예제 #1
0
파일: hilbert.c 프로젝트: blynn/pbc
// Computes z = Delta(q) (see Cohen).
static void compute_Delta(mpc_t z, mpc_t q) {
  int d;
  int n;
  int power;
  mpc_t z0, z1, z2;

  mpc_init(z0);
  mpc_init(z1);
  mpc_init(z2);

  mpc_set_ui(z0, 1);
  d = -1;
  for(n=1; n<100; n++) {
    power = n *(3 * n - 1) / 2;
    mpc_pow_ui(z1, q, power);
    mpc_pow_ui(z2, q, n);
    mpc_mul(z2, z2, z1);
    mpc_add(z1, z1, z2);
    if (d) {
      mpc_sub(z0, z0, z1);
      d = 0;
    } else {
      mpc_add(z0, z0, z1);
      d = 1;
    }
  }

  mpc_pow_ui(z0, z0, 24);
  mpc_mul(z, z0, q);

  mpc_clear(z0);
  mpc_clear(z1);
  mpc_clear(z2);
}
예제 #2
0
파일: ovm_cdd.c 프로젝트: pcpa/owl
void
ovm_dd_mul(oregister_t *l, oregister_t *r)
{
    switch (r->t) {
	case t_void:
	    l->v.dd *= 0.0;
	    check_cdd(l);
	    break;
	case t_word:
	    l->v.dd *= r->v.w;
	    check_cdd(l);
	    break;
	case t_float:
	    l->v.dd *= r->v.d;
	    check_cdd(l);
	    break;
	case t_mpz:
	    l->v.dd *= mpz_get_d(ozr(r));
	    check_cdd(l);
	    break;
	case t_rat:
	    l->v.dd *= rat_get_d(r->v.r);
	    check_cdd(l);
	    break;
	case t_mpq:
	    l->v.dd *= mpq_get_d(oqr(r));
	    check_cdd(l);
	    break;
	case t_mpr:
	    l->t = t_mpc;
	    mpc_set_d_d(occ(l), real(l->v.dd), imag(l->v.dd), thr_rndc);
	    mpc_set_fr(occ(r), orr(r), thr_rndc);
	    mpc_mul(occ(l), occ(l), occ(r), thr_rndc);
	    check_mpc(l);
	    break;
	case t_cdd:
	    l->v.dd *= r->v.dd;
	    check_cdd(l);
	    break;
	case t_cqq:
	    real(r->v.dd) = mpq_get_d(oqr(r));
	    imag(r->v.dd) = mpq_get_d(oqi(r));
	    l->v.dd *= r->v.dd;
	    check_cdd(l);
	    break;
	case t_mpc:
	    l->t = t_mpc;
	    mpc_set_d_d(occ(l), real(l->v.dd), imag(l->v.dd), thr_rndc);
	    mpc_mul(occ(l), occ(l), occ(r), thr_rndc);
	    check_mpc(l);
	    break;
	default:
	    ovm_raise(except_not_a_number);
    }
}
예제 #3
0
파일: mpc.c 프로젝트: rforge/mpc
SEXP R_mpc_mul(SEXP e1, SEXP e2) {
	/* N.B. We always use signed integers for e2 given R's type system. */
	mpc_t *z = (mpc_t *)malloc(sizeof(mpc_t));
	if (Rf_inherits(e1, "mpc")) {
		mpc_t *z1 = (mpc_t *)R_ExternalPtrAddr(e1);
		if (Rf_inherits(e2, "mpc")) {
			mpc_t *z2 = (mpc_t *)R_ExternalPtrAddr(e2);
			mpc_init2(*z, max(mpc_get_prec(*z1),
				mpc_get_prec(*z2)));
			mpc_mul(*z, *z1, *z2, Rmpc_get_rounding());
		} else if (Rf_isInteger(e2)) {
			mpc_init2(*z, mpc_get_prec(*z1));
			mpc_mul_si(*z, *z1, INTEGER(e2)[0],
			    Rmpc_get_rounding());
		} else if (Rf_isNumeric(e2)) {
			mpc_init2(*z, mpc_get_prec(*z1));
			mpfr_t x;
			mpfr_init2(x, 53);
			mpfr_set_d(x, REAL(e2)[0], GMP_RNDN);
			mpc_mul_fr(*z, *z1, x, Rmpc_get_rounding());
		} else {
			Rf_error("Invalid second operand for mpc multiplication.");
		}
	} else {
		Rf_error("Invalid first operand for MPC multiplication.");
	}
	SEXP retVal = PROTECT(R_MakeExternalPtr((void *)z,
		Rf_install("mpc ptr"), R_NilValue));
	Rf_setAttrib(retVal, R_ClassSymbol, Rf_mkString("mpc"));
	R_RegisterCFinalizerEx(retVal, mpcFinalizer, TRUE);
	UNPROTECT(1);
	return retVal;
}
예제 #4
0
static PyObject *
GMPy_Complex_Mul(PyObject *x, PyObject *y, CTXT_Object *context)
{
    MPC_Object *result = NULL;

    CHECK_CONTEXT(context);

    if (!(result = GMPy_MPC_New(0, 0, context))) {
        /* LCOV_EXCL_START */
        return NULL;
        /* LCOV_EXCL_STOP */
    }

    if (MPC_Check(x) && MPC_Check(y)) {
        result->rc = mpc_mul(result->c, MPC(x), MPC(y), GET_MPC_ROUND(context));
        _GMPy_MPC_Cleanup(&result, context);
        return (PyObject*)result;
    }

    if (IS_COMPLEX(x) && IS_COMPLEX(y)) {
        MPC_Object *tempx = NULL, *tempy = NULL;

        if (!(tempx = GMPy_MPC_From_Complex(x, 1, 1, context)) ||
            !(tempy = GMPy_MPC_From_Complex(y, 1, 1, context))) {
            /* LCOV_EXCL_START */
            Py_XDECREF((PyObject*)tempx);
            Py_XDECREF((PyObject*)tempy);
            Py_DECREF((PyObject*)result);
            return NULL;
            /* LCOV_EXCL_STOP */
        }

        result->rc = mpc_mul(result->c, tempx->c, tempy->c, GET_MPC_ROUND(context));
        Py_DECREF((PyObject*)tempx);
        Py_DECREF((PyObject*)tempy);
        _GMPy_MPC_Cleanup(&result, context);
        return (PyObject*)result;
    }

    /* LCOV_EXCL_START */
    Py_DECREF((PyObject*)result);
    SYSTEM_ERROR("Internal error in GMPy_Complex_Mul().");
    return NULL;
    /* LCOV_EXCL_STOP */
}
예제 #5
0
파일: ovm_mpq.c 프로젝트: pcpa/owl
void
ovm_q_mul(oregister_t *l, oregister_t *r)
{
    switch (r->t) {
	case t_void:
	    l->t = t_word;
	    l->v.w = 0;
	    break;
	case t_word:
	    mpq_set_si(oqr(r), r->v.w, 1);
	    mpq_mul(oqr(l), oqr(l), oqr(r));
	    check_mpq(l);
	    break;
	case t_float:
	    l->t = t_float;
	    l->v.d = mpq_get_d(oqr(l)) * r->v.d;
	    break;
	case t_mpz:
	    mpz_set_ui(ozs(r), 1);
	    mpq_mul(oqr(l), oqr(l), oqr(r));
	    check_mpq(l);
	    break;
	case t_rat:
	    mpq_set_si(oqr(r), rat_num(r->v.r), rat_den(r->v.r));
	    mpq_mul(oqr(l), oqr(l), oqr(r));
	    check_mpq(l);
	    break;
	case t_mpq:
	    mpq_mul(oqr(l), oqr(l), oqr(r));
	    check_mpq(l);
	    break;
	case t_mpr:
	    l->t = t_mpr;
	    mpfr_set_q(orr(l), oqr(l), thr_rnd);
	    mpfr_mul(orr(l), orr(l), orr(r), thr_rnd);
	    break;
	case t_cdd:
	    l->t = t_cdd;
	    l->v.dd = mpq_get_d(oqr(l)) * r->v.dd;
	    check_cdd(l);
	    break;
	case t_cqq:
	    l->t = t_cqq;
	    mpq_set_ui(oqi(l), 0, 1);
	    cqq_mul(oqq(l), oqq(l), oqq(r));
	    check_cqq(l);
	    break;
	case t_mpc:
	    l->t = t_mpc;
	    mpc_set_q(occ(l), oqr(l), thr_rndc);
	    mpc_mul(occ(l), occ(l), occ(r), thr_rndc);
	    check_mpc(l);
	    break;
	default:
	    ovm_raise(except_not_a_number);
    }
}
예제 #6
0
파일: fft.c 프로젝트: harikrishnan94/FFT
void mul_twid(Sequence seq, size_t N)
{
	unsigned int mul_fact = LEN / (N + N);
	Sequence end = seq + N;
	for (unsigned i = 0; seq < end; i += mul_fact)
	{
		//(*seq++) *= twid_fact[i];
		mpc_mul(seq, seq, twid_fact + i, RND);
		seq++;
	}
}
예제 #7
0
파일: hilbert.c 프로젝트: blynn/pbc
// Computes z = h(tau)
// (called h() by Blake et al, f() by Cohen.)
static void compute_h(mpc_t z, mpc_t tau) {
  mpc_t z0, z1, q;
  mpc_init(q);
  mpc_init(z0);
  mpc_init(z1);
  compute_q(q, tau);
  mpc_mul(z0, q, q);
  compute_Delta(z0, z0);
  compute_Delta(z1, q);
  mpc_div(z, z0, z1);
  mpc_clear(q);
  mpc_clear(z0);
  mpc_clear(z1);
}
예제 #8
0
mps_boolean
mps_quadratic_poly_meval (mps_context * ctx, mps_polynomial * p, mpc_t x, mpc_t value, rdpe_t error)
{
  int i;
  int m = (int) (log (p->degree + 1.0) / LOG2);
  rdpe_t ax, rtmp;
  mpc_t tmp;
  long int wp = mpc_get_prec (x);

