예제 #1
0
파일: safe.c 프로젝트: plesner/neutrino
safe_value_t protect(safe_value_pool_t *pool, value_t value) {
  COND_CHECK_TRUE_WITH_VALUE("safe value pool overflow", ccSafePoolFull,
      protect_immediate(new_condition(ccSafePoolFull)),
      pool->used < pool->capacity);
  S_TRY_DEF(result, runtime_protect_value(pool->runtime, value));
  pool->values[pool->used++] = result;
  return result;
}
예제 #2
0
// Map values to ints.
static value_t value_to_int(value_t value, runtime_t *runtime, void *ptr) {
  test_resolver_data_t *data = (test_resolver_data_t*) ptr;
  if (value_identity_compare(value, data->i0)) {
    return new_integer(0);
  } else if (value_identity_compare(value, data->i1)) {
    return new_integer(1);
  } else {
    return new_condition(ccNothing);
  }
}
예제 #3
0
static void
add_condition (segment_info *f, gfc_equiv *eq1, gfc_equiv *eq2)
{
  segment_info *n;

  n = find_segment_info (eq2->expr->symtree->n.sym);

  if (n == NULL)
    new_condition (f, eq1, eq2);
  else
    confirm_condition (f, eq1, n, eq2);
}
예제 #4
0
파일: bind.c 프로젝트: plesner/neutrino
// Validates that it is safe to bind the given implementation to the given
// surface-level method.
static value_t validate_builtin_method_binding(value_t method, value_t impl) {
  value_t signature = get_method_signature(method);
  size_t posc = get_signature_parameter_count(signature)
      - 1  // subject
      - 1; // selector
  size_t required_posc = get_builtin_implementation_argument_count(impl);
  if (posc != required_posc) {
    ERROR("Argument count mismatch (found %i, expected %i) binding %9v to %9v",
        posc, required_posc, impl, signature);
    return new_condition(ccBuiltinBindingFailed);
  }
  return success();
}
예제 #5
0
파일: method.c 프로젝트: tundra/neutrino
value_t guard_match(value_t guard, value_t value, runtime_t *runtime,
    value_t space, value_t *score_out) {
  CHECK_FAMILY(ofGuard, guard);
  switch (get_guard_type(guard)) {
    case gtEq: {
      value_t guard_value = get_guard_value(guard);
      bool match = value_identity_compare(guard_value, value);
      *score_out = match ? new_identical_match_score() : new_no_match_score();
      return success();
    }
    case gtIs: {
      TRY_DEF(primary, get_primary_type(value, runtime));
      value_t target = get_guard_value(guard);
      return find_best_match(runtime, primary, target,
          new_perfect_is_match_score(), space, score_out);
    }
    case gtAny:
      *score_out = new_any_match_score();
      return success();
    default:
      UNREACHABLE("Unknown guard type");
      return new_condition(ccWat);
  }
}
예제 #6
0
파일: behavior.c 프로젝트: tundra/neutrino
static value_t get_internal_object_type(value_t self, runtime_t *runtime) {
  ERROR("Internal family: %v", self);
  return new_condition(ccInternalFamily);
}
예제 #7
0
   void update_balance_vote_operation::evaluate( transaction_evaluation_state& eval_state )const
   { try {
      auto current_balance_record = eval_state.pending_state()->get_balance_record( this->balance_id );
      FC_ASSERT( current_balance_record.valid(), "No such balance!" );
      FC_ASSERT( current_balance_record->condition.asset_id == 0, "Only BTS balances can have restricted owners." );
      FC_ASSERT( current_balance_record->condition.type == withdraw_signature_type, "Restricted owners not enabled for anything but basic balances" );

      auto last_update_secs = current_balance_record->last_update.sec_since_epoch();
      ilog("last_update_secs is: ${secs}", ("secs", last_update_secs) );

      auto balance = current_balance_record->balance;
      auto fee = BTS_BLOCKCHAIN_PRECISION / 2;
      FC_ASSERT( balance > fee );

      auto asset_rec = eval_state.pending_state()->get_asset_record( current_balance_record->condition.asset_id );
      if( asset_rec->is_market_issued() ) FC_ASSERT( current_balance_record->condition.slate_id == 0 );

      if( current_balance_record->condition.slate_id )
      {
          eval_state.adjust_vote( current_balance_record->condition.slate_id, -balance );
      }
      current_balance_record->balance -= balance;
      current_balance_record->last_update = eval_state.pending_state()->now();

