void OPViscosityCollisionalE::stream(const double& edt) { //Move the time forward //currentdt += edt; //Now test if we've gone over the step time if (currentdt + edt >= dt) { newG (delG); currentdt += edt - dt; //Now calculate the start of the new delG for (size_t iDim = 0; iDim < NDIM; ++iDim) for (size_t jDim = 0; jDim < NDIM; ++jDim) delG[iDim][jDim] = 0.0; while (currentdt >= dt) { currentdt -= dt; newG(delG); } } else currentdt += edt; }
void OPThermalDiffusionE::stream(const double edt) { //Now test if we've gone over the step time if (currentdt + edt >= dt) { delG += constDelG * (dt - currentdt); delGsp1 += (constDelGsp1 - massFracSp1 * sysMom) * (dt - currentdt); newG(); currentdt += edt - dt; while (currentdt >= dt) { delG = constDelG * dt; delGsp1 = (constDelGsp1 - massFracSp1 * sysMom) * dt; currentdt -= dt; newG(); } //Now calculate the start of the new delG delG = constDelG * currentdt; delGsp1 = (constDelGsp1 - massFracSp1 * sysMom) * currentdt; } else { currentdt += edt; delG += constDelG * edt; delGsp1 += (constDelGsp1 - massFracSp1 * sysMom) * edt; } }
void OPThermalConductivityE::stream(const double& edt) { //Now test if we've gone over the step time if (currentdt + edt >= dt) { delG += constDelG * (dt - currentdt); newG(); currentdt += edt - dt; while (currentdt >= dt) { delG = constDelG * dt; currentdt -= dt; newG(); } //Now calculate the start of the new delG delG = constDelG * currentdt; } else { currentdt += edt; delG += constDelG * edt; } }
Form::Form(QWidget *parent) : game(NULL), // подключение формы QWidget(parent), ui(new Ui::Form) { ui -> setupUi(this); layout = new QVBoxLayout(this); settingsLayout = new QHBoxLayout; QPushButton* newgame = new QPushButton(); QPushButton* exitgame = new QPushButton(); QPixmap newG(":/sprite/new.png"); QPixmap exG(":/sprite/exit.png"); QIcon newGIcon(newG); QIcon exGIcon(exG); newgame -> setIcon(newGIcon); exitgame -> setIcon(exGIcon); newgame -> setIconSize(QSize(304,70)); // загрузка картинки "Новая игра" exitgame -> setIconSize(QSize(290,70)); // загрузка картинки "Выход" connect(newgame, SIGNAL(clicked()), this, SLOT(newGame())); // Если нажата кнопка, то новая игра connect(exitgame, SIGNAL(clicked()), this, SLOT(exitGame())); // Если нажата кнопка, то выход settingsLayout -> addWidget(newgame); settingsLayout -> addWidget(exitgame); layout -> setContentsMargins(2, 2, 2, 2); layout -> addLayout(settingsLayout); newGame(); setLayout(layout); }
void OPViscosityE::stream(const double& edt) { //Move the time forward //currentdt += edt; //Now test if we've gone over the step time if (currentdt + edt >= dt) { for (size_t iDim = 0; iDim < NDIM; ++iDim) for (size_t jDim = 0; jDim < NDIM; ++jDim) delG[iDim][jDim] += constDelG[iDim][jDim] * (dt - currentdt); newG (delG); currentdt += edt - dt; while (currentdt >= dt) { for (size_t iDim = 0; iDim < NDIM; ++iDim) for (size_t jDim = 0; jDim < NDIM; ++jDim) delG[iDim][jDim] = constDelG[iDim][jDim] * dt; currentdt -= dt; newG(delG); } //Now calculate the start of the new delG for (size_t iDim = 0; iDim < NDIM; ++iDim) for (size_t jDim = 0; jDim < NDIM; ++jDim) delG[iDim][jDim] = constDelG[iDim][jDim] * currentdt; } else { currentdt += edt; for (size_t iDim = 0; iDim < NDIM; ++iDim) for (size_t jDim = 0; jDim < NDIM; ++jDim) delG[iDim][jDim] += constDelG[iDim][jDim] * edt; } }
