int main(int argc, char* argv[]) { printRenderers(); GPU_Target* screen = GPU_Init(800, 600, GPU_DEFAULT_INIT_FLAGS); if(screen == NULL) return -1; printCurrentRenderer(); int i = 1; while(i > 0) { if(i == 1) i = do_interleaved(screen); else if(i == 2) i = do_separate(screen); else if(i == 3) i = do_attributes(screen); else i = 0; } GPU_Quit(); return i; }
int main(int argc, char* argv[]) { GPU_Target* screen; printRenderers(); screen = GPU_Init(800, 600, GPU_DEFAULT_INIT_FLAGS); if(screen == NULL) return -1; printCurrentRenderer(); { Uint32 startTime; long frameCount; Uint8 done; SDL_Event event; GPU_Image* image = GPU_LoadImage("data/test.bmp"); if(image == NULL) return -1; startTime = SDL_GetTicks(); frameCount = 0; done = 0; while(!done) { while(SDL_PollEvent(&event)) { if(event.type == SDL_QUIT) done = 1; else if(event.type == SDL_KEYDOWN) { if(event.key.keysym.sym == SDLK_ESCAPE) done = 1; } } GPU_Clear(screen); GPU_BlitTransform(image, NULL, screen, screen->w/2, screen->h/2, 360*sin(SDL_GetTicks()/2000.0f), 2.5*sin(SDL_GetTicks()/1000.0f), 2.5*sin(SDL_GetTicks()/1200.0f)); GPU_Flip(screen); frameCount++; if(frameCount%500 == 0) printf("Average FPS: %.2f\n", 1000.0f*frameCount/(SDL_GetTicks() - startTime)); } printf("Average FPS: %.2f\n", 1000.0f*frameCount/(SDL_GetTicks() - startTime)); GPU_FreeImage(image); } GPU_Quit(); return 0; }
int main(int argc, char* argv[]) { GPU_Target* screen; // Prepare renderer for SDL_gpu to use GPU_RendererID rendererID = GPU_MakeRendererID("Dummy", GPU_ReserveNextRendererEnum(), 1, 0); GPU_RegisterRenderer(rendererID, &create_dummy_renderer, &free_dummy_renderer); printRenderers(); // Request this specific renderer screen = GPU_InitRenderer(rendererID.renderer, 800, 600, GPU_DEFAULT_INIT_FLAGS); if(screen == NULL) return -1; printCurrentRenderer(); { Uint8 done; SDL_Event event; GPU_Image* image = GPU_LoadImage("data/test.bmp"); if(image == NULL) GPU_Log("Failed to load image.\n"); done = 0; while(!done) { while(SDL_PollEvent(&event)) { if(event.type == SDL_QUIT) done = 1; else if(event.type == SDL_KEYDOWN) { if(event.key.keysym.sym == SDLK_ESCAPE) done = 1; } } GPU_Clear(screen); GPU_Blit(image, NULL, screen, screen->w/2, screen->h/2); GPU_Flip(screen); // Long delay to keep the logging from piling up too much SDL_Delay(500); } GPU_FreeImage(image); } GPU_Quit(); return 0; }
int main(int argc, char* argv[]) { printRenderers(); GPU_Target* screen = GPU_Init(800, 600, GPU_DEFAULT_INIT_FLAGS); if(screen == NULL) return -1; printCurrentRenderer(); Uint32 startTime = SDL_GetTicks(); long frameCount = 0; Uint8 done = 0; SDL_Event event; while(!done) { while(SDL_PollEvent(&event)) { if(event.type == SDL_QUIT) done = 1; else if(event.type == SDL_KEYDOWN) { if(event.key.keysym.sym == SDLK_ESCAPE) done = 1; } } GPU_Clear(screen); GPU_Flip(screen); frameCount++; if(frameCount%500 == 0) printf("Average FPS: %.2f\n", 1000.0f*frameCount/(SDL_GetTicks() - startTime)); } printf("Average FPS: %.2f\n", 1000.0f*frameCount/(SDL_GetTicks() - startTime)); GPU_Quit(); return 0; }