      ilog("I'm storing a balance record whose last update is: ${secs}", ("secs", current_balance_record->last_update) );
      eval_state.pending_state()->store_balance_record( *current_balance_record );

      auto new_restricted_owner = current_balance_record->restricted_owner;
      auto new_slate = current_balance_record->condition.slate_id;

      if( this->new_restricted_owner.valid() && (this->new_restricted_owner != new_restricted_owner) )
      {
          ilog("@n new restricted owner specified and its not the existing one");
          for( const auto& owner : current_balance_record->owners() ) //eventually maybe multisig can delegate vote
          {
              if( !eval_state.check_signature( owner ) )
                  FC_CAPTURE_AND_THROW( missing_signature, (owner) );
          }
          new_restricted_owner = this->new_restricted_owner;
          new_slate = this->new_slate;
      }
      else // NOT this->new_restricted_owner.valid() || (this->new_restricted_owner == new_restricted_owner)
      {
          auto restricted_owner = current_balance_record->restricted_owner;
          /*
          FC_ASSERT( restricted_owner.valid(),
                     "Didn't specify a new restricted owner, but one currently exists." );
                     */
          ilog( "@n now: ${secs}", ("secs", eval_state.pending_state()->now().sec_since_epoch()) );
          ilog( "@n last update: ${secs}", ("secs", last_update_secs ) );
          FC_ASSERT( eval_state.pending_state()->now().sec_since_epoch() - last_update_secs
                     >= BTS_BLOCKCHAIN_VOTE_UPDATE_PERIOD_SEC,
                     "You cannot update your vote this frequently with only the voting key!" );

          if( NOT eval_state.check_signature( *restricted_owner ) )
          {
              const auto& owners = current_balance_record->owners();
              for( const auto& owner : owners ) //eventually maybe multisig can delegate vote
              {
                  if( NOT eval_state.check_signature( owner ) )
                      FC_CAPTURE_AND_THROW( missing_signature, (owner) );
              }
          }
          new_slate = this->new_slate;
      }

      const auto owner = current_balance_record->owner();
      FC_ASSERT( owner.valid() );
      withdraw_condition new_condition( withdraw_with_signature( *owner ), 0, new_slate );
      balance_record newer_balance_record( new_condition );
      auto new_balance_record = eval_state.pending_state()->get_balance_record( newer_balance_record.id() );
      if( !new_balance_record.valid() )
          new_balance_record = current_balance_record;
      new_balance_record->condition = new_condition;

      if( new_balance_record->balance == 0 )
      {
         new_balance_record->deposit_date = eval_state.pending_state()->now();
      }
      else
      {
         fc::uint128 old_sec_since_epoch( current_balance_record->deposit_date.sec_since_epoch() );
         fc::uint128 new_sec_since_epoch( eval_state.pending_state()->now().sec_since_epoch() );

         fc::uint128 avg = (old_sec_since_epoch * new_balance_record->balance) + (new_sec_since_epoch * balance);
         avg /= (new_balance_record->balance + balance);

         new_balance_record->deposit_date = time_point_sec( avg.to_integer() );
      }

      new_balance_record->last_update = eval_state.pending_state()->now();
      new_balance_record->balance += (balance - fee);
      new_balance_record->restricted_owner = new_restricted_owner;

      eval_state.add_balance( asset(fee, 0) );

      // update delegate vote on deposited account..
      if( new_balance_record->condition.slate_id )
         eval_state.adjust_vote( new_balance_record->condition.slate_id, (balance-fee) );

      ilog("I'm storing a balance record whose last update is: ${secs}", ("secs", new_balance_record->last_update) );
      eval_state.pending_state()->store_balance_record( *new_balance_record );

