP;	// switch to parasitic transistor
       } else {
          PartMode = PART_MODE_NPN;	// switch to parasitic transistor
       }
#else
       PartMode ^= (PART_MODE_PNP - PART_MODE_NPN);
#endif
    }

#ifdef WITH_GRAPHICS
    lcd_set_cursor(0,TEXT_RIGHT_TO_ICON);			// position behind the icon, Line 1
    lcd_big_icon(BJT_NPN|LCD_UPPER_LEFT);	// show the NPN Icon at lower left corner
    if(PartMode == PART_MODE_NPN) {
//       _trans = &ntrans;  is allready selected a default
       lcd_MEM_string(NPN_str);		//"NPN "
       if (ptrans.count != 0) {
          lcd_data('p');		// mark for parasitic PNp
       }
    } else {
       _trans = &ptrans;		// change transistor structure
       lcd_update_icon(bmp_pnp);	// update for PNP
       lcd_MEM_string(PNP_str);		//"PNP "
       if (ntrans.count != 0) {
          lcd_data('n');		// mark for parasitic NPn
       }
    }
#else 	/* only character display */
    if(PartMode == PART_MODE_NPN) {
//       _trans = &ntrans;  is allready selected a default
       lcd_MEM_string(NPN_str);		//"NPN "
       if (ptrans.count != 0) {
          lcd_data('p');		// mark for parasitic PNp
       }
    } else {
       _trans = &ptrans;		// change transistor structure
       lcd_MEM_string(PNP_str);		//"PNP "
       if (ntrans.count != 0) {
          lcd_data('n');		// mark for parasitic NPn
       }
    }
    lcd_space();
#endif

    // show the protection diode of the BJT
    vak_diode_nr = search_vak_diode();
    if (vak_diode_nr < 5) {
    // no side of the diode is connected to the base, this must be the protection diode   
#ifdef WITH_GRAPHICS
       options = 0;
       if (_trans->c != diodes.Anode[vak_diode_nr])
          options |= OPT_VREVERSE;
       lcd_update_icon_opt(bmp_vakdiode,options);	// show the protection diode right to the Icon
#else    /* only character display, show the diode in correct direction */    
       char an_cat;			// diode is anode-cathode type
       an_cat = 0;
 #ifdef EBC_STYLE
  #if EBC_STYLE == 321
       // Layout with 321= style
       an_cat = (((PartMode == PART_MODE_NPN) && (ntrans.c < ntrans.e)) ||
                 ((PartMode != PART_MODE_NPN) && (ptrans.c > ptrans.e)));
  #else
       // Layout with EBC= style
       an_cat = (PartMode == PART_MODE_NPN);
  #endif
 #else
       // Layout with 123= style
       an_cat = (((PartMode == PART_MODE_NPN) && (ntrans.c > ntrans.e))
		|| ((PartMode != PART_MODE_NPN) && (ptrans.c < ptrans.e)));
 #endif
       if (an_cat) {
          lcd_MEM_string(AnKat_str);	//"->|-"
       } else {
          lcd_MEM_string(KatAn_str);	//"-|<-"
       }
#endif    /* !WITH_GRAPHICS */
    }  /* endif vak_diode_nr < 6 */

#ifdef WITH_GRAPHICS
    lcd_draw_trans_pins(-7, 16);	// show the pin numbers
    lcd_next_line(TEXT_RIGHT_TO_ICON);	// position behind the icon, Line 2
    lcd_MEM_string(hfe_str);		//"B="  (hFE)
    DisplayValue(_trans->hfe,-2,0,3);

    lcd_next_line(TEXT_RIGHT_TO_ICON+1-LOW_H_SPACE); // position behind the icon+1, Line 3
    lcd_data('I');
    if (_trans->current >= 10000) {
       lcd_data('e');				// emitter current has 10mA offset
       _trans->current -= 10000;
    } else {
       lcd_data('c');
    }
    lcd_equal();			// lcd_data('=');
    DisplayValue16(_trans->current,-6,'A',2);	// display Ic or Ie current

    lcd_next_line(TEXT_RIGHT_TO_ICON); // position behind the icon, Line 4
    lcd_MEM_string(Ube_str);		//"Ube="
    Display_mV(_trans->uBE,3-LOW_H_SPACE);
    last_line_used = 1;

