/***********************************************************************//** * @brief Get application parameters * * Get all task parameters from parameter file or (if required) by querying * the user. The parameters are read in the correct order. ***************************************************************************/ void ctexpcube::get_parameters(void) { // Setup observations from "inobs" parameter. Do not accept counts cubes. setup_observations(m_obs, true, true, false); // Get the incube filename std::string incube = (*this)["incube"].filename(); // If the "incube" file name is valid then setup the exposure cube from // the counts cube. Otherwise create a counts cube from the user // parameters GCTAEventCube cube = is_valid_filename(incube) ? GCTAEventCube(incube) : create_cube(m_obs); // Define exposure cube m_expcube = GCTACubeExposure(cube); // Get remaining parameters m_addbounds = (*this)["addbounds"].boolean(); m_publish = (*this)["publish"].boolean(); m_chatter = static_cast<GChatter>((*this)["chatter"].integer()); // Read output filename (if needed) if (read_ahead()) { m_outcube = (*this)["outcube"].filename(); } // Write parameters into logger log_parameters(TERSE); // Return return; }
/***********************************************************************//** * @brief Generate the model map(s) * * This method reads the task parameters from the parfile, sets up the * observation container, loops over all CTA observations in the container * and generates a PSF cube from the CTA observations. ***************************************************************************/ void ctpsfcube::run(void) { // If we're in debug mode then all output is also dumped on the screen if (logDebug()) { log.cout(true); } // Get task parameters get_parameters(); // Write parameters into logger if (logTerse()) { log_parameters(); log << std::endl; } // Set energy dispersion flag for all CTA observations and save old // values in save_edisp vector std::vector<bool> save_edisp; save_edisp.assign(m_obs.size(), false); for (int i = 0; i < m_obs.size(); ++i) { GCTAObservation* obs = dynamic_cast<GCTAObservation*>(m_obs[i]); if (obs != NULL) { save_edisp[i] = obs->response()->apply_edisp(); obs->response()->apply_edisp(m_apply_edisp); } } // Write observation(s) into logger if (logTerse()) { log << std::endl; if (m_obs.size() > 1) { log.header1("Observations"); } else { log.header1("Observation"); } log << m_obs << std::endl; } // Write header if (logTerse()) { log << std::endl; log.header1("Generate PSF cube"); } // Fill PSF m_psfcube.fill(m_obs); // Restore energy dispersion flag for all CTA observations for (int i = 0; i < m_obs.size(); ++i) { GCTAObservation* obs = dynamic_cast<GCTAObservation*>(m_obs[i]); if (obs != NULL) { obs->response()->apply_edisp(save_edisp[i]); } } // Return return; }
/***********************************************************************//** * @brief Run maximum likelihood analysis * * The following analysis steps are performed: * 1. Read the parameters (and write them into logger) * 2. Load observation * 3. Setup models for optimizing * 4. Optimize model (and write result into logger) ***************************************************************************/ void ctlike::run(void) { // Switch screen logging on in debug mode if (logDebug()) { log.cout(true); } // Get parameters get_parameters(); // Write parameters into logger if (logTerse()) { log_parameters(); log << std::endl; } // Set energy dispersion flag for all CTA observations and save old // values in save_edisp vector std::vector<bool> save_edisp; save_edisp.assign(m_obs.size(), false); for (int i = 0; i < m_obs.size(); ++i) { GCTAObservation* obs = dynamic_cast<GCTAObservation*>(m_obs[i]); if (obs != NULL) { save_edisp[i] = obs->response()->apply_edisp(); obs->response()->apply_edisp(m_apply_edisp); } } // Write observation(s) into logger if (logTerse()) { log << std::endl; if (m_obs.size() > 1) { log.header1("Observations"); } else { log.header1("Observation"); } log << m_obs << std::endl; } // Optimize model parameters using LM optimizer optimize_lm(); // Store Npred double npred = m_obs.npred(); // Store models for which TS should be computed std::vector<std::string> ts_srcs; GModels models_orig = m_obs.models(); for (int i = 0; i < models_orig.size(); ++i) { GModel* model = models_orig[i]; if (model->tscalc()) { ts_srcs.push_back(model->name()); } } // Compute