   } FC_CAPTURE_AND_RETHROW( (*this) ) }
예제 #8
0
파일: interp.c 프로젝트: plesner/neutrino
// Runs the given stack within the given ambience until a condition is
// encountered or evaluation completes. This function also bails on and leaves
// it to the surrounding code to report error messages.
static value_t run_stack_pushing_signals(value_t ambience, value_t stack) {
    CHECK_FAMILY(ofAmbience, ambience);
    CHECK_FAMILY(ofStack, stack);
    runtime_t *runtime = get_ambience_runtime(ambience);
    frame_t frame = open_stack(stack);
    code_cache_t cache;
    code_cache_refresh(&cache, &frame);
    E_BEGIN_TRY_FINALLY();
    while (true) {
        opcode_t opcode = (opcode_t) read_short(&cache, &frame, 0);
        TOPIC_INFO(Interpreter, "Opcode: %s (%i)", get_opcode_name(opcode),
                   opcode_counter++);
        IF_EXPENSIVE_CHECKS_ENABLED(MAYBE_INTERRUPT());
        switch (opcode) {
        case ocPush: {
            value_t value = read_value(&cache, &frame, 1);
            frame_push_value(&frame, value);
            frame.pc += kPushOperationSize;
            break;
        }
        case ocPop: {
            size_t count = read_short(&cache, &frame, 1);
            for (size_t i = 0; i < count; i++)
                frame_pop_value(&frame);
            frame.pc += kPopOperationSize;
            break;
        }
        case ocCheckStackHeight: {
            size_t expected = read_short(&cache, &frame, 1);
            size_t height = frame.stack_pointer - frame.frame_pointer;
            CHECK_EQ("stack height", expected, height);
            frame.pc += kCheckStackHeightOperationSize;
            break;
        }
        case ocNewArray: {
            size_t length = read_short(&cache, &frame, 1);
            E_TRY_DEF(array, new_heap_array(runtime, length));
            for (size_t i = 0; i < length; i++) {
                value_t element = frame_pop_value(&frame);
                set_array_at(array, length - i - 1, element);
            }
            frame_push_value(&frame, array);
            frame.pc += kNewArrayOperationSize;
            break;
        }
        case ocInvoke: {
            // Look up the method in the method space.
            value_t tags = read_value(&cache, &frame, 1);
            CHECK_FAMILY(ofCallTags, tags);
            value_t fragment = read_value(&cache, &frame, 2);
            CHECK_FAMILY(ofModuleFragment, fragment);
            value_t helper = read_value(&cache, &frame, 3);
            CHECK_FAMILY(ofSignatureMap, helper);
            value_t arg_map;
            value_t method = lookup_method_full(ambience, fragment, tags, &frame,
                                                helper, &arg_map);
            if (in_condition_cause(ccLookupError, method)) {
                log_lookup_error(method, tags, &frame);
                E_RETURN(method);
            }
            // The lookup may have failed with a different condition. Check for that.
            E_TRY(method);
            E_TRY_DEF(code_block, ensure_method_code(runtime, method));
            // We should now have done everything that can fail so we advance the
            // pc over this instruction. In reality we haven't, the frame push op
            // below can fail so we should really push the next frame before
            // storing the pc for this one. Laters.
            frame.pc += kInvokeOperationSize;
            // Push a new activation.
            E_TRY(push_stack_frame(runtime, stack, &frame,
                                   get_code_block_high_water_mark(code_block), arg_map));
            frame_set_code_block(&frame, code_block);
            code_cache_refresh(&cache, &frame);
            break;
        }
        case ocSignalContinue:
        case ocSignalEscape: {
            // Look up the method in the method space.
            value_t tags = read_value(&cache, &frame, 1);
            CHECK_FAMILY(ofCallTags, tags);
            frame.pc += kSignalEscapeOperationSize;
            value_t arg_map = whatever();
            value_t handler = whatever();
            value_t method = lookup_signal_handler_method(ambience, tags, &frame,
                             &handler, &arg_map);
            bool is_escape = (opcode == ocSignalEscape);
            if (in_condition_cause(ccLookupError, method)) {
                if (is_escape) {
                    // There was no handler for this so we have to escape out of the
                    // interpreter altogether. Push the signal frame onto the stack to
                    // record the state of it for the enclosing code.
                    E_TRY(push_stack_frame(runtime, stack, &frame, 1, nothing()));
                    // The stack tracing code expects all frames to have a valid code block
                    // object. The rest makes less of a difference.
                    frame_set_code_block(&frame, ROOT(runtime, empty_code_block));
                    E_RETURN(new_signal_condition(is_escape));
                } else {
                    // There was no handler but this is not an escape so we skip over