 #ifdef SHOW_ICE
    if (_trans->ice0 > 0) {
       lcd_next_line_wait(TEXT_RIGHT_TO_ICON-1-LOW_H_SPACE); // position behind the icon, Line 4 & wait and clear last line
       lcd_MEM2_string(ICE0_str);		// "ICE0="
       DisplayValue16(_trans->ice0,-6,'A',2);	// display ICEO
    }
    if (_trans->ices > 0) {
       lcd_next_line_wait(TEXT_RIGHT_TO_ICON-1-LOW_H_SPACE); // position behind the icon, Line 4 & wait and clear last line
       lcd_MEM2_string(ICEs_str);		// "ICEs="
       DisplayValue16(_trans->ices,-6,'A',2);	// display ICEs
    }
 #endif
#else		/* character display */
    PinLayout('E','B','C'); 		//  EBC= or 123=...
    lcd_line2(); //2. row 
    lcd_MEM_string(hfe_str);		//"B="  (hFE)
    DisplayValue(_trans->hfe,-2,0,3);
 #if FLASHEND > 0x1fff
    lcd_space();

    lcd_data('I');
    if (_trans->current >= 10000) {
       lcd_data('e');				// emitter current has 10mA offset
       _trans->current -= 10000;
    } else {
       lcd_data('c');
    }
    lcd_equal();			// lcd_data('=');
    DisplayValue16(_trans->current,-6,'A',2);	// display Ic or Ie current
 #endif

 #if defined(SHOW_ICE)
    lcd_next_line_wait(0);		// next line, wait 5s and clear line 2
    lcd_MEM_string(Ube_str);		//"Ube=" 
    Display_mV(_trans->uBE,3);

    if (_trans->ice0 > 0) {
       lcd_next_line_wait(0);		// next line, wait 5s and clear line 2
       lcd_MEM2_string(ICE0_str);		// "ICE0="
       DisplayValue16(_trans->ice0,-6,'A',3);
    }
    if (_trans->ices > 0) {
       lcd_next_line_wait(0);		// next line, wait 5s and clear line 2
       lcd_MEM2_string(ICEs_str);		// "ICEs="
       DisplayValue16(_trans->ices,-6,'A',3);
    }
 #endif
#endif  /* WITH_GRAPHICS */
#ifdef SHOW_VAKDIODE
    if (vak_diode_nr < 5) {
       lcd_next_line_wait(0); 		// next line, wait 5s and clear line 2/4
       DiodeSymbol_withPins(vak_diode_nr);
       lcd_MEM_string(Uf_str);			//"Uf="
       mVAusgabe(vak_diode_nr);
       uart_newline();			// MAURO not verified ('D')
    } /* end if (vak_diode_nr < 5) */
#endif
#ifdef WITH_GRAPHICS
    PinLayoutLine('E','B','C'); 		//  Pin 1=E ...
    uart_newline();			// MAURO OK BJT ('E')
#endif
    goto tt_end;
    // end (PartFound == PART_TRANSISTOR)

  // ========================================
  } else if (PartFound == PART_FET) {	/* JFET or MOSFET */
  // ========================================
#ifdef WITH_GRAPHICS
    unsigned char fetidx = 0;
    lcd_set_cursor(0,TEXT_RIGHT_TO_ICON);	// position behind the icon, Line 1
#endif
    if((PartMode&P_CHANNEL) == P_CHANNEL) {
       lcd_data('P');			//P-channel
       _trans = &ptrans;
#ifdef WITH_GRAPHICS
       fetidx = 2;
#endif
    } else {
       lcd_data('N');			//N-channel
//       _trans = &ntrans;	is allready selected as default
    }
    lcd_data('-');		// minus is used for JFET, D-MOS, E-MOS ...

    uint8_t part_code;
    part_code = PartMode&0x0f;
#ifdef WITH_GRAPHICS
    if (part_code == PART_MODE_JFET) {
       lcd_MEM_string(jfet_str);	//"JFET"
       lcd_big_icon(N_JFET|LCD_UPPER_LEFT);
       if (fetidx != 0) {
          lcd_update_icon(bmp_p_jfet); // update the n_jfet bitmap to p_jfet
       }
    } else {		// no JFET
       if ((PartMode&D_MODE) == D_MODE) {
          lcd_data('D');			// N-D or P-D
          fetidx += 1;
       } else {
          lcd_data('E');			// N-E or P-E
       }
       if (part_code == (PART_MODE_IGBT)) {
          lcd_MEM_string(igbt_str);	//"-IGBT"
          lcd_big_icon(N_E_IGBT|LCD_UPPER_LEFT);
          if (fetidx == 1)  lcd_update_icon(bmp_n_d_igbt);
          if (fetidx == 2)  lcd_update_icon(bmp_p_e_igbt);
          if (fetidx == 3)  lcd_update_icon(bmp_p_d_igbt);
       } else {
          lcd_MEM_string(mosfet_str);	//"-MOS "
          lcd_big_icon(N_E_MOS|LCD_UPPER_LEFT);
          if (fetidx == 1)  lcd_update_icon(bmp_n_d_mos);
          if (fetidx == 2)  lcd_update_icon(bmp_p_e_mos);
          if (fetidx == 3)  lcd_update_icon(bmp_p_d_mos);
       }
    } /* end PART_MODE_JFET */
#else	/* normal character display */
    if (part_code == PART_MODE_JFET) {
       lcd_MEM_string(jfet_str);	//"-JFET"
    } else {		// no JFET
       if ((PartMode&D_MODE) == D_MODE) {
          lcd_data('D');			// N-D or P-D
       } else {
          lcd_data('E');			// N-E or P-E
       }
       if (part_code == (PART_MODE_IGBT)) {
          lcd_MEM_string(igbt_str);	//"-IGBT"
       } else {
          lcd_MEM_string(mosfet_str);	//"-MOS "
       }
    } /* end PART_MODE_JFET */