void OPVACF::eventUpdate(const System&, const NEventData& PDat, const double& edt) { //Move the time forward currentdt += edt; //Now test if we've gone over the step time while (currentdt >= dt) { currentdt -= dt; newG(PDat); } }
void OPVACF::eventUpdate(const LocalEvent& iEvent, const NEventData& PDat) { //Move the time forward currentdt += iEvent.getdt(); //Now test if we've gone over the step time while (currentdt >= dt) { currentdt -= dt; newG(PDat); } }
void OPThermalConductivitySpeciesSpeciesE::stream(const double& edt) { size_t Nsp(Sim->dynamics.getSpecies().size()); //Now test if we've gone over the step time if (currentdt + edt >= dt) { for (size_t spec(0); spec < Nsp; ++spec) delG[spec] += constDelG[spec] * (dt - currentdt); newG(); currentdt += edt - dt; while (currentdt >= dt) { for (size_t spec(0); spec < Nsp; ++spec) delG[spec] = constDelG[spec] * dt; currentdt -= dt; newG(); } //Now calculate the start of the new delG for (size_t spec(0); spec < Nsp; ++spec) delG[spec] = constDelG[spec] * currentdt; } else { currentdt += edt; for (size_t spec(0); spec < Nsp; ++spec) delG[spec] += constDelG[spec] * edt; } }
EvolveCloudFunctionObject<CloudType>::EvolveCloudFunctionObject ( const word& name, const Time& t, const dictionary& dict ) : functionObject( name ), dict_(dict), regionName_( dict_.found("region") ? dict_.lookup("region") : polyMesh::defaultRegion ), obr_(t.lookupObject<objectRegistry>(regionName_)), cloudName_( dict.lookup("cloudName") ), g_("dummy",dimless,vector::zero) { if(dict_.found("g")) { dimensionedVector newG(dict_.lookup("g")); g_.dimensions().reset(newG.dimensions()); g_=newG; } else { const Time &runTime=t; // const fvMesh &mesh=dynamicCast<const fvMesh &>(obr_); const fvMesh &mesh=dynamic_cast<const fvMesh &>(obr_); #include "readGravitationalAcceleration.H" g_.dimensions().reset(g.dimensions()); g_=g; } }
bool VMCcuda::run() { if (UseDrift == "yes") return runWithDrift(); resetRun(); IndexType block = 0; IndexType nAcceptTot = 0; IndexType nRejectTot = 0; IndexType updatePeriod= (QMCDriverMode[QMC_UPDATE_MODE]) ? Period4CheckProperties : (nBlocks+1)*nSteps; int nat = W.getTotalNum(); int nw = W.getActiveWalkers(); vector<RealType> LocalEnergy(nw); vector<PosType> delpos(nw); vector<PosType> newpos(nw); vector<ValueType> ratios(nw); vector<GradType> oldG(nw), newG(nw); vector<ValueType> oldL(nw), newL(nw); vector<Walker_t*> accepted(nw); Matrix<ValueType> lapl(nw, nat); Matrix<GradType> grad(nw, nat); double Esum; // First do warmup steps for (int step=0; step<myWarmupSteps; step++) { for(int iat=0; iat<nat; ++iat) { //create a 3N-Dimensional Gaussian with variance=1 makeGaussRandomWithEngine(delpos,Random); for(int iw=0; iw<nw; ++iw) { PosType G = W[iw]->Grad[iat]; newpos[iw]=W[iw]->R[iat] + m_sqrttau*delpos[iw]; ratios[iw] = 