                    // the post-handler goto to the default block.
                    CHECK_EQ("signal not followed by goto", ocGoto,
                             read_short(&cache, &frame, 0));
                    frame.pc += kGotoOperationSize;
                }
            } else {
                // We found a method. Invoke it.
                E_TRY(method);
                E_TRY_DEF(code_block, ensure_method_code(runtime, method));
                E_TRY(push_stack_frame(runtime, stack, &frame,
                                       get_code_block_high_water_mark(code_block), arg_map));
                frame_set_code_block(&frame, code_block);
                CHECK_TRUE("subject not null", is_null(frame_get_argument(&frame, 0)));
                frame_set_argument(&frame, 0, handler);
                code_cache_refresh(&cache, &frame);
            }
            break;
        }
        case ocGoto: {
            size_t delta = read_short(&cache, &frame, 1);
            frame.pc += delta;
            break;
        }
        case ocDelegateToLambda:
        case ocDelegateToBlock: {
            // This op only appears in the lambda and block delegator methods.
            // They should never be executed because the delegation happens during
            // method lookup. If we hit here something's likely wrong with the
            // lookup process.
            UNREACHABLE("delegate to lambda");
            return new_condition(ccWat);
        }
        case ocBuiltin: {
            value_t wrapper = read_value(&cache, &frame, 1);
            builtin_method_t impl = (builtin_method_t) get_void_p_value(wrapper);
            builtin_arguments_t args;
            builtin_arguments_init(&args, runtime, &frame);
            E_TRY_DEF(result, impl(&args));
            frame_push_value(&frame, result);
            frame.pc += kBuiltinOperationSize;
            break;
        }
        case ocBuiltinMaybeEscape: {
            value_t wrapper = read_value(&cache, &frame, 1);
            builtin_method_t impl = (builtin_method_t) get_void_p_value(wrapper);
            builtin_arguments_t args;
            builtin_arguments_init(&args, runtime, &frame);
            value_t result = impl(&args);
            if (in_condition_cause(ccSignal, result)) {
                // The builtin failed. Find the appropriate signal handler and call
                // it. The invocation record is at the top of the stack.
                value_t tags = frame_pop_value(&frame);
                CHECK_FAMILY(ofCallTags, tags);
                value_t arg_map = whatever();
                value_t handler = whatever();
                value_t method = lookup_signal_handler_method(ambience, tags, &frame,
                                 &handler, &arg_map);
                if (in_condition_cause(ccLookupError, method)) {
                    // Push the record back onto the stack to it's available to back
                    // tracing.
                    frame_push_value(&frame, tags);
                    frame.pc += kBuiltinMaybeEscapeOperationSize;
                    // There was no handler for this so we have to escape out of the
                    // interpreter altogether. Push the signal frame onto the stack to
                    // record the state of it for the enclosing code.
                    E_TRY(push_stack_frame(runtime, stack, &frame, 1, nothing()));
                    // The stack tracing code expects all frames to have a valid code block
                    // object. The rest makes less of a difference.
                    frame_set_code_block(&frame, ROOT(runtime, empty_code_block));
                    E_RETURN(new_signal_condition(true));
                }
                // Either found a signal or encountered a different condition.
                E_TRY(method);
                // Skip forward to the point we want the signal to return to, the
                // leave-or-fire-barrier op that will do the leaving.
                size_t dest_offset = read_short(&cache, &frame, 2);
                frame.pc += dest_offset;
                // Run the handler.
                E_TRY_DEF(code_block, ensure_method_code(runtime, method));
                E_TRY(push_stack_frame(runtime, stack, &frame,
                                       get_code_block_high_water_mark(code_block), arg_map));
                frame_set_code_block(&frame, code_block);
                CHECK_TRUE("subject not null", is_null(frame_get_argument(&frame, 0)));
                frame_set_argument(&frame, 0, handler);
                code_cache_refresh(&cache, &frame);
            } else {
                // The builtin didn't cause a condition so we can just keep going.
                E_TRY(result);
                frame_push_value(&frame, result);
                frame.pc += kBuiltinMaybeEscapeOperationSize;
            }
            break;
        }
        case ocReturn: {
            value_t result = frame_pop_value(&frame);
            frame_pop_within_stack_piece(&frame);
            code_cache_refresh(&cache, &frame);
            frame_push_value(&frame, result);
            break;