int main(int argc, char* argv[]) { GPU_Target* screen; printRenderers(); screen = GPU_Init(800, 600, GPU_DEFAULT_INIT_FLAGS); if(screen == NULL) return -1; printCurrentRenderer(); { Uint32 startTime; long frameCount; Uint8 done; SDL_Event event; int shapeType; int numShapeTypes; int i; #define NUM_COLORS 20 SDL_Color colors[NUM_COLORS]; #define NUM_PIXELS NUM_COLORS int px[NUM_PIXELS]; int py[NUM_PIXELS]; #define NUM_LINES NUM_COLORS int lx1[NUM_LINES]; int ly1[NUM_LINES]; int lx2[NUM_LINES]; int ly2[NUM_LINES]; #define NUM_TRIS NUM_COLORS int tx1[NUM_TRIS]; int ty1[NUM_TRIS]; int tx2[NUM_TRIS]; int ty2[NUM_TRIS]; int tx3[NUM_TRIS]; int ty3[NUM_TRIS]; #define NUM_RECTS NUM_COLORS int rx1[NUM_RECTS]; int ry1[NUM_RECTS]; int rx2[NUM_RECTS]; int ry2[NUM_RECTS]; float rr[NUM_RECTS]; #define NUM_ARCS NUM_COLORS int ax[NUM_ARCS]; int ay[NUM_ARCS]; float ar[NUM_ARCS]; float ar2[NUM_ARCS]; float aa1[NUM_ARCS]; float aa2[NUM_ARCS]; #define NUM_POLYS NUM_COLORS int pn[NUM_POLYS]; float* pv[NUM_POLYS]; Uint8 blend; float thickness; startTime = SDL_GetTicks(); frameCount = 0; shapeType = 0; numShapeTypes = 18; for(i = 0; i < NUM_COLORS; i++) { colors[i].r = rand()%256; colors[i].g = rand()%256; colors[i].b = rand()%256; GET_ALPHA(colors[i]) = rand()%256; } for(i = 0; i < NUM_PIXELS; i++) { px[i] = rand()%screen->w; py[i] = rand()%screen->h; } for(i = 0; i < NUM_LINES; i++) { lx1[i] = rand()%screen->w; ly1[i] = rand()%screen->h; lx2[i] = rand()%screen->w; ly2[i] = rand()%screen->h; } for(i = 0; i < NUM_TRIS; i++) { tx1[i] = rand()%screen->w; ty1[i] = rand()%screen->h; tx2[i] = rand()%screen->w; ty2[i] = rand()%screen->h; tx3[i] = rand()%screen->w; ty3[i] = rand()%screen->h; } for(i = 0; i < NUM_RECTS; i++) { rx1[i] = rand()%screen->w; ry1[i] = rand()%screen->h; rx2[i] = rand()%screen->w; ry2[i] = rand()%screen->h; rr[i] = rand()%10 + 2; } for(i = 0; i < NUM_ARCS; i++) { ax[i] = rand()%screen->w; ay[i] = rand()%screen->h; ar[i] = (rand()%screen->h)/10.0f; ar2[i] = ((rand()%101)/100.0f)*ar[i]; aa1[i] = rand()%360; aa2[i] = rand()%360; } for(i = 0; i < NUM_POLYS; i++) { float cx = rand()%screen->w; float cy = rand()%screen->h; float radius = 20 + rand()%(screen->w/8); int j; pn[i] = rand()%8 + 3; pv[i] = (float*)malloc(2*pn[i]*sizeof(float)); for(j = 0; j < pn[i]*2; j+=2) { pv[i][j] = cx + radius*cos(2*M_PI*(((float)j)/(pn[i]*2))) + rand()%((int)radius/2); pv[i][j+1] = cy + radius*sin(2*M_PI*(((float)j)/(pn[i]*2))) + rand()%((int)radius/2); } } blend = 0; thickness = 1.0f; GPU_SetShapeBlending(blend); done = 0; while(!done) { while(SDL_PollEvent(&event)) { if(event.type == SDL_QUIT) done = 1; else if(event.type == SDL_KEYDOWN) { if(event.key.keysym.sym == SDLK_ESCAPE) done = 1; else if(event.key.keysym.sym == SDLK_SPACE) { shapeType++; if(shapeType >= numShapeTypes) shapeType = 0; } else if(event.key.keysym.sym == SDLK_BACKSPACE) { shapeType--; if(shapeType < 0) shapeType = numShapeTypes-1; } else if(event.key.keysym.sym == SDLK_b) { blend = !blend; GPU_SetShapeBlending(blend); } else if(event.key.keysym.sym == SDLK_UP || event.key.keysym.sym == SDLK_EQUALS) { thickness += 0.25f; GPU_LogError("thickness: %.2f\n", thickness); GPU_SetLineThickness(thickness); } else if(event.key.keysym.sym == SDLK_DOWN || event.key.keysym.sym == SDLK_MINUS) { if(thickness > 0.25f) thickness -= 0.25f; GPU_LogError("thickness: %.2f\n", thickness); GPU_SetLineThickness(thickness); } } else if(event.type == SDL_MOUSEBUTTONDOWN) { if(event.button.button == SDL_BUTTON_LEFT) { shapeType++; if(shapeType >= numShapeTypes) shapeType = 0; } else if(event.button.button == SDL_BUTTON_RIGHT) { shapeType--; if(shapeType < 0) shapeType = numShapeTypes-1; } } } GPU_Clear(screen); switch(shapeType) { case 0: for(i = 0; i < NUM_PIXELS; i++) { GPU_Pixel(screen, px[i], py[i], colors[i]); } break; case 1: for(i = 0; i < NUM_LINES; i++) { GPU_Line(screen, lx1[i], ly1[i], lx2[i], ly2[i], colors[i]); } break; case 2: for(i = 0; i < NUM_TRIS; i++) { GPU_Tri(screen, tx1[i], ty1[i], tx2[i], ty2[i], tx3[i], ty3[i], colors[i]); } break; case 3: for(i = 0; i < NUM_TRIS; i++) { GPU_TriFilled(screen, tx1[i], ty1[i], tx2[i], ty2[i], tx3[i], ty3[i], colors[i]); } break; case 4: for(i = 0; i < NUM_RECTS; i++) { GPU_Rectangle(screen, rx1[i], ry1[i], rx2[i], ry2[i], colors[i]); } break; case 5: for(i = 0; i < NUM_RECTS; i++) { GPU_RectangleFilled(screen, rx1[i], ry1[i], rx2[i], ry2[i], colors[i]); } break; case 6: for(i = 0; i < NUM_RECTS; i++) { GPU_RectangleRound(screen, rx1[i], ry1[i], rx2[i], ry2[i], rr[i], colors[i]); } break; case 7: for(i = 0; i < NUM_RECTS; i++) { GPU_RectangleRoundFilled(screen, rx1[i], ry1[i], rx2[i], ry2[i], rr[i], colors[i]); } break; case 8: for(i = 0; i < NUM_ARCS; i++) { GPU_Arc(screen, ax[i], ay[i], ar[i], aa1[i], aa2[i], colors[i]); } break; case 9: for(i = 0; i < NUM_ARCS; i++) { GPU_ArcFilled(screen, ax[i], ay[i], ar[i], aa1[i], aa2[i], colors[i]); } break; case 10: for(i = 0; i < NUM_ARCS; i++) { GPU_Circle(screen, ax[i], ay[i], ar[i], colors[i]); } break; case 11: for(i = 0; i < NUM_ARCS; i++) { GPU_CircleFilled(screen, ax[i], ay[i], ar[i], colors[i]); } break; case 12: for(i = 0; i < NUM_ARCS; i++) { GPU_Ellipse(screen, ax[i], ay[i], ar[i], ar2[i], aa1[i], colors[i]); } break; case 13: for(i = 0; i < NUM_ARCS; i++) { GPU_EllipseFilled(screen, ax[i], ay[i], ar[i], ar2[i], aa1[i], colors[i]); } break; case 14: for(i = 0; i < NUM_ARCS; i++) { GPU_Sector(screen, ax[i], ay[i], ar[i], ar2[i], aa1[i], aa2[i], colors[i]); } break; case 15: for(i = 0; i < NUM_ARCS; i++) { GPU_SectorFilled(screen, ax[i], ay[i], ar[i], ar2[i], aa1[i], aa2[i], colors[i]); } break; case 16: for(i = 0; i < NUM_POLYS; i++) { GPU_Polygon(screen, pn[i], pv[i], colors[i]); } break; case 17: for(i = 0; i < NUM_POLYS; i++) { GPU_PolygonFilled(screen, pn[i], pv[i], colors[i]); } break; } GPU_Flip(screen); frameCount++; if(frameCount%500 == 0) printf("Average FPS: %.2f\n", 1000.0f*frameCount/(SDL_GetTicks() - startTime)); } printf("Average FPS: %.2f\n", 1000.0f*frameCount/(SDL_GetTicks() - startTime)); for(i = 0; i < NUM_POLYS; i++) { free(pv[i]); } } GPU_Quit(); return 0; }