1.0; } W.proposeMove_GPU(newpos, iat); Psi.ratio(W,iat,ratios,newG, newL); accepted.clear(); vector<bool> acc(nw, false); for(int iw=0; iw<nw; ++iw) { if(ratios[iw]*ratios[iw] > Random()) { accepted.push_back(W[iw]); nAccept++; W[iw]->R[iat] = newpos[iw]; acc[iw] = true; } else nReject++; } W.acceptMove_GPU(acc); if (accepted.size()) Psi.update(accepted,iat); } } do { IndexType step = 0; nAccept = nReject = 0; Esum = 0.0; Estimators->startBlock(nSteps); do { ++step; ++CurrentStep; for (int isub=0; isub<nSubSteps; isub++) { for(int iat=0; iat<nat; ++iat) { //create a 3N-Dimensional Gaussian with variance=1 makeGaussRandomWithEngine(delpos,Random); for(int iw=0; iw<nw; ++iw) { PosType G = W[iw]->Grad[iat]; newpos[iw]=W[iw]->R[iat] + m_sqrttau*delpos[iw]; ratios[iw] = 1.0; } W.proposeMove_GPU(newpos, iat); Psi.ratio(W,iat,ratios,newG, newL); accepted.clear(); vector<bool> acc(nw, false); for(int iw=0; iw<nw; ++iw) { if(ratios[iw]*ratios[iw] > Random()) { accepted.push_back(W[iw]); nAccept++; W[iw]->R[iat] = newpos[iw]; acc[iw] = true; } else nReject++; } W.acceptMove_GPU(acc); if (accepted.size()) Psi.update(accepted,iat); } } Psi.gradLapl(W, grad, lapl); H.evaluate (W, LocalEnergy); if (myPeriod4WalkerDump && (CurrentStep % myPeriod4WalkerDump)==0) W.saveEnsemble(); Estimators->accumulate(W); } while(step<nSteps); Psi.recompute(W); // vector<RealType> logPsi(W.WalkerList.size(), 0.0); // Psi.evaluateLog(W, logPsi); double accept_ratio = (double)nAccept/(double)(nAccept+nReject); Estimators->stopBlock(accept_ratio); nAcceptTot += nAccept; nRejectTot += nReject; ++block; recordBlock(block); } while(block<nBlocks); //Mover->stopRun(); //finalize a qmc section return finalize(block); }
bool VMCcuda::runWithDrift() { resetRun(); IndexType block = 0; IndexType nAcceptTot = 0; IndexType nRejectTot = 0; int nat = W.getTotalNum(); int nw = W.getActiveWalkers(); vector<RealType> LocalEnergy(nw), oldScale(nw), newScale(nw); vector<PosType> delpos(nw); vector<PosType> dr(nw); vector<PosType> newpos(nw); vector<ValueType> ratios(nw), rplus(nw), rminus(nw); vector<PosType> oldG(nw), newG(nw); vector<ValueType> oldL(nw), newL(nw); vector<Walker_t*> accepted(nw); Matrix<ValueType> lapl(nw, nat); Matrix<GradType> grad(nw, nat); // First, do warmup steps for (int step=0; step<myWarmupSteps; step++) { for(int iat=0; iat<nat; iat++) { Psi.getGradient (W, iat, oldG); //create a 3N-Dimensional Gaussian with variance=1 makeGaussRandomWithEngine(delpos,Random); for(int iw=0; iw<nw; iw++) { oldScale[iw] = getDriftScale(m_tauovermass,oldG[iw]); dr[iw] = (m_sqrttau*delpos[iw]) + (oldScale[iw]*oldG[iw]); newpos[iw]=W[iw]->R[iat] + dr[iw]; ratios[iw] = 1.0; } W.proposeMove_GPU(newpos, iat); Psi.ratio(W,iat,ratios,newG, newL); accepted.clear(); vector<bool> acc(nw, false); for(int iw=0; iw<nw; ++iw) { PosType drOld = newpos[iw] - (W[iw]->R[iat] + oldScale[iw]*oldG[iw]); RealType logGf = -m_oneover2tau * dot(drOld, drOld); newScale[iw] = getDriftScale(m_tauovermass,newG[iw]); PosType drNew = (newpos[iw] + newScale[iw]*newG[iw]) - W[iw]->R[iat]; RealType logGb = -m_oneover2tau * dot(drNew, drNew); RealType x = logGb - logGf; RealType prob = ratios[iw]*ratios[iw]*std::exp(x); if(Random() < prob) { accepted.push_back(W[iw]); nAccept++; W[iw]->R[iat] = newpos[iw]; acc[iw] = true; } else nReject++; } W.acceptMove_GPU(acc); if (accepted.size()) Psi.update(accepted,iat); } } // Now do data collection steps do { IndexType step = 0; nAccept = nReject = 0; Estimators->startBlock(nSteps); do { step++; CurrentStep++; for (int isub=0; isub<nSubSteps; isub++) { for(int iat=0; iat<nat; iat++) { Psi.getGradient (W, iat, oldG); //create a 3N-Dimensional Gaussian with variance=1 makeGaussRandomWithEngine(delpos,Random); for(int iw=0; iw<nw; iw++) { oldScale[iw] = getDriftScale(m_tauovermass,oldG[iw]); dr[iw] = (m_sqrttau*delpos[iw]) + (oldScale[iw]*oldG[iw]); newpos[iw]=W[iw]->R[iat] + dr[iw]; ratios[iw] = 1.0; } W.proposeMove_GPU(newpos, iat); Psi.ratio(W,iat,ratios,newG, newL); accepted.clear(); vector<bool> acc(nw, false); for(int iw=0; iw<nw; ++iw) { PosType drOld = newpos[iw] - (W[iw]->R[iat] + oldScale[iw]*oldG[iw]); // if (dot(drOld, drOld) > 25.0) // cerr << "Large drift encountered! Old drift = " << drOld << endl; RealType logGf = -m_oneover2tau * dot(drOld, drOld); newScale[iw] = getDriftScale(m_tauovermass,newG[iw]); PosType drNew = (newpos[iw] + newScale[iw]*newG[iw]) - W[iw]->R[iat]; // if (dot(drNew, drNew) > 25.0) // cerr << "Large drift encountered! Drift = " << drNew << endl; RealType logGb = -m_oneover2tau * dot(drNew, drNew); RealType x = logGb - logGf; RealType prob = ratios[iw]*ratios[iw]*std::exp(x); if(Random() < prob) { accepted.push_back(W[iw]); nAccept++; W[iw]->R[iat] = newpos[iw]; acc[iw] = true; } else nReject++; } W.acceptMove_GPU(acc); if (accepted.size()) Psi.update(accepted,iat); } // cerr << "Rank = " << myComm->rank() << // " CurrentStep = " << CurrentStep << " isub = " << isub << endl; } Psi.gradLapl(W, grad, lapl); H.evaluate (W, LocalEnergy); if (myPeriod4WalkerDump && (CurrentStep % myPeriod4WalkerDump)==0) W.saveEnsemble(); Estimators->accumulate(W); } while(step<nSteps); Psi.recompute(W); double accept_ratio = (double)nAccept/(double)(nAccept+nReject); Estimators->stopBlock(accept_ratio); nAcceptTot += nAccept; nRejectTot += nReject; ++block; recordBlock(block); } while(block<nBlocks); //finalize a qmc section if (!myComm->rank()) gpu::cuda_memory_manager.report(); return finalize(block); }
bool DMCcuda::run() { bool NLmove = NonLocalMove == "yes"; bool scaleweight = ScaleWeight == "yes"; if (NLmove) app_log() << " Using Casula nonlocal moves in DMCcuda.\n"; if (scaleweight) app_log() << " Scaling weight per Umrigar/Nightengale.