        }
        case ocStackBottom: {
            value_t result = frame_pop_value(&frame);
            validate_stack_on_normal_exit(&frame);
            E_RETURN(result);
        }
        case ocStackPieceBottom: {
            value_t top_piece = frame.stack_piece;
            value_t result = frame_pop_value(&frame);
            value_t next_piece = get_stack_piece_previous(top_piece);
            set_stack_top_piece(stack, next_piece);
            frame = open_stack(stack);
            code_cache_refresh(&cache, &frame);
            frame_push_value(&frame, result);
            break;
        }
        case ocSlap: {
            value_t value = frame_pop_value(&frame);
            size_t argc = read_short(&cache, &frame, 1);
            for (size_t i = 0; i < argc; i++)
                frame_pop_value(&frame);
            frame_push_value(&frame, value);
            frame.pc += kSlapOperationSize;
            break;
        }
        case ocNewReference: {
            // Create the reference first so that if it fails we haven't clobbered
            // the stack yet.
            E_TRY_DEF(ref, new_heap_reference(runtime, nothing()));
            value_t value = frame_pop_value(&frame);
            set_reference_value(ref, value);
            frame_push_value(&frame, ref);
            frame.pc += kNewReferenceOperationSize;
            break;
        }
        case ocSetReference: {
            value_t ref = frame_pop_value(&frame);
            CHECK_FAMILY(ofReference, ref);
            value_t value = frame_peek_value(&frame, 0);
            set_reference_value(ref, value);
            frame.pc += kSetReferenceOperationSize;
            break;
        }
        case ocGetReference: {
            value_t ref = frame_pop_value(&frame);
            CHECK_FAMILY(ofReference, ref);
            value_t value = get_reference_value(ref);
            frame_push_value(&frame, value);
            frame.pc += kGetReferenceOperationSize;
            break;
        }
        case ocLoadLocal: {
            size_t index = read_short(&cache, &frame, 1);
            value_t value = frame_get_local(&frame, index);
            frame_push_value(&frame, value);
            frame.pc += kLoadLocalOperationSize;
            break;
        }
        case ocLoadGlobal: {
            value_t ident = read_value(&cache, &frame, 1);
            CHECK_FAMILY(ofIdentifier, ident);
            value_t fragment = read_value(&cache, &frame, 2);
            CHECK_FAMILY(ofModuleFragment, fragment);
            value_t module = get_module_fragment_module(fragment);
            E_TRY_DEF(value, module_lookup_identifier(runtime, module,
                      get_identifier_stage(ident), get_identifier_path(ident)));
            frame_push_value(&frame, value);
            frame.pc += kLoadGlobalOperationSize;
            break;
        }
        case ocLoadArgument: {
            size_t param_index = read_short(&cache, &frame, 1);
            value_t value = frame_get_argument(&frame, param_index);
            frame_push_value(&frame, value);
            frame.pc += kLoadArgumentOperationSize;
            break;
        }
        case ocLoadRefractedArgument: {
            size_t param_index = read_short(&cache, &frame, 1);
            size_t block_depth = read_short(&cache, &frame, 2);
            value_t subject = frame_get_argument(&frame, 0);
            frame_t home = frame_empty();
            get_refractor_refracted_frame(subject, block_depth, &home);
            value_t value = frame_get_argument(&home, param_index);
            frame_push_value(&frame, value);
            frame.pc += kLoadRefractedArgumentOperationSize;
            break;
        }
        case ocLoadRefractedLocal: {
            size_t index = read_short(&cache, &frame, 1);
            size_t block_depth = read_short(&cache, &frame, 2);
            value_t subject = frame_get_argument(&frame, 0);
            frame_t home = frame_empty();
            get_refractor_refracted_frame(subject, block_depth, &home);
            value_t value = frame_get_local(&home, index);
            frame_push_value(&frame, value);
            frame.pc += kLoadRefractedLocalOperationSize;
            break;
        }
        case ocLoadLambdaCapture: {
            size_t index = read_short(&cache, &frame, 1);
            value_t subject = frame_get_argument(&frame, 0);
            CHECK_FAMILY(ofLambda, subject);
            value_t value = get_lambda_capture(subject, index);
            frame_push_value(&frame, value);
            frame.pc += kLoadLambdaCaptureOperationSize;
            break;
        }
        case ocLoadRefractedCapture: {
            size_t index = read_short(&cache, &frame, 1);
            size_t block_depth = read_short(&cache, &frame, 2);
            value_t subject = frame_get_argument(&frame, 0);
            frame_t home = frame_empty();
            get_refractor_refracted_frame(subject, block_depth, &home);
            value_t lambda = frame_get_argument(&home, 0);
            CHECK_FAMILY(ofLambda, lambda);
            value_t value = get_lambda_capture(lambda, index);