  /* Correct the working precision in case of a limited 
     precision polynomial (quite unlikely
   * in the quadratic case, but still. */
  if (p->prec > 0 && p->prec < wp)
    wp = p->prec;

  if ((1 << m) <= p->degree)
    m++;

  mpc_init2 (tmp, wp);

  mpc_rmod (ax, x);
  mpc_set_ui (value, 1U, 0U);
  mpc_rmod (error, value);

  for (i = 1; i <= m; i++)
    {
      mpc_sqr (tmp, value);
      mpc_mul (value, x, tmp);
      mpc_add_eq_ui (value, 1U, 0U);

      rdpe_mul_eq (error, ax);
      mpc_rmod (rtmp, value);
      rdpe_add_eq (error, rtmp);
    }

  rdpe_set_2dl (rtmp, 1.0, -wp);
  rdpe_mul_eq (error, rtmp);

  mpc_clear (tmp);

  return true;
}
예제 #9
0
파일: div.c 프로젝트: BrianGladman/MPC
int
mpc_div (mpc_ptr a, mpc_srcptr b, mpc_srcptr c, mpc_rnd_t rnd)
{
   int ok_re = 0, ok_im = 0;
   mpc_t res, c_conj;
   mpfr_t q;
   mpfr_prec_t prec;
   int inex, inexact_prod, inexact_norm, inexact_re, inexact_im, loops = 0;
   int underflow_norm, overflow_norm, underflow_prod, overflow_prod;
   int underflow_re = 0, overflow_re = 0, underflow_im = 0, overflow_im = 0;
   mpfr_rnd_t rnd_re = MPC_RND_RE (rnd), rnd_im = MPC_RND_IM (rnd);
   int saved_underflow, saved_overflow;
   int tmpsgn;
   mpfr_exp_t e, emin, emax, emid; /* for scaling of exponents */
   mpc_t b_scaled, c_scaled;
   mpfr_t b_re, b_im, c_re, c_im;

   /* According to the C standard G.3, there are three types of numbers:   */
   /* finite (both parts are usual real numbers; contains 0), infinite     */
   /* (at least one part is a real infinity) and all others; the latter    */
   /* are numbers containing a nan, but no infinity, and could reasonably  */
   /* be called nan.                                                       */
   /* By G.5.1.4, infinite/finite=infinite; finite/infinite=0;             */
   /* all other divisions that are not finite/finite return nan+i*nan.     */
   /* Division by 0 could be handled by the following case of division by  */
   /* a real; we handle it separately instead.                             */
   if (mpc_zero_p (c)) /* both Re(c) and Im(c) are zero */
      return mpc_div_zero (a, b, c, rnd);
   else if (mpc_inf_p (b) && mpc_fin_p (c)) /* either Re(b) or Im(b) is infinite
                                               and both Re(c) and Im(c) are ordinary */
         return mpc_div_inf_fin (a, b, c);
   else if (mpc_fin_p (b) && mpc_inf_p (c))
         return mpc_div_fin_inf (a, b, c);
   else if (!mpc_fin_p (b) || !mpc_fin_p (c)) {
      mpc_set_nan (a);
      return MPC_INEX (0, 0);
   }
   else if (mpfr_zero_p(mpc_imagref(c)))
      return mpc_div_real (a, b, c, rnd);
   else if (mpfr_zero_p(mpc_realref(c)))
      return mpc_div_imag (a, b, c, rnd);

   prec = MPC_MAX_PREC(a);

   mpc_init2 (res, 2);
   mpfr_init (q);

   /* compute scaling of exponents: none of Re(c) and Im(c) can be zero,
      but one of Re(b) or Im(b) could be zero */

   e = mpfr_get_exp (mpc_realref (c));
   emin = emax = e;
   e = mpfr_get_exp (mpc_imagref (c));
   if (e > emax)
     emax = e;
   else if (e < emin)
     emin = e;
   if (!mpfr_zero_p (mpc_realref (b)))
     {
       e = mpfr_get_exp (mpc_realref (b));
       if (e > emax)
         emax = e;
       else if (e < emin)
         emin = e;
     }
   if (!mpfr_zero_p (mpc_imagref (b)))
     {
       e = mpfr_get_exp (mpc_imagref (b));
       if (e > emax)
         emax = e;
       else if (e < emin)
         emin = e;
     }

   /* all input exponents are in [emin, emax] */
   emid = emin / 2 + emax / 2;

   /* scale the inputs */
   b_re[0] = mpc_realref (b)[0];
   if (!mpfr_zero_p (mpc_realref (b)))
     MPFR_EXP(b_re) = MPFR_EXP(mpc_realref (b)) - emid;
   b_im[0] = mpc_imagref (b)[0];
   if (!mpfr_zero_p (mpc_imagref (b)))
     MPFR_EXP(b_im) = MPFR_EXP(mpc_imagref (b)) - emid;
   c_re[0] = mpc_realref (c)[0];
   MPFR_EXP(c_re) = MPFR_EXP(mpc_realref (c)) - emid;
   c_im[0] = mpc_imagref (c)[0];
   MPFR_EXP(c_im) = MPFR_EXP(mpc_imagref (c)) - emid;

   /* create the scaled inputs without allocating new memory */
   mpc_realref (b_scaled)[0] = b_re[0];
   mpc_imagref (b_scaled)[0] = b_im[0];
   mpc_realref (c_scaled)[0] = c_re[0];
   mpc_imagref (c_scaled)[0] = c_im[0];

   /* create the conjugate of c in c_conj without allocating new memory */
   mpc_realref (c_conj)[0] = mpc_realref (c_scaled)[0];
   mpc_imagref (c_conj)[0] = mpc_imagref (c_scaled)[0];
   MPFR_CHANGE_SIGN (mpc_imagref (c_conj));

   /* save the underflow or overflow flags from MPFR */
   saved_underflow = mpfr_underflow_p ();
   saved_overflow = mpfr_overflow_p ();

   do {
      loops ++;
      prec += loops <= 2 ? mpc_ceil_log2 (prec) + 5 : prec / 2;

      mpc_set_prec (res, prec);
      mpfr_set_prec (q, prec);

      /* first compute norm(c_scaled) */
      mpfr_clear_underflow ();
      mpfr_clear_overflow ();
      inexact_norm = mpc_norm (q, c_scaled, MPFR_RNDU);
      underflow_norm = mpfr_underflow_p ();
      overflow_norm = mpfr_overflow_p ();
      if (underflow_norm)
         mpfr_set_ui (q, 0ul, MPFR_RNDN);
         /* to obtain divisions by 0 later on */

      /* now compute b_scaled*conjugate(c_scaled) */
      mpfr_clear_underflow ();
      mpfr_clear_overflow ();
      inexact_prod = mpc_mul (res, b_scaled, c_conj, MPC_RNDZZ);
      inexact_re = MPC_INEX_RE (inexact_prod);
      inexact_im = MPC_INEX_IM (inexact_prod);
      underflow_prod = mpfr_underflow_p ();
      overflow_prod = mpfr_overflow_p ();
         /* unfortunately, does not distinguish between under-/overflow
            in real or imaginary parts
            hopefully, the side-effects of mpc_mul do indeed raise the
            mpfr exceptions */
      if (overflow_prod) {
        /* FIXME: in case overflow_norm is also true, the code below is wrong,
           since the after division by the norm, we might end up with finite
           real and/or imaginary parts. A workaround would be to scale the
           inputs (in case the exponents are within the same range). */
         int isinf = 0;
         /* determine if the real part of res is the maximum or the minimum
            representable number */
         tmpsgn = mpfr_sgn (mpc_realref(res));
         if (tmpsgn > 0)
           {
             mpfr_nextabove (mpc_realref(res));
             isinf = mpfr_inf_p (mpc_realref(res));
             mpfr_nextbelow (mpc_realref(res));
           }
         else if (tmpsgn < 0)
           {
             mpfr_nextbelow (mpc_realref(res));
             isinf = mpfr_inf_p (mpc_realref(res));
             mpfr_nextabove (mpc_realref(res));
           }
         if (isinf)
           {
             mpfr_set_inf (mpc_realref(res), tmpsgn);
             overflow_re = 1;
           }
         /* same for the imaginary part */
         tmpsgn = mpfr_sgn (mpc_imagref(res));
         isinf = 0;
         if (tmpsgn > 0)
           {
             mpfr_nextabove (mpc_imagref(res));
             isinf = mpfr_inf_p (mpc_imagref(res));
             mpfr_nextbelow (mpc_imagref(res));
           }
         else if (tmpsgn < 0)
           {
             mpfr_nextbelow (mpc_imagref(res));
             isinf = mpfr_inf_p (mpc_imagref(res));
             mpfr_nextabove (mpc_imagref(res));
           }
         if (isinf)
           {
             mpfr_set_inf (mpc_imagref(res), tmpsgn);
             overflow_im = 1;
           }
         mpc_set (a, res, rnd);
         goto end;
      }