\n"; resetRun(); Mover->MaxAge = 1; IndexType block = 0; IndexType nAcceptTot = 0; IndexType nRejectTot = 0; int nat = W.getTotalNum(); int nw = W.getActiveWalkers(); vector<RealType> LocalEnergy(nw), LocalEnergyOld(nw), oldScale(nw), newScale(nw); vector<PosType> delpos(nw); vector<PosType> dr(nw); vector<PosType> newpos(nw); vector<ValueType> ratios(nw), rplus(nw), rminus(nw), R2prop(nw), R2acc(nw); vector<PosType> oldG(nw), newG(nw); vector<ValueType> oldL(nw), newL(nw); vector<Walker_t*> accepted(nw); Matrix<ValueType> lapl(nw, nat); Matrix<GradType> grad(nw, nat); vector<ValueType> V2(nw), V2bar(nw); vector<vector<NonLocalData> > Txy(nw); for (int iw=0; iw<nw; iw++) W[iw]->Weight = 1.0; do { IndexType step = 0; nAccept = nReject = 0; Estimators->startBlock(nSteps); do { step++; CurrentStep++; nw = W.getActiveWalkers(); ResizeTimer.start(); LocalEnergy.resize(nw); oldScale.resize(nw); newScale.resize(nw); delpos.resize(nw); dr.resize(nw); newpos.resize(nw); ratios.resize(nw); rplus.resize(nw); rminus.resize(nw); oldG.resize(nw); newG.resize(nw); oldL.resize(nw); newL.resize(nw); accepted.resize(nw); lapl.resize(nw, nat); grad.resize(nw, nat); R2prop.resize(nw,0.0); R2acc.resize(nw,0.0); V2.resize(nw,0.0); V2bar.resize(nw,0.0); W.updateLists_GPU(); ResizeTimer.stop(); if (NLmove) { Txy.resize(nw); for (int iw=0; iw<nw; iw++) { Txy[iw].clear(); Txy[iw].push_back(NonLocalData(-1, 1.0, PosType())); } } for (int iw=0; iw<nw; iw++) W[iw]->Age++; DriftDiffuseTimer.start(); for(int iat=0; iat<nat; iat++) { Psi.getGradient (W, iat, oldG); //create a 3N-Dimensional Gaussian with variance=1 makeGaussRandomWithEngine(delpos,Random); for(int iw=0; iw<nw; iw++) { delpos[iw] *= m_sqrttau; oldScale[iw] = getDriftScale(m_tauovermass,oldG[iw]); dr[iw] = delpos[iw] + (oldScale[iw]*oldG[iw]); newpos[iw]=W[iw]->R[iat] + dr[iw]; ratios[iw] = 1.0; R2prop[iw] += dot(delpos[iw], delpos[iw]); } W.proposeMove_GPU(newpos, iat); Psi.ratio(W,iat,ratios,newG, newL); accepted.clear(); vector<bool> acc(nw, false); for(int iw=0; iw<nw; ++iw) { PosType drOld = newpos[iw] - (W[iw]->R[iat] + oldScale[iw]*oldG[iw]); RealType logGf = -m_oneover2tau * dot(drOld, drOld); newScale[iw] = getDriftScale(m_tauovermass,newG[iw]); PosType drNew = (newpos[iw] + newScale[iw]*newG[iw]) - W[iw]->R[iat]; RealType logGb = -m_oneover2tau * dot(drNew, drNew); RealType x = logGb - logGf; RealType prob = ratios[iw]*ratios[iw]*std::exp(x); if(Random() < prob && ratios[iw] > 0.0) { accepted.push_back(W[iw]); nAccept++; W[iw]->R[iat] = newpos[iw]; W[iw]->Age = 0; acc[iw] = true; R2acc[iw] += dot(delpos[iw], delpos[iw]); V2[iw] += m_tauovermass * m_tauovermass * dot(newG[iw],newG[iw]); V2bar[iw] += newScale[iw] * newScale[iw] * dot(newG[iw],newG[iw]); } else { nReject++; V2[iw] += m_tauovermass * m_tauovermass * dot(oldG[iw],oldG[iw]); V2bar[iw] += oldScale[iw] * oldScale[iw] * dot(oldG[iw],oldG[iw]); } } W.acceptMove_GPU(acc); if (accepted.size()) Psi.update(accepted,iat); } DriftDiffuseTimer.stop(); // Psi.recompute(W, false); Psi.gradLapl(W, grad, lapl); HTimer.start(); if (NLmove) H.evaluate (W, LocalEnergy, Txy); else H.evaluate (W, LocalEnergy); HTimer.stop(); // for (int iw=0; iw<nw; iw++) { // branchEngine->clampEnergy(LocalEnergy[iw]); // W[iw]->getPropertyBase()[LOCALENERGY] = LocalEnergy[iw]; // } if (CurrentStep == 1) LocalEnergyOld = LocalEnergy; if (NLmove) { // Now, attempt nonlocal