            frame_push_value(&frame, value);
            frame.pc += kLoadRefractedLocalOperationSize;
            break;
        }
        case ocLambda: {
            value_t space = read_value(&cache, &frame, 1);
            CHECK_FAMILY(ofMethodspace, space);
            size_t capture_count = read_short(&cache, &frame, 2);
            value_t captures;
            E_TRY_DEF(lambda, new_heap_lambda(runtime, space, nothing()));
            if (capture_count == 0) {
                captures = ROOT(runtime, empty_array);
                frame.pc += kLambdaOperationSize;
            } else {
                E_TRY_SET(captures, new_heap_array(runtime, capture_count));
                // The pc gets incremented here because it is after we've done all
                // the allocation but before anything has been popped off the stack.
                // This way all the above is idempotent, and the below is guaranteed
                // to succeed.
                frame.pc += kLambdaOperationSize;
                for (size_t i = 0; i < capture_count; i++)
                    set_array_at(captures, i, frame_pop_value(&frame));
            }
            set_lambda_captures(lambda, captures);
            frame_push_value(&frame, lambda);
            break;
        }
        case ocCreateBlock: {
            value_t space = read_value(&cache, &frame, 1);
            CHECK_FAMILY(ofMethodspace, space);
            // Create the block object.
            E_TRY_DEF(block, new_heap_block(runtime, nothing()));
            // Create the stack section that describes the block.
            value_t section = frame_alloc_derived_object(&frame, get_genus_descriptor(dgBlockSection));
            set_barrier_state_payload(section, block);
            refraction_point_init(section, &frame);
            set_block_section_methodspace(section, space);
            set_block_section(block, section);
            value_validate(block);
            value_validate(section);
            // Push the block object.
            frame_push_value(&frame, block);
            frame.pc += kCreateBlockOperationSize;
            break;
        }
        case ocCreateEnsurer: {
            value_t code_block = read_value(&cache, &frame, 1);
            value_t section = frame_alloc_derived_object(&frame,
                              get_genus_descriptor(dgEnsureSection));
            set_barrier_state_payload(section, code_block);
            refraction_point_init(section, &frame);
            value_validate(section);
            frame_push_value(&frame, section);
            frame.pc += kCreateEnsurerOperationSize;
            break;
        }
        case ocCallEnsurer: {
            value_t value = frame_pop_value(&frame);
            value_t shard = frame_pop_value(&frame);
            frame_push_value(&frame, value);
            frame_push_value(&frame, shard);
            CHECK_GENUS(dgEnsureSection, shard);
            value_t code_block = get_barrier_state_payload(shard);
            CHECK_FAMILY(ofCodeBlock, code_block);
            // Unregister the barrier before calling it, otherwise if we leave
            // by escaping we'll end up calling it over again.
            barrier_state_unregister(shard, stack);
            frame.pc += kCallEnsurerOperationSize;
            value_t argmap = ROOT(runtime, array_of_zero);
            push_stack_frame(runtime, stack, &frame,
                             get_code_block_high_water_mark(code_block), argmap);
            frame_set_code_block(&frame, code_block);
            code_cache_refresh(&cache, &frame);
            break;
        }
        case ocDisposeEnsurer: {
            // Discard the result of the ensure block. If an ensure blocks needs
            // to return a useful value it can do it via an escape.
            frame_pop_value(&frame);
            value_t shard = frame_pop_value(&frame);
            CHECK_GENUS(dgEnsureSection, shard);
            value_t value = frame_pop_value(&frame);
            frame_destroy_derived_object(&frame, get_genus_descriptor(dgEnsureSection));
            frame_push_value(&frame, value);
            frame.pc += kDisposeEnsurerOperationSize;
            break;
        }
        case ocInstallSignalHandler: {
            value_t space = read_value(&cache, &frame, 1);
            CHECK_FAMILY(ofMethodspace, space);
            size_t dest_offset = read_short(&cache, &frame, 2);
            // Allocate the derived object that's going to hold the signal handler
            // state.
            value_t section = frame_alloc_derived_object(&frame,
                              get_genus_descriptor(dgSignalHandlerSection));
            // Initialize the handler.
            set_barrier_state_payload(section, space);
            refraction_point_init(section, &frame);
            // Bring the frame state to the point we'll want to escape to (modulo
            // the destination offset).
            frame_push_value(&frame, section);
            frame.pc += kInstallSignalHandlerOperationSize;
            // Finally capture the escape state.