TS values if requested if (!ts_srcs.empty()) { // Store original maximum likelihood and models double logL_src = m_logL; GModels models = m_obs.models(); // Fix spatial parameters if requested if (m_fix_spat_for_ts) { // Loop over all models for (int i = 0; i < models.size(); ++i) { // Continue only if model is skymodel GModelSky* sky= dynamic_cast<GModelSky*>(models[i]); if (sky != NULL) { // Fix spatial parameters GModelSpatial* spatial = sky->spatial(); for (int j = 0; j < spatial->size(); j++) { (*spatial)[j].fix(); } // endfor: looped over spatial parameters } // endif: there was a sky model } // endfor: looped over models } // endif: spatial parameter should be fixed // Loop over stored models, remove source and refit for (int i = 0; i < ts_srcs.size(); ++i) { models.remove(ts_srcs[i]); m_obs.models(models); double logL_nosrc = reoptimize_lm(); double ts = 2.0 * (logL_src-logL_nosrc); models_orig[ts_srcs[i]]->ts(ts); models = models_orig; } // Restore best fit values m_obs.models(models_orig); } // Compute number of observed events in all observations double num_events = 0.0; for (int i = 0; i < m_obs.size(); ++i) { double data = m_obs[i]->events()->number(); if (data >= 0.0) { num_events += data; } } // Write results into logger if (logTerse()) { log << std::endl; log.header1("Maximum likelihood optimisation results"); log << *m_opt << std::endl; log << gammalib::parformat("Maximum log likelihood"); log << gammalib::str(m_logL,3) << std::endl; log << gammalib::parformat("Observed events (Nobs)"); log << gammalib::str(num_events, 3) << std::endl; log << gammalib::parformat("Predicted events (Npred)"); log << gammalib::str(npred, 3); log << " (Nobs - Npred = "; log << gammalib::str(num_events-npred); log << ")" << std::endl; log << m_obs.models() << std::endl; } // Restore energy dispersion flag for all CTA observations for (int i = 0; i < m_obs.size(); ++i) { GCTAObservation* obs = dynamic_cast<GCTAObservation*>(m_obs[i]); if (obs != NULL) { obs->response()->apply_edisp(save_edisp[i]); } } // Return return; }
/***********************************************************************//** * @brief Computes ***************************************************************************/ void cterror::run(void) { // If we're in debug mode then all output is also dumped on the screen if (logDebug()) { log.cout(true); } // Get task parameters get_parameters(); // Write parameters into logger if (logTerse()) { log_parameters(); log << std::endl; } // Set energy dispersion flag for all CTA observations and save old // values in save_edisp vector std::vector<bool> save_edisp; save_edisp.assign(m_obs.size(), false); for (int i = 0; i < m_obs.size(); ++i) { GCTAObservation* obs = dynamic_cast<GCTAObservation*>(m_obs[i]); if (obs != NULL) { save_edisp[i] = obs->response()->apply_edisp(); obs->response()->apply_edisp(m_apply_edisp); } } // Write observation(s) into logger if (logTerse()) { log << std::endl; if (m_obs.size() > 1) { log.header1("Observations"); } else { log.header1("Observation"); } log << m_obs << std::endl; } // Write header if (logTerse()) { log << std::endl; log.header1("Compute best-fit likelihood"); } // Optimize and save best log-likelihood m_obs.optimize(m_opt); m_obs.errors(m_opt); m_best_logL = m_obs.logL(); // Store optimizer for later recovery GOptimizerLM best_opt = m_opt; // Write optimised model into logger if (logTerse()) { log << m_opt << std::endl; log << gammalib::parformat("Maximum log likelihood"); log << gammalib::str(m_best_logL,3) << std::endl; log << m_obs.models() << std::endl; } // Continue only if source model exists if (m_obs.models().contains(m_srcname)) { // Save best fitting models GModels models_best = m_obs.models(); // Get pointer on model GModel* model = models_best[m_srcname]; // Get number of parameters int npars = model->size(); // Loop over parameters of sky model for (int i = 0; i < npars; ++i) { // Skip parameter if it is fixed if (model->at(i).is_fixed()) { continue; } // Initialise with best fitting models m_obs.models(models_best); // Get pointer on model parameter GModels& current_models = const_cast<GModels&>(m_obs.models()); m_model_par = &(current_models[m_srcname]->at(i)); // Extract current value m_value = m_model_par->factor_value(); // Compute parameter bracketing double parmin = std::max(m_model_par->factor_min(), m_value - 