      /* divide the product by the norm */
      if (inexact_norm == 0 && (inexact_re == 0 || inexact_im == 0)) {
         /* The division has good chances to be exact in at least one part.  */
         /* Since this can cause problems when not rounding to the nearest,  */
         /* we use the division code of mpfr, which handles the situation.   */
         mpfr_clear_underflow ();
         mpfr_clear_overflow ();
         inexact_re |= mpfr_div (mpc_realref (res), mpc_realref (res), q, MPFR_RNDZ);
         underflow_re = mpfr_underflow_p ();
         overflow_re = mpfr_overflow_p ();
         ok_re = !inexact_re || underflow_re || overflow_re
                 || mpfr_can_round (mpc_realref (res), prec - 4, MPFR_RNDN,
                    MPFR_RNDZ, MPC_PREC_RE(a) + (rnd_re == MPFR_RNDN));

         if (ok_re) /* compute imaginary part */ {
            mpfr_clear_underflow ();
            mpfr_clear_overflow ();
            inexact_im |= mpfr_div (mpc_imagref (res), mpc_imagref (res), q, MPFR_RNDZ);
            underflow_im = mpfr_underflow_p ();
            overflow_im = mpfr_overflow_p ();
            ok_im = !inexact_im || underflow_im || overflow_im
                    || mpfr_can_round (mpc_imagref (res), prec - 4, MPFR_RNDN,
                       MPFR_RNDZ, MPC_PREC_IM(a) + (rnd_im == MPFR_RNDN));
         }
      }
      else {
         /* The division is inexact, so for efficiency reasons we invert q */
         /* only once and multiply by the inverse. */
         if (mpfr_ui_div (q, 1ul, q, MPFR_RNDZ) || inexact_norm) {
             /* if 1/q is inexact, the approximations of the real and
                imaginary part below will be inexact, unless RE(res)
                or IM(res) is zero */
             inexact_re |= !mpfr_zero_p (mpc_realref (res));
             inexact_im |= !mpfr_zero_p (mpc_imagref (res));
         }
         mpfr_clear_underflow ();
         mpfr_clear_overflow ();
         inexact_re |= mpfr_mul (mpc_realref (res), mpc_realref (res), q, MPFR_RNDZ);
         underflow_re = mpfr_underflow_p ();
         overflow_re = mpfr_overflow_p ();
         ok_re = !inexact_re || underflow_re || overflow_re
                 || mpfr_can_round (mpc_realref (res), prec - 4, MPFR_RNDN,
                    MPFR_RNDZ, MPC_PREC_RE(a) + (rnd_re == MPFR_RNDN));

         if (ok_re) /* compute imaginary part */ {
            mpfr_clear_underflow ();
            mpfr_clear_overflow ();
            inexact_im |= mpfr_mul (mpc_imagref (res), mpc_imagref (res), q, MPFR_RNDZ);
            underflow_im = mpfr_underflow_p ();
            overflow_im = mpfr_overflow_p ();
            ok_im = !inexact_im || underflow_im || overflow_im
                    || mpfr_can_round (mpc_imagref (res), prec - 4, MPFR_RNDN,
                       MPFR_RNDZ, MPC_PREC_IM(a) + (rnd_im == MPFR_RNDN));
         }
      }
   } while ((!ok_re || !ok_im) && !underflow_norm && !overflow_norm
                               && !underflow_prod && !overflow_prod);

   inex = mpc_set (a, res, rnd);
   inexact_re = MPC_INEX_RE (inex);
   inexact_im = MPC_INEX_IM (inex);

 end:
   /* fix values and inexact flags in case of overflow/underflow */
   /* FIXME: heuristic, certainly does not cover all cases */
   if (overflow_re || (underflow_norm && !underflow_prod)) {
      mpfr_set_inf (mpc_realref (a), mpfr_sgn (mpc_realref (res)));
      inexact_re = mpfr_sgn (mpc_realref (res));
   }
   else if (underflow_re || (overflow_norm && !overflow_prod)) {
      inexact_re = mpfr_signbit (mpc_realref (res)) ? 1 : -1;
      mpfr_set_zero (mpc_realref (a), -inexact_re);
   }
   if (overflow_im || (underflow_norm && !underflow_prod)) {
      mpfr_set_inf (mpc_imagref (a), mpfr_sgn (mpc_imagref (res)));
      inexact_im = mpfr_sgn (mpc_imagref (res));
   }
   else if (underflow_im || (overflow_norm && !overflow_prod)) {
      inexact_im = mpfr_signbit (mpc_imagref (res)) ? 1 : -1;
      mpfr_set_zero (mpc_imagref (a), -inexact_im);
   }

   mpc_clear (res);
   mpfr_clear (q);

   /* restore underflow and overflow flags from MPFR */
   if (saved_underflow)
     mpfr_set_underflow ();
   if (saved_overflow)
     mpfr_set_overflow ();

   return MPC_INEX (inexact_re, inexact_im);
}
예제 #10
0
/* Put in z the value of x^y, rounded according to 'rnd'.
   Return the inexact flag in [0, 10]. */
int
mpc_pow (mpc_ptr z, mpc_srcptr x, mpc_srcptr y, mpc_rnd_t rnd)
{
  int ret = -2, loop, x_real, y_real, z_real = 0, z_imag = 0;
  mpc_t t, u;
  mp_prec_t p, q, pr, pi, maxprec;
  long Q;

  x_real = mpfr_zero_p (MPC_IM(x));
  y_real = mpfr_zero_p (MPC_IM(y));

  if (y_real && mpfr_zero_p (MPC_RE(y))) /* case y zero */
    {
      if (x_real && mpfr_zero_p (MPC_RE(x))) /* 0^0 = NaN +i*NaN */
        {
          mpfr_set_nan (MPC_RE(z));
          mpfr_set_nan (MPC_IM(z));
          return 0;
        }
      else /* x^0 = 1 +/- i*0 even for x=NaN see algorithms.tex for the
              sign of zero */
        {
          mpfr_t n;
          int inex, cx1;
          int sign_zi;
          /* cx1 < 0 if |x| < 1
             cx1 = 0 if |x| = 1
             cx1 > 0 if |x| > 1
          */
          mpfr_init (n);
          inex = mpc_norm (n, x, GMP_RNDN);
          cx1 = mpfr_cmp_ui (n, 1);
          if (cx1 == 0 && inex != 0)
            cx1 = -inex;

          sign_zi = (cx1 < 0 && mpfr_signbit (MPC_IM (y)) == 0)
            || (cx1 == 0
                && mpfr_signbit (MPC_IM (x)) != mpfr_signbit (MPC_RE (y)))
            || (cx1 > 0 && mpfr_signbit (MPC_IM (y)));

          /* warning: mpc_set_ui_ui does not set Im(z) to -0 if Im(rnd)=RNDD */
          ret = mpc_set_ui_ui (z, 1, 0, rnd);

          if (MPC_RND_IM (rnd) == GMP_RNDD || sign_zi)
            mpc_conj (z, z, MPC_RNDNN);

          mpfr_clear (n);
          return ret;
        }
    }

  if (mpfr_nan_p (MPC_RE(x)) || mpfr_nan_p (MPC_IM(x)) ||
      mpfr_nan_p (MPC_RE(y)) || mpfr_nan_p (MPC_IM(y)) ||
      mpfr_inf_p (MPC_RE(x)) || mpfr_inf_p (MPC_IM(x)) ||
      mpfr_inf_p (MPC_RE(y)) || mpfr_inf_p (MPC_IM(y)))
    {
      /* special values: exp(y*log(x)) */
      mpc_init2 (u, 2);
      mpc_log (u, x, MPC_RNDNN);
      mpc_mul (u, u, y, MPC_RNDNN);
      ret = mpc_exp (z, u, rnd);
      mpc_clear (u);
      goto end;
    }

  if (x_real) /* case x real */
    {
      if (mpfr_zero_p (MPC_RE(x))) /* x is zero */
        {
          /* special values: exp(y*log(x)) */
          mpc_init2 (u, 2);
          mpc_log (u, x, MPC_RNDNN);
          mpc_mul (u, u, y, MPC_RNDNN);
          ret = mpc_exp (z, u, rnd);
          mpc_clear (u);
          goto end;
        }

      /* Special case 1^y = 1 */
      if (mpfr_cmp_ui (MPC_RE(x), 1) == 0)
        {
          int s1, s2;
          s1 = mpfr_signbit (MPC_RE (y));
          s2 = mpfr_signbit (MPC_IM (x));

          ret = mpc_set_ui (z, +1, rnd);
          /* the sign of the zero imaginary part is known in some cases (see
             algorithm.tex). In such cases we have
             (x +s*0i)^(y+/-0i) = x^y + s*sign(y)*0i
             where s = +/-1.  We extend here this rule to fix the sign of the
             zero part.

             Note that the sign must also be set explicitly when rnd=RNDD
             because mpfr_set_ui(z_i, 0, rnd) always sets z_i to +0.
          */
          if (MPC_RND_IM (rnd) == GMP_RNDD || s1 != s2)
            mpc_conj (z, z, MPC_RNDNN);
          goto end;
        }

      /* x^y is real when:
         (a) x is real and y is integer
         (b) x is real non-negative and y is real */
      if (y_real && (mpfr_integer_p (MPC_RE(y)) ||
                     mpfr_cmp_ui (MPC_RE(x), 0) >= 0))
        {
          int s1, s2;
          s1 = mpfr_signbit (MPC_RE (y));
          s2 = mpfr_signbit (MPC_IM (x));

          ret = mpfr_pow (MPC_RE(z), MPC_RE(x), MPC_RE(y), MPC_RND_RE(rnd));
          ret = MPC_INEX(ret, mpfr_set_ui (MPC_IM(z), 0, MPC_RND_IM(rnd)));

          /* the sign of the zero imaginary part is known in some cases
             (see algorithm.tex). In such cases we have (x +s*0i)^(y+/-0i)
             = x^y + s*sign(y)*0i where s = +/-1.
             We extend here this rule to fix the sign of the zero part.