    if (part_code == PART_MODE_IGBT) {
       PinLayout('E','G','C'); 		//  SGD= or 123=...
    } else if (part_code == PART_MODE_JFET) {
       PinLayout('?','G','?'); 		//  ?G?= or 123=...
    } else {
       PinLayout('S','G','D'); 		//  SGD= or 123=...
    }
#endif  /* WITH_GRAPHICS */

    vak_diode_nr = search_vak_diode();
    if(vak_diode_nr < 5) {
       //MOSFET with protection diode; only with enhancement-FETs

#ifndef WITH_GRAPHICS
 #if FLASHEND <= 0x1fff
       char an_cat;			// diode is anode-cathode type
       an_cat = 0;
  #ifdef EBC_STYLE
   #if EBC_STYLE == 321
       // layout with 321= style
       an_cat = (((PartMode&P_CHANNEL) && (ptrans.c > ptrans.e)) || ((!(PartMode&P_CHANNEL)) && (ntrans.c < ntrans.e)));
   #else
       // Layout with SGD= style
       an_cat = (PartMode&P_CHANNEL);	/* N or P MOS */
   #endif
  #else /* EBC_STYLE not defined */
       // layout with 123= style
			an_cat = (((PartMode & P_CHANNEL) && (ptrans.c < ptrans.e))
					|| ((!(PartMode & P_CHANNEL)) && (ntrans.c > ntrans.e)));
  #endif /* end ifdef EBC_STYLE */
       //  show diode symbol in right direction  (short form for less flash memory)
       if (an_cat) {
          lcd_data(LCD_CHAR_DIODE1);	//show Diode symbol >|
       } else {
          lcd_data(LCD_CHAR_DIODE2);	//show Diode symbol |<
       }
 #endif
#endif  /* not WITH_GRAPHICS */
#ifdef WITH_GRAPHICS
       options = 0;
       if (_trans->c != diodes.Anode[vak_diode_nr])
          options |= OPT_VREVERSE;
       lcd_update_icon_opt(bmp_vakdiode,options);	// update Icon with protection diode
#endif

    } /* end if NumOfDiodes == 1 */

#ifdef WITH_GRAPHICS
    lcd_draw_trans_pins(-7, 16);	// update of pin numbers must be done after diode update
    lcd_next_line(TEXT_RIGHT_TO_ICON);	// position text behind the icon, Line 2
 #if LCD_LINES > 6
       lcd_next_line(TEXT_RIGHT_TO_ICON);	// double line
 #endif
    if((PartMode&D_MODE) != D_MODE) {	//enhancement-MOSFET
       lcd_MEM_string(vt_str+1);		// "Vt="
       Display_mV(_trans->gthvoltage,2);	//Gate-threshold voltage
	//Gate capacity
       ReadCapacity(_trans->b,_trans->e);	//measure capacity
       lcd_next_line(TEXT_RIGHT_TO_ICON);	// position text behind the icon, Line 3
       lcd_show_Cg();	// show Cg=xxxpF
 #ifdef SHOW_R_DS
       lcd_show_rds(TEXT_RIGHT_TO_ICON-1); 	// show RDS at column behind the icon -1
 #endif
    } else {   /* depletion mode */
       if ((PartMode&0x0f)  != PART_MODE_JFET) {     /* kein JFET */
          ReadCapacity(_trans->b,_trans->e);	//measure capacity
          lcd_show_Cg();	// show Cg=xxxpF
  #ifdef FET_Idss
       } else { 	// it is a JFET
          // display the I_DSS, if measured
          if (_trans->uBE!=0) {
             static const unsigned char str_Idss[] MEM_TEXT = "Idss=";
             lcd_MEM_string(str_Idss);
             DisplayValue16(_trans->uBE,-6,'A',2);
          }
  #endif
       }
       // set cursor below the icon
  #define LINE_BELOW_ICON ((ICON_HEIGHT/8)/((FONT_HEIGHT+7)/8))
 #if LCD_LINES > 6
       lcd_set_cursor((LINE_BELOW_ICON + 1) * PAGES_PER_LINE,0);
 #else
       lcd_set_cursor(LINE_BELOW_ICON * PAGES_PER_LINE,0);
 #endif
       lcd_data('I');
 #if (LCD_LINE_LENGTH > 17)
       lcd_data('d');
 #endif
       lcd_equal();			// lcd_data('=');
       DisplayValue16(_trans->current,-6,'A',2);
       lcd_MEM_string(Vgs_str);		// "@Vg="
       Display_mV(_trans->gthvoltage,2);	//Gate-threshold voltage