move accepted.clear(); vector<int> iatList; vector<PosType> accPos; for (int iw=0; iw<nw; iw++) { /// HACK HACK HACK // if (LocalEnergy[iw] < -2300.0) { // cerr << "Walker " << iw << " has energy " // << LocalEnergy[iw] << endl;; // double maxWeight = 0.0; // int elMax = -1; // PosType posMax; // for (int j=1; j<Txy[iw].size(); j++) // if (std::fabs(Txy[iw][j].Weight) > std::fabs(maxWeight)) { // maxWeight = Txy[iw][j].Weight; // elMax = Txy[iw][j].PID; // posMax = W[iw]->R[elMax] + Txy[iw][j].Delta; // } // cerr << "Maximum weight is " << maxWeight << " for electron " // << elMax << " at position " << posMax << endl; // PosType unit = W.Lattice.toUnit(posMax); // unit[0] -= round(unit[0]); // unit[1] -= round(unit[1]); // unit[2] -= round(unit[2]); // cerr << "Reduced position = " << unit << endl; // } int ibar = NLop.selectMove(Random(), Txy[iw]); if (ibar) { accepted.push_back(W[iw]); int iat = Txy[iw][ibar].PID; iatList.push_back(iat); accPos.push_back(W[iw]->R[iat] + Txy[iw][ibar].Delta); } } if (accepted.size()) { Psi.ratio(accepted,iatList, accPos, ratios, newG, newL); Psi.update(accepted,iatList); for (int i=0; i<accepted.size(); i++) accepted[i]->R[iatList[i]] = accPos[i]; W.NLMove_GPU (accepted, accPos, iatList); // HACK HACK HACK // Recompute the kinetic energy // Psi.gradLapl(W, grad, lapl); // H.evaluate (W, LocalEnergy); //W.copyWalkersToGPU(); } } // Now branch BranchTimer.start(); for (int iw=0; iw<nw; iw++) { RealType v2=0.0, v2bar=0.0; for(int iat=0; iat<nat; iat++) { v2 += dot(W.G[iat],W.G[iat]); RealType newscale = getDriftScale(m_tauovermass,newG[iw]); v2 += m_tauovermass * m_tauovermass * dot(newG[iw],newG[iw]); v2bar += newscale * newscale * dot(newG[iw],newG[iw]); } //RealType scNew = std::sqrt(V2bar[iw] / V2[iw]); RealType scNew = std::sqrt(v2bar/v2); RealType scOld = (CurrentStep == 1) ? scNew : W[iw]->getPropertyBase()[DRIFTSCALE]; W[iw]->getPropertyBase()[DRIFTSCALE] = scNew; // fprintf (stderr, "iw = %d scNew = %1.8f scOld = %1.8f\n", iw, scNew, scOld); RealType tauRatio = R2acc[iw] / R2prop[iw]; if (tauRatio < 0.5) cerr << " tauRatio = " << tauRatio << endl; RealType taueff = m_tauovermass * tauRatio; if (scaleweight) W[iw]->Weight *= branchEngine->branchWeightTau (LocalEnergy[iw], LocalEnergyOld[iw], scNew, scOld, taueff); else W[iw]->Weight *= branchEngine->branchWeight (LocalEnergy[iw], LocalEnergyOld[iw]); W[iw]->getPropertyBase()[R2ACCEPTED] = R2acc[iw]; W[iw]->getPropertyBase()[R2PROPOSED] = R2prop[iw]; } Mover->setMultiplicity(W.begin(), W.end()); branchEngine->branch(CurrentStep,W); nw = W.getActiveWalkers(); LocalEnergyOld.resize(nw); for (int iw=0; iw<nw; iw++) LocalEnergyOld[iw] = W[iw]->getPropertyBase()[LOCALENERGY]; BranchTimer.stop(); } while(step<nSteps); Psi.recompute(W, true); double accept_ratio = (double)nAccept/(double)(nAccept+nReject); Estimators->stopBlock(accept_ratio); nAcceptTot += nAccept; nRejectTot += nReject; ++block; recordBlock(block); } while(block<nBlocks); //finalize a qmc section return finalize(block); }