             Note that the sign must also be set explicitly when rnd=RNDD
             because mpfr_set_ui(z_i, 0, rnd) always sets z_i to +0.
          */
          if (MPC_RND_IM(rnd) == GMP_RNDD || s1 != s2)
            mpfr_neg (MPC_IM(z), MPC_IM(z), MPC_RND_IM(rnd));
          goto end;
        }

      /* (-1)^(n+I*t) is real for n integer and t real */
      if (mpfr_cmp_si (MPC_RE(x), -1) == 0 && mpfr_integer_p (MPC_RE(y)))
        z_real = 1;

      /* for x real, x^y is imaginary when:
         (a) x is negative and y is half-an-integer
         (b) x = -1 and Re(y) is half-an-integer
      */
      if (mpfr_cmp_ui (MPC_RE(x), 0) < 0 && is_odd (MPC_RE(y), 1) &&
          (y_real || mpfr_cmp_si (MPC_RE(x), -1) == 0))
        z_imag = 1;
    }
  else /* x non real */
    /* I^(t*I) and (-I)^(t*I) are real for t real,
       I^(n+t*I) and (-I)^(n+t*I) are real for n even and t real, and
       I^(n+t*I) and (-I)^(n+t*I) are imaginary for n odd and t real
       (s*I)^n is real for n even and imaginary for n odd */
    if ((mpc_cmp_si_si (x, 0, 1) == 0 || mpc_cmp_si_si (x, 0, -1) == 0 ||
         (mpfr_cmp_ui (MPC_RE(x), 0) == 0 && y_real)) &&
        mpfr_integer_p (MPC_RE(y)))
      { /* x is I or -I, and Re(y) is an integer */
        if (is_odd (MPC_RE(y), 0))
          z_imag = 1; /* Re(y) odd: z is imaginary */
        else
          z_real = 1; /* Re(y) even: z is real */
      }
    else /* (t+/-t*I)^(2n) is imaginary for n odd and real for n even */
      if (mpfr_cmpabs (MPC_RE(x), MPC_IM(x)) == 0 && y_real &&
          mpfr_integer_p (MPC_RE(y)) && is_odd (MPC_RE(y), 0) == 0)
        {
          if (is_odd (MPC_RE(y), -1)) /* y/2 is odd */
            z_imag = 1;
          else
            z_real = 1;
        }

  /* first bound |Re(y log(x))|, |Im(y log(x)| < 2^q */
  mpc_init2 (t, 64);
  mpc_log (t, x, MPC_RNDNN);
  mpc_mul (t, t, y, MPC_RNDNN);

  /* the default maximum exponent for MPFR is emax=2^30-1, thus if
     t > log(2^emax) = emax*log(2), then exp(t) will overflow */
  if (mpfr_cmp_ui_2exp (MPC_RE(t), 372130558, 1) > 0)
    goto overflow;

  /* the default minimum exponent for MPFR is emin=-2^30+1, thus the
     smallest representable value is 2^(emin-1), and if
     t < log(2^(emin-1)) = (emin-1)*log(2), then exp(t) will underflow */
  if (mpfr_cmp_si_2exp (MPC_RE(t), -372130558, 1) < 0)
    goto underflow;

  q = mpfr_get_exp (MPC_RE(t)) > 0 ? mpfr_get_exp (MPC_RE(t)) : 0;
  if (mpfr_get_exp (MPC_IM(t)) > (mp_exp_t) q)
    q = mpfr_get_exp (MPC_IM(t));

  pr = mpfr_get_prec (MPC_RE(z));
  pi = mpfr_get_prec (MPC_IM(z));
  p = (pr > pi) ? pr : pi;
  p += 11; /* experimentally, seems to give less than 10% of failures in
              Ziv's strategy */
  mpc_init2 (u, p);
  pr += MPC_RND_RE(rnd) == GMP_RNDN;
  pi += MPC_RND_IM(rnd) == GMP_RNDN;
  maxprec = MPFR_PREC(MPC_RE(z));
  if (MPFR_PREC(MPC_IM(z)) > maxprec)
    maxprec = MPFR_PREC(MPC_IM(z));
  for (loop = 0;; loop++)
    {
      mp_exp_t dr, di;

      if (p + q > 64) /* otherwise we reuse the initial approximation
                         t of y*log(x), avoiding two computations */
        {
          mpc_set_prec (t, p + q);
          mpc_log (t, x, MPC_RNDNN);
          mpc_mul (t, t, y, MPC_RNDNN);
        }
      mpc_exp (u, t, MPC_RNDNN);
      /* Since the error bound is global, we have to take into account the
         exponent difference between the real and imaginary parts. We assume
         either the real or the imaginary part of u is not zero.
      */
      dr = mpfr_zero_p (MPC_RE(u)) ? mpfr_get_exp (MPC_IM(u))
        : mpfr_get_exp (MPC_RE(u));
      di = mpfr_zero_p (MPC_IM(u)) ? dr : mpfr_get_exp (MPC_IM(u));
      if (dr > di)
        {
          di = dr - di;
          dr = 0;
        }
      else
        {
          dr = di - dr;
          di = 0;
        }
      /* the term -3 takes into account the factor 4 in the complex error
         (see algorithms.tex) plus one due to the exponent difference: if
         z = a + I*b, where the relative error on z is at most 2^(-p), and
         EXP(a) = EXP(b) + k, the relative error on b is at most 2^(k-p) */
      if ((z_imag || mpfr_can_round (MPC_RE(u), p - 3 - dr, GMP_RNDN, GMP_RNDZ, pr)) &&
          (z_real || mpfr_can_round (MPC_IM(u), p - 3 - di, GMP_RNDN, GMP_RNDZ, pi)))
        break;

      /* if Re(u) is not known to be zero, assume it is a normal number, i.e.,
         neither zero, Inf or NaN, otherwise we might enter an infinite loop */
      MPC_ASSERT (z_imag || mpfr_number_p (MPC_RE(u)));
      /* idem for Im(u) */
      MPC_ASSERT (z_real || mpfr_number_p (MPC_IM(u)));

      if (ret == -2) /* we did not yet call mpc_pow_exact, or it aborted
                        because intermediate computations had > maxprec bits */
        {
          /* check exact cases (see algorithms.tex) */
          if (y_real)
            {
              maxprec *= 2;
              ret = mpc_pow_exact (z, x, MPC_RE(y), rnd, maxprec);
              if (ret != -1 && ret != -2)
                goto exact;
            }
          p += dr + di + 64;
        }
      else
        p += p / 2;
      mpc_set_prec (t, p + q);
      mpc_set_prec (u, p);
    }

  if (z_real)
    {
      /* When the result is real (see algorithm.tex for details),
         Im(x^y) =
         + sign(imag(y))*0i,               if |x| > 1
         + sign(imag(x))*sign(real(y))*0i, if |x| = 1
         - sign(imag(y))*0i,               if |x| < 1
      */
      mpfr_t n;
      int inex, cx1;
      int sign_zi;
      /* cx1 < 0 if |x| < 1
         cx1 = 0 if |x| = 1
         cx1 > 0 if |x| > 1
      */
      mpfr_init (n);
      inex = mpc_norm (n, x, GMP_RNDN);
      cx1 = mpfr_cmp_ui (n, 1);
      if (cx1 == 0 && inex != 0)
        cx1 = -inex;

      sign_zi = (cx1 < 0 && mpfr_signbit (MPC_IM (y)) == 0)
        || (cx1 == 0
            && mpfr_signbit (MPC_IM (x)) != mpfr_signbit (MPC_RE (y)))
        || (cx1 > 0 && mpfr_signbit (MPC_IM (y)));

      ret = mpfr_set (MPC_RE(z), MPC_RE(u), MPC_RND_RE(rnd));
      /* warning: mpfr_set_ui does not set Im(z) to -0 if Im(rnd) = RNDD */
      ret = MPC_INEX (ret, mpfr_set_ui (MPC_IM (z), 0, MPC_RND_IM (rnd)));

      if (MPC_RND_IM (rnd) == GMP_RNDD || sign_zi)
        mpc_conj (z, z, MPC_RNDNN);

      mpfr_clear (n);
    }
  else if (z_imag)
    {
      ret = mpfr_set (MPC_IM(z), MPC_IM(u), MPC_RND_IM(rnd));
      ret = MPC_INEX(mpfr_set_ui (MPC_RE(z), 0, MPC_RND_RE(rnd)), ret);
    }
  else
    ret = mpc_set (z, u, rnd);
 exact:
  mpc_clear (t);
  mpc_clear (u);

 end:
  return ret;

 underflow:
  /* If we have an underflow, we know that |z| is too small to be
     represented, but depending on arg(z), we should return +/-0 +/- I*0.
     We assume t is the approximation of y*log(x), thus we want
     exp(t) = exp(Re(t))+exp(I*Im(t)).
     FIXME: this part of code is not 100% rigorous, since we don't consider
     rounding errors.
  */
  mpc_init2 (u, 64);
  mpfr_const_pi (MPC_RE(u), GMP_RNDN);
  mpfr_div_2exp (MPC_RE(u), MPC_RE(u), 1, GMP_RNDN); /* Pi/2 */
  mpfr_remquo (MPC_RE(u), &Q, MPC_IM(t), MPC_RE(u), GMP_RNDN);
  if (mpfr_sgn (MPC_RE(u)) < 0)
    Q--; /* corresponds to positive remainder */
  mpfr_set_ui (MPC_RE(z), 0, GMP_RNDN);
  mpfr_set_ui (MPC_IM(z), 0, GMP_RNDN);
  switch (Q & 3)
    {
    case 0: /* first quadrant: round to (+0 +0) */
      ret = MPC_INEX(-1, -1);
      break;
    case 1: /* second quadrant: round to (-0 +0) */
      mpfr_neg (MPC_RE(z), MPC_RE(z), GMP_RNDN);
      ret = MPC_INEX(1, -1);
      break;
    case 2: /* third quadrant: round to (-0 -0) */
      mpfr_neg (MPC_RE(z), MPC_RE(z), GMP_RNDN);
      mpfr_neg (MPC_IM(z), MPC_IM(z), GMP_RNDN);
      ret = MPC_INEX(1, 1);
      break;
    case 3: /* fourth quadrant: round to (+0 -0) */
      mpfr_neg (MPC_IM(z), MPC_IM(z), GMP_RNDN);
      ret = MPC_INEX(-1, 1);
      break;
    }
  goto clear_t_and_u;