 #ifdef SHOW_ICE
       // Display also the cutoff gate voltage, idea from Pieter-Tjerk
       if (_trans->ice0<4800) { // can't trust cutoff voltage if close to 5V supply voltage, since then the transistor may not have been cut off at all
          lcd_next_line_wait(0);
          lcd_data('I');
  #if (LCD_LINE_LENGTH > 17)
          lcd_data('d');
  #endif
          lcd_equal();			// lcd_data('=');
          DisplayValue16(0,-5,'A',2);
          lcd_MEM_string(Vgs_str);		// "@Vg="
          Display_mV(_trans->ice0,2);	// cutoff Gate voltage
 #endif
       }
 #ifdef SHOW_R_DS
       lcd_show_rds(0);                // show Drain-Source resistance RDS at column 0
 #endif
    }	/* end of enhancement or depletion mode WITH_GRAPHICS */
#else	/* character display */
    if((PartMode&D_MODE) != D_MODE) {	//enhancement-MOSFET
	//Gate capacity
       lcd_line2();		// line 2
       ReadCapacity(_trans->b,_trans->e);	//measure capacity
       lcd_show_Cg();	// show Cg=xxxpF
       lcd_MEM_string(vt_str);		// " Vt="
       Display_mV(_trans->gthvoltage,2);	//Gate-threshold voltage
  #ifdef SHOW_R_DS
       lcd_show_rds(0);                // show Drain-Source resistance RDS at column 0
  #endif
    } else {
      // depletion
 #if FLASHEND > 0x1fff
       if ((PartMode&0x0f)  != PART_MODE_JFET) {     /* kein JFET */
          lcd_next_line(0);		// line 2
          ReadCapacity(_trans->b,_trans->e);	//measure capacity
          lcd_show_Cg();	// show Cg=xxxpF
  #ifdef FET_Idss
       } else {     // it is a JFET
          // display the I_DSS, if measured
          if (_trans->uBE!=0) {
             lcd_next_line(0);
             static const unsigned char str_Idss[] MEM_TEXT = "Idss=";
             lcd_MEM_string(str_Idss);
             DisplayValue16(_trans->uBE,-6,'A',2);
          }
  #endif
       }
       lcd_next_line_wait(0);		// line 2 or 3, if possible & wait and clear last line
 #endif
       lcd_data('I');			// show I=xmA@Vg=y.yV at line 2 or 3
 #if (LCD_LINE_LENGTH > 17)
       lcd_data('d');
 #endif
       lcd_equal();			// lcd_data('=');
       DisplayValue16(_trans->current,-6,'A',2);
       lcd_MEM_string(Vgs_str);		// "@Vg="
       Display_mV(_trans->gthvoltage,2);	//Gate-threshold voltage
 #ifdef SHOW_ICE
       // Display also the cutoff gate voltage, idea from Pieter-Tjerk
       if (_trans->ice0<4800) { // can't trust cutoff voltage if close to 5V supply voltage, since then the transistor may not have been cut off at all
          lcd_next_line_wait(0);
          lcd_data('I');
  #if (LCD_LINE_LENGTH > 17)
          lcd_data('d');
  #endif
          lcd_equal();			// lcd_data('=');
          DisplayValue16(0,-5,'A',2);
          lcd_MEM_string(Vgs_str);		// "@Vg="
          Display_mV(_trans->ice0,2);	// cutoff Gate voltage
       }
 #endif
 #ifdef SHOW_R_DS
       lcd_show_rds(0);                // show Drain-Source resistance RDS at column 0
 #endif
    }   /* end of enhancement or depletion mode */
예제 #4
0
void M11_func_ustawienia_godzina(char *str)
{
	static uint8_t i=0, edit=0;
	static uint8_t state=0;
	static uint32_t cnt=0, offset_cnt=0;
	