10.0*m_model_par->factor_error()); double parmax = std::min(m_model_par->factor_max(), m_value + 10.0*m_model_par->factor_error()); // Write header if (logTerse()) { log << std::endl; log.header1("Compute error for source \""+m_srcname+"\"" " parameter \""+m_model_par->name()+"\""); log << gammalib::parformat("Confidence level"); log << m_confidence*100.0 << "%" << std::endl; log << gammalib::parformat("Log-likelihood difference"); log << m_dlogL << std::endl; log << gammalib::parformat("Initial factor range"); log << "["; log << parmin; log << ", "; log << parmax; log << "]" << std::endl; } // Compute lower boundary double value_lo = error_bisection(parmin, m_value); // Write lower parameter value if (logTerse()) { log << gammalib::parformat("Lower parameter factor"); log << value_lo << std::endl; } // Compute upper boundary double value_hi = error_bisection(m_value, parmax); // Write upper parameter value if (logTerse()) { log << gammalib::parformat("Upper parameter factor"); log << value_hi << std::endl; } // Compute errors double error = 0.5 * (value_hi - value_lo); double error_neg = m_value - value_lo; double error_pos = value_hi - m_value; //double error_max = std::max(value_hi-m_value, m_value-value_lo); //double error_min = std::min(value_hi-m_value, m_value-value_lo); // Write errors if (logTerse()) { log << gammalib::parformat("Error from curvature"); log << m_model_par->error(); log << " " << m_model_par->unit() << std::endl; log << gammalib::parformat("Error from profile"); log << std::abs(error*m_model_par->scale()); log << " " << m_model_par->unit() << std::endl; log << gammalib::parformat("Negative profile error"); log << std::abs(error_neg*m_model_par->scale()); log << " " << m_model_par->unit() << std::endl; log << gammalib::parformat("Positive profile error"); log << std::abs(error_pos*m_model_par->scale()); log << " " << m_model_par->unit() << std::endl; } // Save error result model->at(i).factor_error(error); } // endfor: looped over spectral parameters // Restore best fitting models (now with new errors computed) m_obs.models(models_best); } // endif: source model exists // Recover optimizer m_opt = best_opt; // Restore energy dispersion flag for all CTA observations for (int i = 0; i < m_obs.size(); ++i) { GCTAObservation* obs = dynamic_cast<GCTAObservation*>(m_obs[i]); if (obs != NULL) { obs->response()->apply_edisp(save_edisp[i]); } } // Return return; }
/***********************************************************************//** * @brief Simulate event data * * This method runs the simulation. Results are not saved by this method. * Invoke "save" to save the results. ***************************************************************************/ void ctobssim::run(void) { // Switch screen logging on in debug mode if (logDebug()) { log.cout(true); } // Get parameters get_parameters(); // Write input parameters into logger if (logTerse()) { log_parameters(); log << std::endl; } // Special mode: if read ahead is specified we know that we called // the execute() method, hence files are saved immediately and event // lists are disposed afterwards. if (read_ahead()) { m_save_and_dispose = true; } // Determine the number of valid CTA observations, set energy dispersion flag // for all CTA observations and save old values in save_edisp vector int n_observations = 0; std::vector<bool> save_edisp; save_edisp.assign(m_obs.size(), false); for (int i = 0; i < m_obs.size(); ++i) { GCTAObservation* obs = dynamic_cast<GCTAObservation*>(m_obs[i]); if (obs != NULL) { save_edisp[i] = obs->response()->apply_edisp(); obs->response()->apply_edisp(m_apply_edisp); n_observations++; } } // If more than a single observation has been handled then make sure that // an XML file will be used for storage if (n_observations > 1) { m_use_xml = true; } // Write execution mode into logger if (logTerse()) { log << std::endl; log.header1("Execution mode"); log << gammalib::parformat("Event list management"); if (m_save_and_dispose) { log << "Save and dispose (reduces memory needs)" << std::endl; } else { log << "Keep events in memory" << std::endl; } log << gammalib::parformat("Output format"); if (m_use_xml) { log << "Write Observation Definition XML file" << std::endl; } else { log << "Write single event list FITS file" << std::endl; } } // Write seed values into logger if (logTerse()) { log << std::endl; log.header1("Seed values"); for (int