 overflow:
  /* If we have an overflow, we know that |z| is too large to be
     represented, but depending on arg(z), we should return +/-Inf +/- I*Inf.
     We assume t is the approximation of y*log(x), thus we want
     exp(t) = exp(Re(t))+exp(I*Im(t)).
     FIXME: this part of code is not 100% rigorous, since we don't consider
     rounding errors.
  */
  mpc_init2 (u, 64);
  mpfr_const_pi (MPC_RE(u), GMP_RNDN);
  mpfr_div_2exp (MPC_RE(u), MPC_RE(u), 1, GMP_RNDN); /* Pi/2 */
  /* the quotient is rounded to the nearest integer in mpfr_remquo */
  mpfr_remquo (MPC_RE(u), &Q, MPC_IM(t), MPC_RE(u), GMP_RNDN);
  if (mpfr_sgn (MPC_RE(u)) < 0)
    Q--; /* corresponds to positive remainder */
  switch (Q & 3)
    {
    case 0: /* first quadrant */
      mpfr_set_inf (MPC_RE(z), 1);
      mpfr_set_inf (MPC_IM(z), 1);
      ret = MPC_INEX(1, 1);
      break;
    case 1: /* second quadrant */
      mpfr_set_inf (MPC_RE(z), -1);
      mpfr_set_inf (MPC_IM(z), 1);
      ret = MPC_INEX(-1, 1);
      break;
    case 2: /* third quadrant */
      mpfr_set_inf (MPC_RE(z), -1);
      mpfr_set_inf (MPC_IM(z), -1);
      ret = MPC_INEX(-1, -1);
      break;
    case 3: /* fourth quadrant */
      mpfr_set_inf (MPC_RE(z), 1);
      mpfr_set_inf (MPC_IM(z), -1);
      ret = MPC_INEX(1, -1);
      break;
    }

 clear_t_and_u:
  mpc_clear (t);
  mpc_clear (u);
  return ret;
}
예제 #11
0
파일: tsqr.c 프로젝트: Distrotech/mpc
static void
cmpsqr (mpc_srcptr x, mpc_rnd_t rnd)
   /* computes the square of x with the specific function or by simple     */
   /* multiplication using the rounding mode rnd and compares the results  */
   /* and return values.                                                   */
   /* In our current test suite, the real and imaginary parts of x have    */
   /* the same precision, and we use this precision also for the result.   */
   /* Furthermore, we check whether computing the square in the same       */
   /* place yields the same result.                                        */
   /* We also compute the result with four times the precision and check   */
   /* whether the rounding is correct. Error reports in this part of the   */
   /* algorithm might still be wrong, though, since there are two          */
   /* consecutive roundings.                                               */
{
  mpc_t z, t, u;
  int   inexact_z, inexact_t;

  mpc_init2 (z, MPC_MAX_PREC (x));
  mpc_init2 (t, MPC_MAX_PREC (x));
  mpc_init2 (u, 4 * MPC_MAX_PREC (x));

  inexact_z = mpc_sqr (z, x, rnd);
  inexact_t = mpc_mul (t, x, x, rnd);

  if (mpc_cmp (z, t))
    {
      fprintf (stderr, "sqr and mul differ for rnd=(%s,%s) \nx=",
               mpfr_print_rnd_mode(MPC_RND_RE(rnd)),
               mpfr_print_rnd_mode(MPC_RND_IM(rnd)));
      mpc_out_str (stderr, 2, 0, x, MPC_RNDNN);
      fprintf (stderr, "\nmpc_sqr gives ");
      mpc_out_str (stderr, 2, 0, z, MPC_RNDNN);
      fprintf (stderr, "\nmpc_mul gives ");
      mpc_out_str (stderr, 2, 0, t, MPC_RNDNN);
      fprintf (stderr, "\n");
      exit (1);
    }
  if (inexact_z != inexact_t)
    {
      fprintf (stderr, "The return values of sqr and mul differ for rnd=(%s,%s) \nx=  ",
               mpfr_print_rnd_mode(MPC_RND_RE(rnd)),
               mpfr_print_rnd_mode(MPC_RND_IM(rnd)));
      mpc_out_str (stderr, 2, 0, x, MPC_RNDNN);
      fprintf (stderr, "\nx^2=");
      mpc_out_str (stderr, 2, 0, z, MPC_RNDNN);
      fprintf (stderr, "\nmpc_sqr gives %i", inexact_z);
      fprintf (stderr, "\nmpc_mul gives %i", inexact_t);
      fprintf (stderr, "\n");
      exit (1);
    }

  mpc_set (t, x, MPC_RNDNN);
  inexact_t = mpc_sqr (t, t, rnd);
  if (mpc_cmp (z, t))
    {
      fprintf (stderr, "sqr and sqr in place differ for rnd=(%s,%s) \nx=",
               mpfr_print_rnd_mode(MPC_RND_RE(rnd)),
               mpfr_print_rnd_mode(MPC_RND_IM(rnd)));
      mpc_out_str (stderr, 2, 0, x, MPC_RNDNN);
      fprintf (stderr, "\nmpc_sqr          gives ");
      mpc_out_str (stderr, 2, 0, z, MPC_RNDNN);
      fprintf (stderr, "\nmpc_sqr in place gives ");
      mpc_out_str (stderr, 2, 0, t, MPC_RNDNN);
      fprintf (stderr, "\n");
      exit (1);
    }
  if (inexact_z != inexact_t)
    {
      fprintf (stderr, "The return values of sqr and sqr in place differ for rnd=(%s,%s) \nx=  ",
               mpfr_print_rnd_mode(MPC_RND_RE(rnd)),
               mpfr_print_rnd_mode(MPC_RND_IM(rnd)));
      mpc_out_str (stderr, 2, 0, x, MPC_RNDNN);
      fprintf (stderr, "\nx^2=");
      mpc_out_str (stderr, 2, 0, z, MPC_RNDNN);
      fprintf (stderr, "\nmpc_sqr          gives %i", inexact_z);
      fprintf (stderr, "\nmpc_sqr in place gives %i", inexact_t);
      fprintf (stderr, "\n");
      exit (1);
    }

  mpc_sqr (u, x, rnd);
  mpc_set (t, u, rnd);
  if (mpc_cmp (z, t))
    {
      fprintf (stderr, "rounding in sqr might be incorrect for rnd=(%s,%s) \nx=",
               mpfr_print_rnd_mode(MPC_RND_RE(rnd)),
               mpfr_print_rnd_mode(MPC_RND_IM(rnd)));
      mpc_out_str (stderr, 2, 0, x, MPC_RNDNN);
      fprintf (stderr, "\nmpc_sqr                     gives ");
      mpc_out_str (stderr, 2, 0, z, MPC_RNDNN);
      fprintf (stderr, "\nmpc_sqr quadruple precision gives ");
      mpc_out_str (stderr, 2, 0, u, MPC_RNDNN);
      fprintf (stderr, "\nand is rounded to                 ");
      mpc_out_str (stderr, 2, 0, t, MPC_RNDNN);
      fprintf (stderr, "\n");
      exit (1);
    }

  mpc_clear (z);
  mpc_clear (t);
  mpc_clear (u);
}
예제 #12
0
mpcomplex operator*(const mpcomplex& a, const mpcomplex& b) {
    mpc_t value;
    mpc_init3( value , a.mpc_prec, a.mpc_prec );
    mpc_mul(value, a.mpc_val, b.mpc_val, a.default_rnd);
    return mpcomplex(value);
}
예제 #13
0
mpcomplex& mpcomplex::operator*=( const mpcomplex& a) {
    mpc_mul(mpc_val, mpc_val, a.mpc_val, default_rnd);
    return *this;
}
예제 #14
0
mpcomplex& mpcomplex::square2() {
    mpc_mul(mpc_val, mpc_val, mpc_val, default_rnd);
    return *this;
}
예제 #15
0
파일: hilbert.c 프로젝트: blynn/pbc
// See Cohen; my D is -D in his notation.
size_t pbc_hilbert(mpz_t **arr, int D) {
  int a, b;
  int t;
  int B = (int)floor(sqrt((double) D / 3.0));
  mpc_t alpha;
  mpc_t j;
  mpf_t sqrtD;
  mpf_t f0;
  darray_t Pz;
  mpc_t z0, z1, z2;
  double d = 1.0;
  int h = 1;
  int jcount = 1;

  // Compute required precision.
  b = D % 2;
  for (;;) {
    t = (b*b + D) / 4;
    a = b;
    if (a <= 1) {
      a = 1;
      goto step535_4;
    }
step535_3:
    if (!(t % a)) {
      jcount++;
      if ((a == b) || (a*a == t) || !b) {
        d += 1.0 / ((double) a);
        h++;
      } else {
        d += 2.0 / ((double) a);
        h+=2;
      }
    }
step535_4:
    a++;
    if (a * a <= t) {
      goto step535_3;
    } else {
      b += 2;
      if (b > B) break;
    }
  }