            capture_escape_state(section, &frame, dest_offset);
            value_validate(section);
            break;
        }
        case ocUninstallSignalHandler: {
            // The result has been left at the top of the stack.
            value_t value = frame_pop_value(&frame);
            value_t section = frame_pop_value(&frame);
            CHECK_GENUS(dgSignalHandlerSection, section);
            barrier_state_unregister(section, stack);
            frame_destroy_derived_object(&frame, get_genus_descriptor(dgSignalHandlerSection));
            frame_push_value(&frame, value);
            frame.pc += kUninstallSignalHandlerOperationSize;
            break;
        }
        case ocCreateEscape: {
            size_t dest_offset = read_short(&cache, &frame, 1);
            // Create an initially empty escape object.
            E_TRY_DEF(escape, new_heap_escape(runtime, nothing()));
            // Allocate the escape section on the stack, hooking the barrier into
            // the barrier chain.
            value_t section = frame_alloc_derived_object(&frame, get_genus_descriptor(dgEscapeSection));
            // Point the state and object to each other.
            set_barrier_state_payload(section, escape);
            set_escape_section(escape, section);
            // Get execution ready for the next operation.
            frame_push_value(&frame, escape);
            frame.pc += kCreateEscapeOperationSize;
            // This is the execution state the escape will escape to (modulo the
            // destination offset) so this is what we want to capture.
            capture_escape_state(section, &frame,
                                 dest_offset);
            break;
        }
        case ocLeaveOrFireBarrier: {
            size_t argc = read_short(&cache, &frame, 1);
            // At this point the handler has been set as the subject of the call
            // to the handler method. Above the arguments are also two scratch
            // stack entries.
            value_t handler = frame_peek_value(&frame, argc + 2);
            CHECK_GENUS(dgSignalHandlerSection, handler);
            if (maybe_fire_next_barrier(&cache, &frame, runtime, stack, handler)) {
                // Pop the scratch entries off.
                frame_pop_value(&frame);
                frame_pop_value(&frame);
                // Pop the value off.
                value_t value = frame_pop_value(&frame);
                // Escape to the handler's home.
                restore_escape_state(&frame, stack, handler);
                code_cache_refresh(&cache, &frame);
                // Push the value back on, now in the handler's home frame.
                frame_push_value(&frame, value);
            } else {
                // If a barrier was fired we'll want to let the interpreter loop
                // around again so just break without touching .pc.
            }
            break;
        }
        case ocFireEscapeOrBarrier: {
            value_t escape = frame_get_argument(&frame, 0);
            CHECK_FAMILY(ofEscape, escape);
            value_t section = get_escape_section(escape);
            // Fire the next barrier or, if there are no more barriers, apply the
            // escape.
            if (maybe_fire_next_barrier(&cache, &frame, runtime, stack, section)) {
                value_t value = frame_get_argument(&frame, 2);
                restore_escape_state(&frame, stack, section);
                code_cache_refresh(&cache, &frame);
                frame_push_value(&frame, value);
            } else {
                // If a barrier was fired we'll want to let the interpreter loop
                // around again so just break without touching .pc.
            }
            break;
        }
        case ocDisposeEscape: {
            value_t value = frame_pop_value(&frame);
            value_t escape = frame_pop_value(&frame);
            CHECK_FAMILY(ofEscape, escape);
            value_t section = get_escape_section(escape);
            value_validate(section);
            barrier_state_unregister(section, stack);
            on_escape_section_exit(section);
            frame_destroy_derived_object(&frame, get_genus_descriptor(dgEscapeSection));
            frame_push_value(&frame, value);
            frame.pc += kDisposeEscapeOperationSize;
            break;
        }
        case ocDisposeBlock: {
            value_t value = frame_pop_value(&frame);
            value_t block = frame_pop_value(&frame);
            CHECK_FAMILY(ofBlock, block);
            value_t section = get_block_section(block);
            barrier_state_unregister(section, stack);
            on_block_section_exit(section);
            frame_destroy_derived_object(&frame, get_genus_descriptor(dgBlockSection));
            frame_push_value(&frame, value);
            frame.pc += kDisposeBlockOperationSize;
            break;
        }
        default:
            ERROR("Unexpected opcode %i", opcode);
            UNREACHABLE("unexpected opcode");
            break;
        }
    }
    E_FINALLY();
    close_frame(&frame);
    E_END_TRY_FINALLY();
}