int main(int argc, char* argv[]) { printRenderers(); GPU_Target* screen = GPU_Init(800, 600, GPU_DEFAULT_INIT_FLAGS); if(screen == NULL) return -1; printCurrentRenderer(); int numImages = 0; GPU_Image* images[argc-1]; int i; for(i = 1; i < argc; i++) { images[numImages] = GPU_LoadImage(argv[i]); if(images[numImages] != NULL) numImages++; } Uint8* keystates = SDL_GetKeyState(NULL); GPU_Camera camera = GPU_GetDefaultCamera(); float dt = 0.010f; Uint8 done = 0; SDL_Event event; while(!done) { while(SDL_PollEvent(&event)) { if(event.type == SDL_QUIT) done = 1; else if(event.type == SDL_KEYDOWN) { if(event.key.keysym.sym == SDLK_ESCAPE) done = 1; } } if(keystates[KEY_UP]) { camera.y -= 200*dt; } else if(keystates[KEY_DOWN]) { camera.y += 200*dt; } if(keystates[KEY_LEFT]) { camera.x -= 200*dt; } else if(keystates[KEY_RIGHT]) { camera.x += 200*dt; } if(keystates[KEY_MINUS]) { camera.zoom -= 1.0f*dt; } else if(keystates[KEY_EQUALS]) { camera.zoom += 1.0f*dt; } GPU_ClearRGBA(screen, 255, 255, 255, 255); GPU_SetCamera(screen, &camera); float x = 100; float y = 100; for(i = 0; i < numImages; i++) { float x_scale = 150.0f/images[i]->w; float y_scale = 150.0f/images[i]->h; GPU_BlitScale(images[i], NULL, screen, x, y, x_scale, y_scale); x += 200; if((i+1)%4 == 0) { x = 100; y += 200; } } GPU_Flip(screen); SDL_Delay(10); } for(i = 0; i < numImages; i++) { GPU_FreeImage(images[i]); } GPU_Quit(); return 0; }
int main(int argc, char* argv[]) { GPU_Target* screen; printRenderers(); screen = GPU_Init(800, 600, GPU_DEFAULT_INIT_FLAGS); if(screen == NULL) return -1; printCurrentRenderer(); { Uint32 startTime; long frameCount; Uint8 done; SDL_Event event; GPU_Image* image; Uint32 v, f, p; GPU_ShaderBlock block; int uloc; int timeloc; float dt; #define MAX_SPRITES 50 int numSprites; float x[MAX_SPRITES]; float y[MAX_SPRITES]; float velx[MAX_SPRITES]; float vely[MAX_SPRITES]; int i; image = GPU_LoadImage("data/test.bmp"); if(image == NULL) return -1; block = load_shaders(&v, &f, &p); uloc = GPU_GetUniformLocation(p, "tex"); GPU_SetUniformi(uloc, 0); timeloc = GPU_GetUniformLocation(p, "time"); dt = 0.010f; startTime = SDL_GetTicks(); frameCount = 0; numSprites = 1; for(i = 0; i < MAX_SPRITES; i++) { x[i] = rand()%screen->w; y[i] = rand()%screen->h; velx[i] = 10 + rand()%screen->w/10; vely[i] = 10 + rand()%screen->h/10; } done = 0; while(!done) { while(SDL_PollEvent(&event)) { if(event.type == SDL_QUIT) done = 1; else if(event.type == SDL_KEYDOWN) { if(event.key.keysym.sym == SDLK_ESCAPE) done = 1; else if(event.key.keysym.sym == SDLK_EQUALS || event.key.keysym.sym == SDLK_PLUS) { if(numSprites < MAX_SPRITES) numSprites++; } else if(event.key.keysym.sym == SDLK_MINUS) { if(numSprites > 0) numSprites--; } else if(event.key.keysym.sym == SDLK_SPACE) { if(GPU_IsDefaultShaderProgram(GPU_GetCurrentShaderProgram())) { GPU_ActivateShaderProgram(p, &block); uloc = GPU_GetUniformLocation(p, "tex"); GPU_SetUniformi(uloc, 0); timeloc = GPU_GetUniformLocation(p, "time"); } else GPU_ActivateShaderProgram(0, NULL); } } } for(i = 0; i < numSprites; i++) { x[i] += velx[i]*dt; y[i] += vely[i]*dt; if(x[i] < 0) { x[i] = 0; velx[i] = -velx[i]; } else if(x[i]> screen->w) { x[i] = screen->w; velx[i] = -velx[i]; } if(y[i] < 0) { y[i] = 0; vely[i] = -vely[i]; } else if(y[i]> screen->h) { y[i] = screen->h; vely[i] = -vely[i]; } } GPU_SetUniformf(timeloc, SDL_GetTicks()/1000.0f); GPU_Clear(screen); for(i = 0; i < numSprites; i++) { GPU_Blit(image, NULL, screen, x[i], y[i]); } GPU_Flip(screen); frameCount++; if(frameCount%500 == 0) printf("Average FPS: %.2f\n", 1000.0f*frameCount/(SDL_GetTicks() - startTime)); } printf("Average FPS: %.2f\n", 1000.0f*frameCount/(SDL_GetTicks() - startTime)); GPU_FreeImage(image); free_shaders(v, f, p); } GPU_Quit(); return 0; }
int main(int argc, char* argv[]) { GPU_Target* screen; printRenderers(); screen = GPU_Init(800, 600, GPU_DEFAULT_INIT_FLAGS); if(screen == NULL) return -1; printCurrentRenderer(); { Uint32 startTime; long frameCount; Uint8 done; SDL_Event event; int mx, my; GPU_Image* image; GPU_Target* target; SDL_Color c; image = GPU_LoadImage("data/test.bmp"); if(image == NULL) return -1; target = GPU_LoadTarget(image); startTime = SDL_GetTicks(); frameCount = 0; done = 0; while(!done) { while(SDL_PollEvent(&event)) { if(event.type == SDL_QUIT) done = 1; else if(event.type == SDL_KEYDOWN) { if(event.key.keysym.sym == SDLK_ESCAPE) done = 1; } } SDL_GetMouseState(&mx, &my); c = GPU_GetPixel(target, mx - 50, my - 50); GPU_ClearRGBA(screen, c.r, c.g, c.b, GET_ALPHA(c)); GPU_Blit(image, NULL, screen, image->w/2 + 50, image->h/2 + 50); GPU_Flip(screen); frameCount++; if(frameCount%500 == 0) printf("Average FPS: %.2f\n", 1000.0f*frameCount/(SDL_GetTicks() - startTime)); } printf("Average FPS: %.2f\n", 1000.0f*frameCount/(SDL_GetTicks() - startTime)); GPU_FreeImage(image); } GPU_Quit(); return 0; }
int main(int argc, char* argv[]) { printRenderers(); GPU_Target* screen = GPU_Init(1024, 700, GPU_DEFAULT_INIT_FLAGS); if(screen == NULL) return -1; printCurrentRenderer(); GPU_Image* image = GPU_LoadImage("data/small_test.bmp"); if(image == NULL) return -1; SDL_Surface* font_surface = GPU_LoadSurface("data/comic14.png"); DemoFont* font = FONT_Alloc(font_surface); GPU_SetRGB(font->image, 255, 0, 0); SDL_FreeSurface(font_surface); GPU_Rect rect1 = {0.0f, 0.0f, image->w*3, image->h*3}; GPU_Rect rect2 = {-image->w*2, -image->h*2, image->w*3, image->h*3}; Uint32 