  //printf("modulus: %f\n", exp(3.14159265358979 * sqrt(D)) * d * 0.5);
  d *= sqrt(D) * 3.14159265358979 / log(2);
  precision_init((int)(d + 34));
  pbc_info("class number %d, %d bit precision", h, (int) d + 34);

  darray_init(Pz);
  mpc_init(alpha);
  mpc_init(j);
  mpc_init(z0);
  mpc_init(z1);
  mpc_init(z2);
  mpf_init(sqrtD);
  mpf_init(f0);

  mpf_sqrt_ui(sqrtD, D);
  b = D % 2;
  h = 0;
  for (;;) {
    t = (b*b + D) / 4;
    if (b > 1) {
      a = b;
    } else {
      a = 1;
    }
step3:
    if (t % a) {
step4:
      a++;
      if (a * a <= t) goto step3;
    } else {
      // a, b, t/a are coeffs of an appropriate primitive reduced positive
      // definite form.
      // Compute j((-b + sqrt{-D})/(2a)).
      h++;
      pbc_info("[%d/%d] a b c = %d %d %d", h, jcount, a, b, t/a);
      mpf_set_ui(f0, 1);
      mpf_div_ui(f0, f0, 2 * a);
      mpf_mul(mpc_im(alpha), sqrtD, f0);
      mpf_mul_ui(f0, f0, b);
      mpf_neg(mpc_re(alpha), f0);

      compute_j(j, alpha);
if (0) {
  int i;
  for (i=Pz->count - 1; i>=0; i--) {
    printf("P %d = ", i);
    mpc_out_str(stdout, 10, 4, Pz->item[i]);
    printf("\n");
  }
}
      if (a == b || a * a == t || !b) {
        // P *= X - j
        int i, n;
        mpc_ptr p0;
        p0 = (mpc_ptr) pbc_malloc(sizeof(mpc_t));
        mpc_init(p0);
        mpc_neg(p0, j);
        n = Pz->count;
        if (n) {
          mpc_set(z1, Pz->item[0]);
          mpc_add(Pz->item[0], z1, p0);
          for (i=1; i<n; i++) {
            mpc_mul(z0, z1, p0);
            mpc_set(z1, Pz->item[i]);
            mpc_add(Pz->item[i], z1, z0);
          }
          mpc_mul(p0, p0, z1);
        }
        darray_append(Pz, p0);
      } else {
        // P *= X^2 - 2 Re(j) X + |j|^2
        int i, n;
        mpc_ptr p0, p1;
        p0 = (mpc_ptr) pbc_malloc(sizeof(mpc_t));
        p1 = (mpc_ptr) pbc_malloc(sizeof(mpc_t));
        mpc_init(p0);
        mpc_init(p1);
        // p1 = - 2 Re(j)
        mpf_mul_ui(f0, mpc_re(j), 2);
        mpf_neg(f0, f0);
        mpf_set(mpc_re(p1), f0);
        // p0 = |j|^2
        mpf_mul(f0, mpc_re(j), mpc_re(j));
        mpf_mul(mpc_re(p0), mpc_im(j), mpc_im(j));
        mpf_add(mpc_re(p0), mpc_re(p0), f0);
        n = Pz->count;
        if (!n) {
        } else if (n == 1) {
          mpc_set(z1, Pz->item[0]);
          mpc_add(Pz->item[0], z1, p1);
          mpc_mul(p1, z1, p1);
          mpc_add(p1, p1, p0);
          mpc_mul(p0, p0, z1);
        } else {
          mpc_set(z2, Pz->item[0]);
          mpc_set(z1, Pz->item[1]);
          mpc_add(Pz->item[0], z2, p1);
          mpc_mul(z0, z2, p1);
          mpc_add(Pz->item[1], z1, z0);
          mpc_add(Pz->item[1], Pz->item[1], p0);
          for (i=2; i<n; i++) {
            mpc_mul(z0, z1, p1);
            mpc_mul(alpha, z2, p0);
            mpc_set(z2, z1);
            mpc_set(z1, Pz->item[i]);
            mpc_add(alpha, alpha, z0);
            mpc_add(Pz->item[i], z1, alpha);
          }
          mpc_mul(z0, z2, p0);
          mpc_mul(p1, p1, z1);
          mpc_add(p1, p1, z0);
          mpc_mul(p0, p0, z1);
        }
        darray_append(Pz, p1);
        darray_append(Pz, p0);
      }
      goto step4;
    }
    b+=2;
    if (b > B) break;
  }

  // Round polynomial and assign.
  int k = 0;
  {
    *arr = pbc_malloc(sizeof(mpz_t) * (Pz->count + 1));
    int i;
    for (i=Pz->count - 1; i>=0; i--) {
      if (mpf_sgn(mpc_re(Pz->item[i])) < 0) {
        mpf_set_d(f0, -0.5);
      } else {
        mpf_set_d(f0, 0.5);
      }
      mpf_add(f0, f0, mpc_re(Pz->item[i]));
      mpz_init((*arr)[k]);
      mpz_set_f((*arr)[k], f0);
      k++;
      mpc_clear(Pz->item[i]);
      pbc_free(Pz->item[i]);
    }
    mpz_init((*arr)[k]);
    mpz_set_ui((*arr)[k], 1);
    k++;
  }
  darray_clear(Pz);
  mpc_clear(z0);
  mpc_clear(z1);
  mpc_clear(z2);
  mpf_clear(f0);
  mpf_clear(sqrtD);
  mpc_clear(alpha);
  mpc_clear(j);

  precision_clear();
  return k;
}
예제 #16
0
파일: pow.c 프로젝트: tomi500/MPC
/* Put in z the value of x^y, rounded according to 'rnd'.
   Return the inexact flag in [0, 10]. */
int
mpc_pow (mpc_ptr z, mpc_srcptr x, mpc_srcptr y, mpc_rnd_t rnd)
{
  int ret = -2, loop, x_real, x_imag, y_real, z_real = 0, z_imag = 0;
  mpc_t t, u;
  mpfr_prec_t p, pr, pi, maxprec;
  int saved_underflow, saved_overflow;
  
  /* save the underflow or overflow flags from MPFR */
  saved_underflow = mpfr_underflow_p ();
  saved_overflow = mpfr_overflow_p ();

  x_real = mpfr_zero_p (mpc_imagref(x));
  y_real = mpfr_zero_p (mpc_imagref(y));

  if (y_real && mpfr_zero_p (mpc_realref(y))) /* case y zero */
    {
      if (x_real && mpfr_zero_p (mpc_realref(x)))
        {
          /* we define 0^0 to be (1, +0) since the real part is
             coherent with MPFR where 0^0 gives 1, and the sign of the
             imaginary part cannot be determined                       */
          mpc_set_ui_ui (z, 1, 0, MPC_RNDNN);
          return 0;
        }
      else /* x^0 = 1 +/- i*0 even for x=NaN see algorithms.tex for the
              sign of zero */
        {
          mpfr_t n;
          int inex, cx1;
          int sign_zi;
          /* cx1 < 0 if |x| < 1
             cx1 = 0 if |x| = 1
             cx1 > 0 if |x| > 1
          */
          mpfr_init (n);
          inex = mpc_norm (n, x, MPFR_RNDN);
          cx1 = mpfr_cmp_ui (n, 1);
          if (cx1 == 0 && inex != 0)
            cx1 = -inex;

          sign_zi = (cx1 < 0 && mpfr_signbit (mpc_imagref (y)) == 0)
            || (cx1 == 0
                && mpfr_signbit (mpc_imagref (x)) != mpfr_signbit (mpc_realref (y)))
            || (cx1 > 0 && mpfr_signbit (mpc_imagref (y)));

          /* warning: mpc_set_ui_ui does not set Im(z) to -0 if Im(rnd)=RNDD */
          ret = mpc_set_ui_ui (z, 1, 0, rnd);

          if (MPC_RND_IM (rnd) == MPFR_RNDD || sign_zi)
            mpc_conj (z, z, MPC_RNDNN);

          mpfr_clear (n);
          return ret;
        }
    }

  if (!mpc_fin_p (x) || !mpc_fin_p (y))
    {
      /* special values: exp(y*log(x)) */
      mpc_init2 (u, 2);
      mpc_log (u, x, MPC_RNDNN);
      mpc_mul (u, u, y, MPC_RNDNN);
      ret = mpc_exp (z, u, rnd);
      mpc_clear (u);
      goto end;
    }

  if (x_real) /* case x real */
    {
      if (mpfr_zero_p (mpc_realref(x))) /* x is zero */
        {
          /* special values: exp(y*log(x)) */
          mpc_init2 (u, 2);
          mpc_log (u, x, MPC_RNDNN);
          mpc_mul (u, u, y, MPC_RNDNN);
          ret = mpc_exp (z, u, rnd);
          mpc_clear (u);
          goto end;
        }

      /* Special case 1^y = 1 */
      if (mpfr_cmp_ui (mpc_realref(x), 1) == 0)
        {
          int s1, s2;
          s1 = mpfr_signbit (mpc_realref (y));
          s2 = mpfr_signbit (mpc_imagref (x));

          ret = mpc_set_ui (z, +1, rnd);
          /* the sign of the zero imaginary part is known in some cases (see
             algorithm.tex). In such cases we have
             (x +s*0i)^(y+/-0i) = x^y + s*sign(y)*0i
             where s = +/-1.  We extend here this rule to fix the sign of the
             zero part.