i = 0; i < m_rans.size(); ++i) { log << gammalib::parformat("Seed "+gammalib::str(i)); log << gammalib::str(m_rans[i].seed()) << std::endl; } } // Write observation(s) into logger if (logTerse()) { log << std::endl; if (m_obs.size() > 1) { log.header1("Observations"); } else { log.header1("Observation"); } log << m_obs << std::endl; } // Write header if (logTerse()) { log << std::endl; if (m_obs.size() > 1) { log.header1("Simulate observations"); } else { log.header1("Simulate observation"); } } // From here on the code can be parallelized if OpenMP support // is enabled. The code in the following block corresponds to the // code that will be executed in each thread #pragma omp parallel { // Each thread will have it's own logger to avoid conflicts GLog wrklog; if (logDebug()) { wrklog.cout(true); } // Allocate and initialize copies for multi-threading GModels models(m_obs.models()); // Copy configuration from application logger to thread logger wrklog.date(log.date()); wrklog.name(log.name()); // Set a big value to avoid flushing wrklog.max_size(10000000); // Loop over all observation in the container. If OpenMP support // is enabled, this loop will be parallelized. #pragma omp for for (int i = 0; i < m_obs.size(); ++i) { // Get pointer on CTA observation GCTAObservation* obs = dynamic_cast<GCTAObservation*>(m_obs[i]); // Continue only if observation is a CTA observation if (obs != NULL) { // Write header for observation if (logTerse()) { if (obs->name().length() > 1) { wrklog.header3("Observation "+obs->name()); } else { wrklog.header3("Observation"); } } // Work on a clone of the CTA observation. This makes sure that // any memory allocated for computing (for example a response // cache) is properly de-allocated on exit of this run GCTAObservation obs_clone = *obs; // Save number of events before entering simulation int events_before = obs_clone.events()->size(); // Simulate source events simulate_source(&obs_clone, models, m_rans[i], &wrklog); // Simulate source events simulate_background(&obs_clone, models, m_rans[i], &wrklog); // Dump simulation results if (logNormal()) { wrklog << gammalib::parformat("MC events"); wrklog << obs_clone.events()->size() - events_before; wrklog << " (all models)"; wrklog << std::endl; } // Append the event list to the original observation obs->events(*(obs_clone.events())); // If requested, event lists are saved immediately if (m_save_and_dispose) { // Set event output file name. If multiple observations are // handled, build the filename from prefix and observation // index. Otherwise use the outfile parameter. std::string outfile; if (m_use_xml) { m_prefix = (*this)["prefix"].string(); outfile = m_prefix + gammalib::str(i) + ".fits"; } else { outfile = (*this)["outevents"].filename(); } // Store output file name in original observation obs->eventfile(outfile); // Save observation into FITS file. This is a critical zone // to avoid multiple threads writing simultaneously #pragma omp critical { obs_clone.save(outfile, clobber()); } // Dispose events obs->dispose_events(); } // ... otherwise append the event list to the original observation /* else { obs->events(*(obs_clone.events())); } */ } // endif: CTA observation found } // endfor: looped over observations // At the end, the content of the thread logger is added to // the application logger #pragma omp critical (log) { log << wrklog; } } // end pragma omp parallel // Restore energy dispersion flag for all CTA observations for (int i = 0; i < m_obs.size(); ++i) { GCTAObservation* obs = dynamic_cast<GCTAObservation*>(m_obs[i]); if (obs != NULL) { obs->response()->apply_edisp(save_edisp[i]); } } // Return return; }
/***********************************************************************//** * @brief Simulate event data * * This method runs the simulation. Results are not saved by this method. * Invoke "save" to save the results. ***************************************************************************/ void ctobssim::run(void) { // Switch screen logging on in debug mode if (logDebug()) { log.cout(true); } // Get parameters get_parameters(); // Write input parameters into logger if (logTerse()) { log_parameters(); log << std::endl; } // Write seed values into logger if (logTerse()) { log << std::endl; log.header1("Seed values"); for (int i = 0; i < m_rans.size(); ++i) { log << gammalib::parformat("Seed "+gammalib::str(i)); log << gammalib::str(m_rans[i].seed()) << std::endl; } } // Write observation(s) into logger if (logTerse()) { log << std::endl; if (m_obs.size() > 1) { log.header1("Observations"); } else { log.header1("Observation"); } log << m_obs << std::endl; } // Write header if (logTerse()) { log << std::endl; if (m_obs.size() > 1) { log.header1("Simulate observations"); } else { log.header1("Simulate observation"); } } // Initialise counters int n_observations = 0; // From here on the code can be parallelized if OpenMP support // is enabled. The code in the following block corresponds to the // code that will be executed in each thread #pragma omp parallel { // Each thread will have it's own logger to avoid conflicts GLog wrklog; if (logDebug()) { wrklog.cout(true); } // Copy configuration from application logger to thread logger wrklog.date(log.date()); wrklog.name(log.name()); // Set a big value to avoid flushing wrklog.max_size(10000000); // Loop over all observation in the container. If OpenMP support // is enabled, this looped will be parallelized. #pragma omp for for (int i = 0; i < m_obs.size(); ++i) { // Get CTA observation GCTAObservation* obs = dynamic_cast<GCTAObservation*>(m_obs[i]); // Continue only if observation is a CTA observation if (obs != NULL) { // Write header for observation if (logTerse()) { if (obs->name().length() > 1) { wrklog.header3("Observation "+obs->name()); } else { wrklog.header3("Observation"); } } // Increment counter n_observations++; // Save number of events before entering simulation int events_before = obs->events()->size(); // Simulate source events simulate_source(obs, m_obs.models(), m_rans[i], &wrklog); // Simulate source events simulate_background(obs, m_obs.models(), m_rans[i], &wrklog); // Dump simulation results if (logNormal()) { wrklog << gammalib::parformat("MC events"); wrklog << obs->events()->size() - events_before; wrklog << " (all models)"; wrklog << std::endl; } } // endif: CTA observation found } // endfor: looped over observations // At the end, the content of the thread logger is added to // the application logger #pragma omp critical (log) { log << wrklog; } } // end pragma omp parallel // If more than a single observation has been handled then make sure that // an XML file will be used for storage if (n_observations > 1) { m_use_xml = true; } // Return return; }
/***********************************************************************//** * @brief Generate the model map(s) * * This method reads the task parameters from the parfile, sets up the * observation container, loops over all CTA observations in the container * and generates a model map for each CTA observation. ***************************************************************************/ void ctmodel::run(void) { // If we're in debug mode then all output is also dumped on the screen if (logDebug()) { log.cout(true); } // Get task parameters get_parameters(); // Setup observation container setup_obs(); // Write parameters into logger if (logTerse()) { log_parameters(); log << std::endl; } // Write observation(s) into logger if (logTerse()) { log << std::endl; if (m_obs.size() > 1) { log.header1("Observations"); } else { log.header1("Observation"); } log << m_obs << std::endl; } // Write header if (logTerse()) { log << std::endl; if (m_obs.size() > 1) { log.header1("Generate model maps"); } else { log.header1("Generate model map"); } } // Initialise observation counter int n_observations = 0; // Loop over all observations in the container for (int i = 0; i < m_obs.size(); ++i) { // Initialise event input and output filenames m_infiles.push_back(""); // Get CTA observation GCTAObservation* obs = dynamic_cast<GCTAObservation*>(m_obs[i]); // Continue only if observation is a CTA observation if (obs != NULL) { // Write header for observation if (logTerse()) { if (obs->name().length() > 1) { log.header3("Observation "+obs->name()); } else { log.header3("Observation"); } } // Increment number of observations n_observations++; // Save event file name (for possible saving) m_infiles[i] = obs->eventfile(); // Generate model map model_map(obs, m_obs.models()); } // endif: CTA observation found } // endfor: looped over observations // If more than a single observation has been handled then make sure // that an XML file will be used for storage if (n_observations > 1) { m_use_xml = true; } // Write observation(s) into logger if (logTerse()) { log << std::endl; if (m_obs.size() > 1) { log.header1("Observations after model map generation"); } else { log.header1("Observation after model map generation"); } log << m_obs << std::endl; } // Return return; }