bool DMCcuda::runWithNonlocal() { resetRun(); Mover->MaxAge = 1; IndexType block = 0; IndexType nAcceptTot = 0; IndexType nRejectTot = 0; int nat = W.getTotalNum(); int nw = W.getActiveWalkers(); vector<RealType> LocalEnergy(nw), LocalEnergyOld(nw), oldScale(nw), newScale(nw); vector<PosType> delpos(nw); vector<PosType> dr(nw); vector<PosType> newpos(nw); vector<ValueType> ratios(nw), rplus(nw), rminus(nw), R2prop(nw), R2acc(nw); vector<PosType> oldG(nw), newG(nw); vector<ValueType> oldL(nw), newL(nw); vector<Walker_t*> accepted(nw); Matrix<ValueType> lapl(nw, nat); Matrix<GradType> grad(nw, nat); vector<vector<NonLocalData> > Txy(nw); for (int iw=0; iw<nw; iw++) W[iw]->Weight = 1.0; do { IndexType step = 0; nAccept = nReject = 0; Estimators->startBlock(nSteps); do { step++; CurrentStep++; nw = W.getActiveWalkers(); LocalEnergy.resize(nw); oldScale.resize(nw); newScale.resize(nw); delpos.resize(nw); dr.resize(nw); newpos.resize(nw); ratios.resize(nw); rplus.resize(nw); rminus.resize(nw); oldG.resize(nw); newG.resize(nw); oldL.resize(nw); newL.resize(nw); accepted.resize(nw); lapl.resize(nw, nat); grad.resize(nw, nat); R2prop.resize(nw,0.0); R2acc.resize(nw,0.0); W.updateLists_GPU(); Txy.resize(nw); for (int iw=0; iw<nw; iw++) { Txy[iw].clear(); Txy[iw].push_back(NonLocalData(-1, 1.0, PosType())); W[iw]->Age++; } for(int iat=0; iat<nat; iat++) { Psi.getGradient (W, iat, oldG); //create a 3N-Dimensional Gaussian with variance=1 makeGaussRandomWithEngine(delpos,Random); for(int iw=0; iw<nw; iw++) { delpos[iw] *= m_sqrttau; oldScale[iw] = getDriftScale(m_tauovermass,oldG[iw]); dr[iw] = delpos[iw] + (oldScale[iw]*oldG[iw]); newpos[iw]=W[iw]->R[iat] + dr[iw]; ratios[iw] = 1.0; R2prop[iw] += dot(delpos[iw], delpos[iw]); } W.proposeMove_GPU(newpos, iat); Psi.ratio(W,iat,ratios,newG, newL); accepted.clear(); vector<bool> acc(nw, false); for(int iw=0; iw<nw; ++iw) { PosType drOld = newpos[iw] - (W[iw]->R[iat] + oldScale[iw]*oldG[iw]); RealType logGf = -m_oneover2tau * dot(drOld, drOld); newScale[iw] = getDriftScale(m_tauovermass,newG[iw]); PosType drNew = (newpos[iw] + newScale[iw]*newG[iw]) - W[iw]->R[iat]; RealType logGb = -m_oneover2tau * dot(drNew, drNew); RealType x = logGb - logGf; RealType prob = ratios[iw]*ratios[iw]*std::exp(x); if(Random() < prob && ratios[iw] > 0.0) { accepted.push_back(W[iw]); nAccept++; W[iw]->R[iat] = newpos[iw]; W[iw]->Age = 0; acc[iw] = true; R2acc[iw] += dot(delpos[iw], delpos[iw]); } else nReject++; } W.acceptMove_GPU(acc); if (accepted.size()) Psi.update(accepted,iat); } for (int iw=0; iw < nw; iw++) if (W[iw]->Age) cerr << "Encountered stuck walker with iw=" << iw << endl; // Psi.recompute(W, false); Psi.gradLapl(W, grad, lapl); H.evaluate (W, LocalEnergy, Txy); if (CurrentStep == 1) LocalEnergyOld = LocalEnergy; // Now, attempt nonlocal move accepted.clear(); vector<int> iatList; vector<PosType> accPos; for (int iw=0; iw<nw; iw++) { int ibar = NLop.selectMove(Random(), Txy[iw]); // cerr << "Txy[iw].size() = " << Txy[iw].size() << endl; if (ibar) { accepted.push_back(W[iw]); int iat = Txy[iw][ibar].PID; iatList.push_back(iat); accPos.push_back(W[iw]->R[iat] + Txy[iw][ibar].Delta); } } if (accepted.size()) { // W.proposeMove_GPU(newpos, iatList); Psi.ratio(accepted,iatList, accPos, ratios, newG, newL); Psi.update(accepted,iatList); for (int i=0; i<accepted.size(); i++) accepted[i]->R[iatList[i]] = accPos[i]; W.copyWalkersToGPU(); } // Now branch for (int iw=0; iw<nw; iw++) { W[iw]->Weight *= branchEngine->branchWeight(LocalEnergy[iw], LocalEnergyOld[iw]); W[iw]->getPropertyBase()[R2ACCEPTED] = R2acc[iw]; W[iw]->getPropertyBase()[R2PROPOSED] = R2prop[iw]; } Mover->setMultiplicity(W.begin(), W.end()); branchEngine->branch(CurrentStep,W); nw = W.getActiveWalkers(); LocalEnergyOld.resize(nw); for (int iw=0; iw<nw; iw++) LocalEnergyOld[iw] = W[iw]->getPropertyBase()[LOCALENERGY]; } while(step<nSteps); Psi.recompute(W, true); double accept_ratio = (double)nAccept/(double)(nAccept+nReject); Estimators->stopBlock(accept_ratio); nAcceptTot += nAccept; nRejectTot += nReject; ++block; recordBlock(block); } while(block<nBlocks); //finalize a qmc section return finalize(block); }
void Island::Step(const TimeStep &timeStep) { ContactSolver contactSolver(*this); // update velocity for (auto &body : mRigidBodies) { switch (body.mType) { case RigidBody::DYNAMIC: float dtscale = body.mParent->cphy->dtScale; // apply gravity if (body.mHasGravity) { Vector3 newG( mGravity + body.mGravityFactor); body.mLinearVelocity += newG * timeStep.dt; } // integrate velocity body.mLinearVelocity += body.mMassData.inverseMass * (body.mLinearImpulseAccumulator + body.mForceAccumulator * timeStep.dt * dtscale); body.mAngularVelocity += body.mGlobalInverseInertiaTensor * (body.mAngularImpulseAccumulator + body.mTorqueAccumulator * timeStep.dt * dtscale); body.mForceAccumulator.ZeroOut(); body.mTorqueAccumulator.ZeroOut(); body.mLinearImpulseAccumulator.ZeroOut(); body.mAngularImpulseAccumulator.ZeroOut(); body.mLinearVelocity *= mLinearDamp; body.mAngularVelocity *= mAngularDamp; break; } } // warm start if (timeStep.params.warmStart) contactSolver.WarmStartVelocityConstraints(timeStep); // initialize constraints for (auto &joint : mJoints) joint.InitializeVelocityConstraints(timeStep); contactSolver.InitializeVelocityConstraints(timeStep); // solve constraints for (unsigned char i = 0; i < timeStep.velocityIterations; ++i) { for (auto &joint : mJoints) joint.SolveVelocityConstraints(timeStep); contactSolver.SolveVelocityConstraints(timeStep); } // cache velocity constraint results if (timeStep.params.warmStart) contactSolver.CacheVelocityConstraintResults(timeStep); // integrate position for (auto &body : mRigidBodies) { // integrate body.IntegratePosition(timeStep); // update body.UpdateOrientation(); body.UpdatePositionFromGlobalCentroid(); } // solve position constraints, NOPE for (unsigned char i = 0; i < timeStep.positionIterations; ++i) { for (auto &joint : mJoints) joint.SolvePositionConstraints(timeStep); contactSolver.SolvePositionConstraints(timeStep); } // update proxies for (auto &body : mRigidBodies) body.UpdateProxies(); }