             Note that the sign must also be set explicitly when rnd=RNDD
             because mpfr_set_ui(z_i, 0, rnd) always sets z_i to +0.
          */
          if (MPC_RND_IM (rnd) == MPFR_RNDD || s1 != s2)
            mpc_conj (z, z, MPC_RNDNN);
          goto end;
        }

      /* x^y is real when:
         (a) x is real and y is integer
         (b) x is real non-negative and y is real */
      if (y_real && (mpfr_integer_p (mpc_realref(y)) ||
                     mpfr_cmp_ui (mpc_realref(x), 0) >= 0))
        {
          int s1, s2;
          s1 = mpfr_signbit (mpc_realref (y));
          s2 = mpfr_signbit (mpc_imagref (x));

          ret = mpfr_pow (mpc_realref(z), mpc_realref(x), mpc_realref(y), MPC_RND_RE(rnd));
          ret = MPC_INEX(ret, mpfr_set_ui (mpc_imagref(z), 0, MPC_RND_IM(rnd)));

          /* the sign of the zero imaginary part is known in some cases
             (see algorithm.tex). In such cases we have (x +s*0i)^(y+/-0i)
             = x^y + s*sign(y)*0i where s = +/-1.
             We extend here this rule to fix the sign of the zero part.

             Note that the sign must also be set explicitly when rnd=RNDD
             because mpfr_set_ui(z_i, 0, rnd) always sets z_i to +0.
          */
          if (MPC_RND_IM(rnd) == MPFR_RNDD || s1 != s2)
            mpfr_neg (mpc_imagref(z), mpc_imagref(z), MPC_RND_IM(rnd));
          goto end;
        }

      /* (-1)^(n+I*t) is real for n integer and t real */
      if (mpfr_cmp_si (mpc_realref(x), -1) == 0 && mpfr_integer_p (mpc_realref(y)))
        z_real = 1;

      /* for x real, x^y is imaginary when:
         (a) x is negative and y is half-an-integer
         (b) x = -1 and Re(y) is half-an-integer
      */
      if ((mpfr_cmp_ui (mpc_realref(x), 0) < 0) && is_odd (mpc_realref(y), 1)
         && (y_real || mpfr_cmp_si (mpc_realref(x), -1) == 0))
        z_imag = 1;
    }
  else /* x non real */
    /* I^(t*I) and (-I)^(t*I) are real for t real,
       I^(n+t*I) and (-I)^(n+t*I) are real for n even and t real, and
       I^(n+t*I) and (-I)^(n+t*I) are imaginary for n odd and t real
       (s*I)^n is real for n even and imaginary for n odd */
    if ((mpc_cmp_si_si (x, 0, 1) == 0 || mpc_cmp_si_si (x, 0, -1) == 0 ||
         (mpfr_cmp_ui (mpc_realref(x), 0) == 0 && y_real)) &&
        mpfr_integer_p (mpc_realref(y)))
      { /* x is I or -I, and Re(y) is an integer */
        if (is_odd (mpc_realref(y), 0))
          z_imag = 1; /* Re(y) odd: z is imaginary */
        else
          z_real = 1; /* Re(y) even: z is real */
      }
    else /* (t+/-t*I)^(2n) is imaginary for n odd and real for n even */
      if (mpfr_cmpabs (mpc_realref(x), mpc_imagref(x)) == 0 && y_real &&
          mpfr_integer_p (mpc_realref(y)) && is_odd (mpc_realref(y), 0) == 0)
        {
          if (is_odd (mpc_realref(y), -1)) /* y/2 is odd */
            z_imag = 1;
          else
            z_real = 1;
        }

  pr = mpfr_get_prec (mpc_realref(z));
  pi = mpfr_get_prec (mpc_imagref(z));
  p = (pr > pi) ? pr : pi;
  p += 12; /* experimentally, seems to give less than 10% of failures in
              Ziv's strategy; probably wrong now since q is not computed */
  if (p < 64)
    p = 64;
  mpc_init2 (u, p);
  mpc_init2 (t, p);
  pr += MPC_RND_RE(rnd) == MPFR_RNDN;
  pi += MPC_RND_IM(rnd) == MPFR_RNDN;
  maxprec = MPC_MAX_PREC (z);
  x_imag = mpfr_zero_p (mpc_realref(x));
  for (loop = 0;; loop++)
    {
      int ret_exp;
      mpfr_exp_t dr, di;
      mpfr_prec_t q;

      mpc_log (t, x, MPC_RNDNN);
      mpc_mul (t, t, y, MPC_RNDNN);

      /* Compute q such that |Re (y log x)|, |Im (y log x)| < 2^q.
         We recompute it at each loop since we might get different
         bounds if the precision is not enough. */
      q = mpfr_get_exp (mpc_realref(t)) > 0 ? mpfr_get_exp (mpc_realref(t)) : 0;
      if (mpfr_get_exp (mpc_imagref(t)) > (mpfr_exp_t) q)
        q = mpfr_get_exp (mpc_imagref(t));

      mpfr_clear_overflow ();
      mpfr_clear_underflow ();
      ret_exp = mpc_exp (u, t, MPC_RNDNN);
      if (mpfr_underflow_p () || mpfr_overflow_p ()) {
         /* under- and overflow flags are set by mpc_exp */
         mpc_set (z, u, MPC_RNDNN);
         ret = ret_exp;
         goto exact;
      }

      /* Since the error bound is global, we have to take into account the
         exponent difference between the real and imaginary parts. We assume
         either the real or the imaginary part of u is not zero.
      */
      dr = mpfr_zero_p (mpc_realref(u)) ? mpfr_get_exp (mpc_imagref(u))
        : mpfr_get_exp (mpc_realref(u));
      di = mpfr_zero_p (mpc_imagref(u)) ? dr : mpfr_get_exp (mpc_imagref(u));
      if (dr > di)
        {
          di = dr - di;
          dr = 0;
        }
      else
        {
          dr = di - dr;
          di = 0;
        }
      /* the term -3 takes into account the factor 4 in the complex error
         (see algorithms.tex) plus one due to the exponent difference: if
         z = a + I*b, where the relative error on z is at most 2^(-p), and
         EXP(a) = EXP(b) + k, the relative error on b is at most 2^(k-p) */
      if ((z_imag || (p > q + 3 + dr && mpfr_can_round (mpc_realref(u), p - q - 3 - dr, MPFR_RNDN, MPFR_RNDZ, pr))) &&
          (z_real || (p > q + 3 + di && mpfr_can_round (mpc_imagref(u), p - q - 3 - di, MPFR_RNDN, MPFR_RNDZ, pi))))
        break;

      /* if Re(u) is not known to be zero, assume it is a normal number, i.e.,
         neither zero, Inf or NaN, otherwise we might enter an infinite loop */
      MPC_ASSERT (z_imag || mpfr_number_p (mpc_realref(u)));
      /* idem for Im(u) */
      MPC_ASSERT (z_real || mpfr_number_p (mpc_imagref(u)));

      if (ret == -2) /* we did not yet call mpc_pow_exact, or it aborted
                        because intermediate computations had > maxprec bits */
        {
          /* check exact cases (see algorithms.tex) */
          if (y_real)
            {
              maxprec *= 2;
              ret = mpc_pow_exact (z, x, mpc_realref(y), rnd, maxprec);
              if (ret != -1 && ret != -2)
                goto exact;
            }
          p += dr + di + 64;
        }
      else
        p += p / 2;
      mpc_set_prec (t, p);
      mpc_set_prec (u, p);
    }

  if (z_real)
    {
      /* When the result is real (see algorithm.tex for details),
         Im(x^y) =
         + sign(imag(y))*0i,               if |x| > 1
         + sign(imag(x))*sign(real(y))*0i, if |x| = 1
         - sign(imag(y))*0i,               if |x| < 1
      */
      mpfr_t n;
      int inex, cx1;
      int sign_zi, sign_rex, sign_imx;
      /* cx1 < 0 if |x| < 1
         cx1 = 0 if |x| = 1
         cx1 > 0 if |x| > 1
      */

      sign_rex = mpfr_signbit (mpc_realref (x));
      sign_imx = mpfr_signbit (mpc_imagref (x));
      mpfr_init (n);
      inex = mpc_norm (n, x, MPFR_RNDN);
      cx1 = mpfr_cmp_ui (n, 1);
      if (cx1 == 0 && inex != 0)
        cx1 = -inex;

      sign_zi = (cx1 < 0 && mpfr_signbit (mpc_imagref (y)) == 0)
        || (cx1 == 0 && sign_imx != mpfr_signbit (mpc_realref (y)))
        || (cx1 > 0 && mpfr_signbit (mpc_imagref (y)));

      /* copy RE(y) to n since if z==y we will destroy Re(y) below */
      mpfr_set_prec (n, mpfr_get_prec (mpc_realref (y)));
      mpfr_set (n, mpc_realref (y), MPFR_RNDN);
      ret = mpfr_set (mpc_realref(z), mpc_realref(u), MPC_RND_RE(rnd));
      if (y_real && (x_real || x_imag))
        {
          /* FIXME: with y_real we assume Im(y) is really 0, which is the case
             for example when y comes from pow_fr, but in case Im(y) is +0 or
             -0, we might get different results */
          mpfr_set_ui (mpc_imagref (z), 0, MPC_RND_IM (rnd));
          fix_sign (z, sign_rex, sign_imx, n);
          ret = MPC_INEX(ret, 0); /* imaginary part is exact */
        }
      else
        {
          ret = MPC_INEX (ret, mpfr_set_ui (mpc_imagref (z), 0, MPC_RND_IM (rnd)));
          /* warning: mpfr_set_ui does not set Im(z) to -0 if Im(rnd) = RNDD */
          if (MPC_RND_IM (rnd) == MPFR_RNDD || sign_zi)
            mpc_conj (z, z, MPC_RNDNN);
        }

      mpfr_clear (n);
    }
  else if (z_imag)
    {
      ret = mpfr_set (mpc_imagref(z), mpc_imagref(u), MPC_RND_IM(rnd));
      /* if z is imaginary and y real, then x cannot be real */
      if (y_real && x_imag)
        {
          int sign_rex = mpfr_signbit (mpc_realref (x));