bool Data_logging::update(void) { uint32_t time_ms = 0; if (log_data_ == 1) { if (file_opened_) { if (!file_init_) { add_header_name(); } if (!state_.is_armed()) { time_ms = time_keeper_get_ms(); if ((time_ms - logging_time_) > 5000) { console_.get_stream()->flush(); logging_time_ = time_ms; } } if (continuous_write_) { log_parameters(); } else { if (checksum_control()) { log_parameters(); } } } //end of if (file_opened_) else { if (sys_status_) { open_new_log_file(); } cksum_a_ = 0.0; cksum_b_ = 0.0; }//end of else if (file_opened_) } //end of if (log_data_ == 1) else { sys_status_ = true; if (file_opened_) { bool succeed = console_.get_stream()->close(); cksum_a_ = 0.0; cksum_b_ = 0.0; file_opened_ = false; file_init_ = false; if (debug_) { if (succeed) { print_util_dbg_print("File closed\r\n"); } else { print_util_dbg_print("Error closing file\r\n"); } } } //end of if (file_opened_) } //end of else (log_data_ != 1) return true; }
/***********************************************************************//** * @brief Bin the event data * * This method loops over all observations found in the observation conatiner * and bins all events from the event list(s) into counts map(s). Note that * each event list is binned in a separate counts map, hence no summing of * events is done. ***************************************************************************/ void ctbin::run(void) { // If we're in debug mode then all output is also dumped on the screen if (logDebug()) { log.cout(true); } // Get task parameters get_parameters(); // Write parameters into logger if (logTerse()) { log_parameters(); log << std::endl; } // Write observation(s) into logger if (logTerse()) { log << std::endl; if (m_obs.size() > 1) { log.header1("Observations"); } else { log.header1("Observation"); } log << m_obs << std::endl; } // Write header if (logTerse()) { log << std::endl; if (m_obs.size() > 1) { log.header1("Bin observations"); } else { log.header1("Bin observation"); } } // Loop over all observations in the container for (int i = 0; i < m_obs.size(); ++i) { // Get CTA observation GCTAObservation* obs = dynamic_cast<GCTAObservation*>(m_obs[i]); // Continue only if observation is a CTA observation if (obs != NULL) { // Write header for observation if (logTerse()) { if (obs->name().length() > 1) { log.header3("Observation "+obs->name()); } else { log.header3("Observation"); } } // Fill the cube fill_cube(obs); // Dispose events to free memory obs->dispose_events(); } // endif: CTA observation found } // endfor: looped over observations // Set a single cube in the observation container obs_cube(); // Write observation(s) into logger if (logTerse()) { log << std::endl; if (m_obs.size() > 1) { log.header1("Binned observations"); } else { log.header1("Binned observation"); } log << m_obs << std::endl; } // Return return; }
/***********************************************************************//** * @brief Generate the model map(s) * * This method reads the task parameters from the parfile, sets up the * observation container, loops over all CTA observations in the container * and generates a model map for each CTA observation. ***************************************************************************/ void ctmodel::run(void) { // If we're in debug mode then all output is also dumped on the screen if (logDebug()) { log.cout(true); } // Get task parameters get_parameters(); // Write parameters into logger if (logTerse()) { log_parameters(); log << std::endl; } // Set energy dispersion flag for all CTA observations and save old // values in save_edisp vector std::vector<bool> save_edisp; save_edisp.assign(m_obs.size(), false); for (int i = 0; i < m_obs.size(); ++i) { GCTAObservation* obs = dynamic_cast<GCTAObservation*>(m_obs[i]); if (obs != NULL) { save_edisp[i] = obs->response()->apply_edisp(); obs->response()->apply_edisp(m_apply_edisp); } } // Write observation(s) into logger if (logTerse()) { log << std::endl; if (m_obs.size() > 1) { log.header1("Observations"); } else { log.header1("Observation"); } log << m_obs << std::endl; } // Write models into logger if (logTerse()) { log << std::endl; log.header1("Models"); log << m_obs.models() << std::endl; } // Write header if (logTerse()) { log << std::endl; log.header1("Generate model cube"); } // Loop over all observations in the container for (int i = 0; i < m_obs.size(); ++i) { // Write header for observation if (logTerse()) { std::string header = m_obs[i]->instrument() + " observation"; if (m_obs[i]->name().length() > 1) { header += " \"" + m_obs[i]->name() + "\""; } if (m_obs[i]->id().length() > 1) { header += " (id=" + m_obs[i]->id() +")"; } log.header3(header); } // Get CTA observation GCTAObservation* obs = dynamic_cast<GCTAObservation*>(m_obs[i]); // Skip observation if it's not CTA if (obs == NULL) { if (logTerse()) { log << " Skipping "; log << m_obs[i]->instrument(); log << " observation" << std::endl; } continue; } // Fill cube and leave loop if we are binned mode (meaning we // only have one binned observation) if (m_binned) { fill_cube(obs); break; } // Skip observation if we have a binned observation if (obs->eventtype() == "CountsCube") { if (logTerse()) { log << " Skipping binned "; log << obs->instrument(); log << " observation" << std::endl; } continue; } // Fill the cube fill_cube(obs); // Dispose events to free memory if event file exists on disk if (obs->eventfile().length() > 0 && gammalib::file_exists(obs->eventfile())) { obs->dispose_events(); } } // endfor: looped over observations // Log cube if (logTerse()) { log << std::endl; log.header1("Model cube"); log << m_cube << std::endl; } // Restore energy dispersion flag for all CTA observations for (int i = 0; i < m_obs.size(); ++i) { GCTAObservation* obs = dynamic_cast<GCTAObservation*>(m_obs[i]); if (obs != NULL) { obs->response()->apply_edisp(save_edisp[i]); } } // Return return; }
/***********************************************************************//** * @brief Select event data * * This method reads in the application parameters and loops over all * observations that were found to perform an event selection. Event * selection is done by writing each observation to a temporary file and * re-opening the temporary file using the cfitsio event filter syntax. * The temporary file is deleted after this action so that no disk overflow * will occur. ***************************************************************************/ void ctselect::run(void) { // Switch screen logging on in debug mode if (logDebug()) { log.cout(true); } // Get parameters get_parameters(); // Write parameters into logger if (logTerse()) { log_parameters(); log << std::endl; } // Write observation(s) into logger if (logTerse()) { log << std::endl; log.header1("Observations before selection"); log << m_obs << std::endl; } // Write header if (logTerse()) { log << std::endl; log.header1("Event selection"); } // Initialise counters int n_observations = 0; // Loop over all observation in the container for (int i = 0; i < m_obs.size(); ++i) { // Initialise event input and output filenames m_infiles.push_back(""); // Get CTA observation GCTAObservation* obs = dynamic_cast<GCTAObservation*>(&m_obs[i]); // Continue only if observation is a CTA observation if (obs != NULL) { // Write header for observation if (logTerse()) { if (obs->name().length() > 1) { log.header3("Observation "+obs->name()); } else { log.header3("Observation"); } } // Increment counter n_observations++; // Save event file name (for possible saving) m_infiles[i] = obs->eventfile(); // Get temporary file name std::string filename = std::tmpnam(NULL); // Save observation in temporary file obs->save(filename, true); // Log saved FITS file if (logExplicit()) { GFits tmpfile(filename); log << std::endl; log.header1("FITS file content of temporary file"); log << tmpfile << std::endl; tmpfile.close(); } // Check temporary file std::string message = check_infile(filename); if (message.length() > 0) { throw GException::app_error(G_RUN, message); } // Load observation from temporary file, including event selection select_events(obs, filename); // Remove temporary file std::remove(filename.c_str()); } // endif: had a CTA observation } // endfor: looped over all observations // If more than a single observation has been handled then make sure that // an XML file will be used for storage if (n_observations > 1) { m_use_xml = true; } // Write observation(s) into logger if (logTerse()) { log << std::endl; log.header1("Observations after selection"); log << m_obs << std::endl; } // Return return; }