	if(Flagi.flaga_lcd)
	{
		lcd_locate(0, 10);
		lcd_char(0x7E);
		lcd_str(str);
		EI2C_read_buf(ADDR_EEMEM_24C64, offsetof(EXT_EEPROM_var, empty), SIZEOF (EXT_EEPROM_var, empty), (uint8_t *)str);
		lcd_locate(1, 0);
		lcd_str(str);
		Flagi.flaga_lcd=0;
	}

	switch(state)
	{
		case 0:
			state=1;	
			
			if(i>8)
				i=0;
			lcd_locate(0, 10);
			lcd_char(0x7E);
			fifo_bufor_lcd(str,i,strlen(str));
			lcd_str(str);
			
			cli();
			cnt=25000;
			offset_cnt=licznik;
			sei();
			break;
		case 1:
			if(cnt<=licznik-offset_cnt)
			{
				i++;
				state=0;
			}
			break;
	}
	
	if (key_code == PRZYCISK_ENTER)
	{
		edit++;
		if (edit>3)
			edit=1;
		Flagi.flaga_klawiatura=0;
	}
	else if (key_code == PRZYCISK_POWROT && Flagi.flaga_klawiatura==0)
	{
		edit=0;
		Flagi.flaga_klawiatura=1;
		ustaw_czas(&czas);
	}
	
	
	switch(edit)
	{
		case 1:
			if (key_code == PRZYCISK_GORA && Flagi.flaga_klawiatura==0)
			{
				czas.godziny++;
				if(czas.godziny>23)
					czas.godziny=0;
				lcd_locate(1,0);
				if( czas.godziny < 10 ) lcd_char('0');
				lcd_int(czas.godziny);
			}
			else if (key_code == PRZYCISK_DOL && Flagi.flaga_klawiatura==0)
			{
				czas.godziny--;
				if((int8_t)czas.godziny<0)
					czas.godziny=23;	
				lcd_locate(1,0);
				if( czas.godziny < 10 ) lcd_char('0');
				lcd_int(czas.godziny);
			}

			lcd_cursor_on();
			lcd_blink_on();
			lcd_locate(1,1);
			break;
		case 2:
			if (key_code == PRZYCISK_GORA && Flagi.flaga_klawiatura==0)
			{
				czas.minuty++;
				if(czas.minuty>59)
				czas.minuty=0;
				lcd_locate(1,3);
				if( czas.minuty < 10 ) lcd_char('0');
				lcd_int(czas.minuty);
			}
			else if (key_code == PRZYCISK_DOL && Flagi.flaga_klawiatura==0)
			{
				czas.minuty--;
				if((int8_t)czas.minuty<0)
				czas.minuty=59;
				lcd_locate(1,3);
				if( czas.minuty < 10 ) lcd_char('0');
				lcd_int(czas.minuty);
			}
			lcd_cursor_on();
			lcd_blink_on();
			lcd_locate(1,4);
			break;
		case 3:
			if (key_code == PRZYCISK_GORA && Flagi.flaga_klawiatura==0)
			{
				czas.sekundy++;
				if(czas.sekundy>59)
				czas.sekundy=0;
				lcd_locate(1,6);
				if( czas.sekundy < 10 ) lcd_char('0');
				lcd_int(czas.sekundy);
			}
			else if (key_code == PRZYCISK_DOL && Flagi.flaga_klawiatura==0)
			{
				czas.sekundy--;
				if((int8_t)czas.sekundy<0)
				czas.sekundy=59;
				lcd_locate(1,6);
				if( czas.sekundy < 10 ) lcd_char('0');
				lcd_int(czas.sekundy);
			}
			lcd_cursor_on();
			lcd_blink_on();
			lcd_locate(1,7);
			break;
		default:
			lcd_cursor_off();
			lcd_blink_off();
			if(Flagi.flaga_rtc)
			{
				pobierz_czas(&czas);
				Flagi.flaga_rtc=0;
			}
			lcd_locate(1,0);
			if( czas.godziny < 10 ) lcd_char('0');
			lcd_int(czas.godziny);
			lcd_char(':');
			if( czas.minuty < 10 ) lcd_char('0');
			lcd_int(czas.minuty);
			lcd_char(':');
			if( czas.sekundy < 10 ) lcd_char('0');
			lcd_int(czas.sekundy);
		break;
	}

}