          /* If z overlaps with y we set Re(z) before checking Re(y) below,
             but in that case y=0, which was dealt with above. */
          mpfr_set_ui (mpc_realref (z), 0, MPC_RND_RE (rnd));
          /* Note: fix_sign only does something when y is an integer,
             then necessarily y = 1 or 3 (mod 4), and in that case the
             sign of Im(x) is irrelevant. */
          fix_sign (z, sign_rex, 0, mpc_realref (y));
          ret = MPC_INEX(0, ret);
        }
      else
        ret = MPC_INEX(mpfr_set_ui (mpc_realref(z), 0, MPC_RND_RE(rnd)), ret);
    }
  else
    ret = mpc_set (z, u, rnd);
 exact:
  mpc_clear (t);
  mpc_clear (u);

  /* restore underflow and overflow flags from MPFR */
  if (saved_underflow)
    mpfr_set_underflow ();
  if (saved_overflow)
    mpfr_set_overflow ();

 end:
  return ret;
}
예제 #17
0
mps_boolean
mps_chebyshev_poly_meval (mps_context * ctx, mps_polynomial * poly, mpc_t x, mpc_t value, rdpe_t error)
{
  long int wp = mpc_get_prec (x);

  /* Lower the working precision in case of limited precision coefficients
   * in the input polynomial. */
  if (poly->prec > 0 && poly->prec < wp)
    wp = poly->prec;

  mps_chebyshev_poly * cpoly = MPS_CHEBYSHEV_POLY (poly);
  int i;

  mpc_t t0, t1, ctmp, ctmp2;
  rdpe_t ax, rtmp, rtmp2;

  mpc_rmod (ax, x);
  rdpe_set (error, rdpe_zero);

  /* Make sure that we have sufficient precision to perform the computation */
  mps_polynomial_raise_data (ctx, poly, wp);

  mpc_init2 (t0, wp);
  mpc_init2 (t1, wp);
  mpc_init2 (ctmp, wp);
  mpc_init2 (ctmp2, wp);

  mpc_set (value, cpoly->mfpc[0]);
  mpc_set_ui (t0, 1U, 0U);
  if (poly->degree == 0)
    {
      return true;
    }

  mpc_set (t1, x);
  mpc_mul (ctmp, cpoly->mfpc[1], x);
  mpc_add_eq (value, ctmp);

  mpc_rmod (rtmp, ctmp);
  rdpe_add_eq (error, rtmp);

  for (i = 2; i <= poly->degree; i++)
    {
      mpc_mul (ctmp, x, t1);
      mpc_mul_eq_ui (ctmp, 2U);
      mpc_rmod (rtmp, ctmp);
      mpc_sub_eq (ctmp, t0);

      mpc_rmod (rtmp2, t0);
      rdpe_add_eq (rtmp, rtmp2);

      mpc_mul (ctmp2, ctmp, cpoly->mfpc[i]);
      mpc_add_eq (value, ctmp2);

      rdpe_mul_eq (rtmp, ax);
      rdpe_add_eq (error, rtmp);

      mpc_set (t0, t1);
      mpc_set (t1, ctmp);
    }

  mpc_clear (t0);
  mpc_clear (t1);
  mpc_clear (ctmp);
  mpc_clear (ctmp2);

  rdpe_set_2dl (rtmp, 2.0, -wp);
  rdpe_mul_eq (error, rtmp);

  return true;
}
예제 #18
0
/**
 * @brief User-defined program for the computation of \f$p\f$, \f$p'\f$. 
 *
 * @param s The current mps_context
 * @param poly The mps_polynomial being solved. 
 * @param root The approximation whose Newton correction shall be computed. 
 * @param corr The output value where the newton correction will be stored. 
 *
 * This sample computes the 'Quadratic polynomial by  
 * means of the relation: p=1+x*p**2, starting with p=1
 */
void 
mps_quadratic_poly_mnewton (mps_context * ctx, mps_polynomial * poly, 
			     mps_approximation * root, mpc_t corr, long int wp)
{
  int i, m, n = poly->degree;
  rdpe_t ap, ax, eps, temp, apeps, atmp, epsilon, drad;
  cdpe_t ctmp;
  mpc_t p, pp, pt, tmp, x;
  mps_boolean again;

  mpc_init2 (p, wp);
  mpc_init2 (pp, wp);
  mpc_init2 (pt, wp);
  mpc_init2 (tmp, wp);

  mpc_init2 (x, wp);
  mps_approximation_get_mvalue (ctx, root, x);
  mps_approximation_get_drad (ctx, root, drad);
  again = mps_approximation_get_again (ctx, root);
  
  rdpe_set_2dl (epsilon, 1.0, 2 - wp);

  m = (int) (log (n + 1.0) / LOG2);
  if ((1 << m) <= n)
    m++;
  rdpe_set (eps, epsilon);
  rdpe_mul_eq_d (eps, (double) 4 * n);
  mpc_get_cdpe (ctmp, x);
  cdpe_mod (ax, ctmp);

  mpc_set_ui (p, 1, 0);
  mpc_set_ui (pp, 0, 0);
  rdpe_set (ap, rdpe_one);
  for (i = 1; i <= m; i++)
    {
      mpc_sqr (tmp, p);
      mpc_mul (pt, x, tmp);
      mpc_add_eq_ui (pt, 1, 0);
      mpc_mul_eq (pp, x);
      mpc_mul_eq (pp, p);
      mpc_mul_eq_ui (pp, 2);
      mpc_add_eq (pp, tmp);
      mpc_set (p, pt);
      rdpe_mul_eq (ap, ax);
      mpc_get_cdpe (ctmp, p);
      cdpe_mod (atmp, ctmp);
      rdpe_add_eq (ap, atmp);
    }
  rdpe_mul_eq (ap, ax);
  mpc_div (corr, p, pp);

  mpc_get_cdpe (ctmp, p);
  cdpe_mod (temp, ctmp);
  rdpe_mul (apeps, ap, eps);
  rdpe_mul_eq_d (apeps, 3.0);
  mps_approximation_set_again (ctx, root, rdpe_gt (temp, apeps));

  rdpe_add (drad, temp, apeps);
  rdpe_mul_eq_d (drad, (double) n);
  mpc_get_cdpe (ctmp, pp);
  cdpe_mod (temp, ctmp);
  rdpe_div_eq (drad, temp);
  if (rdpe_eq (drad, rdpe_zero))
    rdpe_mul (drad, ax, eps);

  mps_approximation_set_drad (ctx, root, drad);
  mps_approximation_set_again (ctx, root, again);

  mpc_clear (tmp);
  mpc_clear (pt);
  mpc_clear (pp);
  mpc_clear (p);
  mpc_clear (x);
}
예제 #19
0
파일: usr_mand.c 프로젝트: akobel/MPSolve
/******************************************************
*              SUBROUTINE MNEWTON_USR                 *   
******************************************************* 
 multiprecision computation
******************************************************/
void
mnewton_usr (mpc_t x, rdpe_t rad, mpc_t corr, mps_boolean * again)
{
  int i, m;
  rdpe_t ap, ax, eps, temp, apeps, atmp;
  cdpe_t ctmp;
  tmpc_t p, pp, pt, tmp;

  tmpc_init2 (p, mpwp);
  tmpc_init2 (pp, mpwp);
  tmpc_init2 (pt, mpwp);
  tmpc_init2 (tmp, mpwp);

  m = (int) (log (n + 1.0) / LOG2);
  if ((1 << m) <= n)
    m++;
  rdpe_set (eps, mp_epsilon);
  rdpe_mul_eq_d (eps, (double) 4 * n);
  mpc_get_cdpe (ctmp, x);
  cdpe_mod (ax, ctmp);

  mpc_set_ui (p, 1, 0);
  mpc_set_ui (pp, 0, 0);
  rdpe_set (ap, rdpe_one);
  for (i = 1; i <= m; i++)
    {
      mpc_sqr (tmp, p);
      mpc_mul (pt, x, tmp);
      mpc_add_eq_ui (pt, 1, 0);
      mpc_mul_eq (pp, x);
      mpc_mul_eq (pp, p);
      mpc_mul_eq_ui (pp, 2);
      mpc_add_eq (pp, tmp);
      mpc_set (p, pt);
      rdpe_mul_eq (ap, ax);
      mpc_get_cdpe (ctmp, p);
      cdpe_mod (atmp, ctmp);
      rdpe_add_eq (ap, atmp);
    }
  rdpe_mul_eq (ap, ax);
  mpc_div (corr, p, pp);

  mpc_get_cdpe (ctmp, p);
  cdpe_mod (temp, ctmp);
  rdpe_mul (apeps, ap, eps);
  rdpe_mul_eq_d (apeps, 3.0);
  *again = rdpe_gt (temp, apeps);

  rdpe_add (rad, temp, apeps);
  rdpe_mul_eq_d (rad, (double) n);
  mpc_get_cdpe (ctmp, pp);
  cdpe_mod (temp, ctmp);
  rdpe_div_eq (rad, temp);
  if (rdpe_eq (rad, rdpe_zero))
    rdpe_mul (rad, ax, eps);

  tmpc_clear (tmp);
  tmpc_clear (pt);
  tmpc_clear (pp);
  tmpc_clear (p);
}
예제 #20
0
파일: UseMpcr.cpp 프로젝트: duhadler/C
void Lib_Mpcr_Mul(MpcrPtr x, MpcrPtr y, MpcrPtr z, long rnd)
{
    mpc_mul( (mpc_ptr) x,  (mpc_ptr) y,  (mpc_ptr) z, (mpc_rnd_t) rnd);
}