startTime = SDL_GetTicks(); long frameCount = 0; Uint8 done = 0; SDL_Event event; while(!done) { while(SDL_PollEvent(&event)) { if(event.type == SDL_QUIT) done = 1; else if(event.type == SDL_KEYDOWN) { if(event.key.keysym.sym == SDLK_ESCAPE) done = 1; } } GPU_Clear(screen); float x = 0; float y = 0; FONT_Draw(font, screen, x + 10, y + 10, "NONE"); x += 40; y += 20; GPU_SetWrapMode(image, GPU_WRAP_NONE, GPU_WRAP_NONE); GPU_Blit(image, &rect1, screen, x + rect1.w/2, y + rect1.h/2); x += image->w*4; GPU_Blit(image, &rect2, screen, x + rect2.w/2, y + rect2.h/2); x = 0; y += (rect1.h + 10); FONT_Draw(font, screen, x + 10, y + 10, "REPEAT"); x += 40; y += 20; GPU_SetWrapMode(image, GPU_WRAP_REPEAT, GPU_WRAP_REPEAT); GPU_Blit(image, &rect1, screen, x + rect1.w/2, y + rect1.h/2); x += image->w*4; GPU_Blit(image, &rect2, screen, x + rect2.w/2, y + rect2.h/2); x = 0; y += (rect1.h + 10); FONT_Draw(font, screen, x + 10, y + 10, "MIRRORED"); x += 40; y += 20; GPU_SetWrapMode(image, GPU_WRAP_MIRRORED, GPU_WRAP_MIRRORED); GPU_Blit(image, &rect1, screen, x + rect1.w/2, y + rect1.h/2); x += image->w*4; GPU_Blit(image, &rect2, screen, x + rect2.w/2, y + rect2.h/2); x = 500; y = 0; FONT_Draw(font, screen, x + 10, y + 10, "REPEAT/MIRRORED"); x += 40; y += 20; GPU_SetWrapMode(image, GPU_WRAP_REPEAT, GPU_WRAP_MIRRORED); GPU_Blit(image, &rect1, screen, x + rect1.w/2, y + rect1.h/2); x += image->w*4; GPU_Blit(image, &rect2, screen, x + rect2.w/2, y + rect2.h/2); x = 500; y += (rect1.h + 10); FONT_Draw(font, screen, x + 10, y + 10, "NONE/REPEAT"); x += 40; y += 20; GPU_SetWrapMode(image, GPU_WRAP_NONE, GPU_WRAP_REPEAT); GPU_Blit(image, &rect1, screen, x + rect1.w/2, y + rect1.h/2); x += image->w*4; GPU_Blit(image, &rect2, screen, x + rect2.w/2, y + rect2.h/2); x = 500; y += (rect1.h + 10); FONT_Draw(font, screen, x + 10, y + 10, "NONE/MIRRORED"); x += 40; y += 20; GPU_SetWrapMode(image, GPU_WRAP_NONE, GPU_WRAP_MIRRORED); GPU_Blit(image, &rect1, screen, x + rect1.w/2, y + rect1.h/2); x += image->w*4; GPU_Blit(image, &rect2, screen, x + rect2.w/2, y + rect2.h/2); GPU_Flip(screen); frameCount++; if(frameCount%500 == 0) printf("Average FPS: %.2f\n", 1000.0f*frameCount/(SDL_GetTicks() - startTime)); } printf("Average FPS: %.2f\n", 1000.0f*frameCount/(SDL_GetTicks() - startTime)); FONT_Free(font); GPU_FreeImage(image); GPU_Quit(); return 0; }
int main(int argc, char* argv[]) { GPU_Target* screen; printRenderers(); screen = GPU_Init(800, 600, GPU_DEFAULT_INIT_FLAGS); if(screen == NULL) return -1; printCurrentRenderer(); { GPU_Image* image; float x, y; float velx, vely; float dt; Uint32 startTime; long frameCount; Uint8 done; SDL_Event event; image = GPU_LoadImage("data/test3.png"); if (image == NULL) return -1; x = 0; y = 0; velx = 50.0f; vely = 70.0f; dt = 0.010f; startTime = SDL_GetTicks(); frameCount = 0; done = 0; while (!done) { while (SDL_PollEvent(&event)) { if (event.type == SDL_QUIT) done = 1; else if (event.type == SDL_KEYDOWN) { if (event.key.keysym.sym == SDLK_ESCAPE) done = 1; } } x += velx*dt; y += vely*dt; if (x < 0) { x = 0; velx = -velx; } else if (x + image->w > screen->w) { x = screen->w - image->w; velx = -velx; } if (y < 0) { y = 0; vely = -vely; } else if (y + image->h > screen->h) { y = screen->h - image->h; vely = -vely; } GPU_Clear(screen); GPU_Blit(image, NULL, screen, 50, 50); GPU_Blit(image, NULL, screen, 150, 50); GPU_Blit(image, NULL, screen, 350, 250); GPU_SetBlending(image, 1); GPU_SetRGBA(image, 255, 100, 255, 127.5f + 127.5f*sin(SDL_GetTicks() / 1000.0f)); GPU_Blit(image, NULL, screen, x, y); GPU_SetRGBA(image, 255, 255, 255, 255); GPU_SetBlending(image, 0); GPU_Flip(screen); frameCount++; if (frameCount % 500 == 0) printf("Average FPS: %.2f\n", 1000.0f*frameCount / (SDL_GetTicks() - startTime)); } printf("Average FPS: %.2f\n", 1000.0f*frameCount / (SDL_GetTicks() - startTime)); GPU_FreeImage(image); } GPU_Quit(); return 0; }
int main(int argc, char* argv[]) { GPU_Target* screen; printRenderers(); screen = GPU_Init(800, 600, GPU_DEFAULT_INIT_FLAGS); if(screen == NULL) return -1; printCurrentRenderer(); { Uint32 startTime; long frameCount; Uint8 done; SDL_Event event; GPU_Image* image; #define MAX_SPRITES 100 int numSprites; float positions[2*MAX_SPRITES]; float colors[4*4*MAX_SPRITES]; float expanded_colors[4*MAX_SPRITES]; float src_rects[4*MAX_SPRITES]; Uint32 v, f, p; GPU_ShaderBlock block; Uint8 shader_index; int i; SDL_Color color = {255, 255, 255, 255}; SDL_Color red = {255, 0, 0, 255}; SDL_Color green = {0, 255, 0, 255}; SDL_Color blue = {0, 0, 255, 255}; GPU_Rect src_rect; int mx, my; Uint32 mouse_state; image = GPU_LoadImage("data/happy_50x50.bmp"); if(image == NULL) return -1; numSprites = 0; color_attr.format = GPU_MakeAttributeFormat(4, GPU_TYPE_FLOAT, 0, 4*sizeof(float), 0); color_attr.format.is_per_sprite = 0; color_attr.values = colors; block = load_shaders(&v, &f, &p); shader_index = 1; set_shader(p, &block); startTime = SDL_GetTicks(); frameCount = 0; src_rect.x = 0; src_rect.y = 0; src_rect.w = image->w; src_rect.h = image->h; add_sprite(positions, colors, expanded_colors, src_rects, &numSprites, color, src_rect); done = 0; while(!done) { while(SDL_PollEvent(&event)) { if(event.type == SDL_QUIT) done = 1; else if(event.type == SDL_MOUSEBUTTONDOWN) { if(event.button.x <= 150 && event.button.y <= 150) { if(event.button.button == SDL_BUTTON_LEFT) { float dx = event.button.x/3 - src_rect.x; float dy = event.button.y/3 - src_rect.y; src_rect.x = event.button.x/3; src_rect.y = event.button.y/3; src_rect.w -= dx; src_rect.h -= dy; } else if(event.button.button == SDL_BUTTON_RIGHT) { src_rect.w = event.button.x/3 - src_rect.x; src_rect.h = event.button.y/3 - src_rect.y; } } } else if(event.type == SDL_KEYDOWN) { if(event.key.keysym.sym == SDLK_ESCAPE) done = 1; else if(event.key.keysym.sym == SDLK_EQUALS || event.key.keysym.sym == SDLK_PLUS) { if(numSprites < MAX_SPRITES) add_sprite(positions, colors, expanded_colors, src_rects, &numSprites, color, src_rect); } else if(event.key.keysym.sym == SDLK_MINUS) { if(numSprites > 0) numSprites--; } else if(event.key.keysym.sym == SDLK_SPACE) { shader_index++; shader_index %= 2; if(shader_index == 0) set_shader(0, NULL); else if(shader_index == 1) set_shader(p, &block); } else if(event.key.keysym.sym == SDLK_RETURN) { use_color_expansion = !use_color_expansion; if(use_color_expansion) { GPU_LogError("Using attribute expansion.\n"); color_attr.format.is_per_sprite = 1; color_attr.values = expanded_colors; } else { GPU_LogError("Using per-vertex attributes.\n"); color_attr.format.is_per_sprite = 0; color_attr.values = colors; } } } } mouse_state = SDL_GetMouseState(&mx, &my); if(mouse_state & (SDL_BUTTON_LMASK | SDL_BUTTON_RMASK)) { if(mx <= 150 && my <= 150) { if(mouse_state & SDL_BUTTON_LMASK) { float dx = mx/3 - src_rect.x; float dy = my/3 - src_rect.y; src_rect.x = mx/3; src_rect.y = my/3; src_rect.w -= dx; src_rect.h -= dy; } else if(mouse_state & SDL_BUTTON_RMASK) { src_rect.w = mx/3 - src_rect.x; src_rect.h = my/3 - src_rect.y; } } } GPU_SetUniformf(timeloc, SDL_GetTicks()/1000.0f); GPU_Clear(screen); if(use_color_expansion) GPU_SetAttributeSource(numSprites, color_attr); else GPU_SetAttributeSource(4*numSprites, color_attr); for(i = 0; i < numSprites; i++) { GPU_Rect r = {src_rects[4*i], src_rects[4*i+1], src_rects[4*i+2], src_rects[4*i+3]}; GPU_Blit(image, &r, screen, positions[2*i], positions[2*i+1]); } //GPU_BlitBatchSeparate(image, screen, numSprites, positions, src_rects, expanded_colors, 0); set_shader(0, NULL); GPU_BlitScale(image, NULL, screen, 75, 75, 3.0f, 3.0f); GPU_Rectangle(screen, 3*src_rect.x, 3*src_rect.y, 3*(src_rect.x + src_rect.w), 3*(src_rect.y + src_rect.h), red); GPU_CircleFilled(screen, 3*src_rect.x, 3*src_rect.y, 4, blue); GPU_CircleFilled(screen, 3*(src_rect.x + src_rect.w), 3*(src_rect.y + src_rect.h), 4, green); if(shader_index == 1) set_shader(p, &block); GPU_Flip(screen); frameCount++; if(frameCount%500 == 0) printf("Average FPS: %.2f\n", 1000.0f*frameCount/(SDL_GetTicks() - startTime)); } printf("Average FPS: %.2f\n", 1000.0f*frameCount/(SDL_GetTicks() - startTime)); GPU_FreeImage(image); free_shaders(v, f, p); } GPU_Quit(); return 0; }
int main(int argc, char* argv[]) { GPU_Target* screen; printRenderers(); screen = GPU_Init(800, 600, GPU_DEFAULT_INIT_FLAGS); if(screen == NULL) return -1; printCurrentRenderer(); { Uint32 startTime; long frameCount; Uint8 done; SDL_Event event; const Uint8* keystates; GPU_Camera camera; float dt; SDL_Surface* surface; GPU_Image* image; GPU_Image* image1; GPU_Image* image2; GPU_Image* image3; GPU_Image* image4; image = GPU_LoadImage("data/test.bmp"); //image = GPU_LoadImage("data/big_test.png"); if(image == NULL) return -1; // Copying the annoying way image1 = GPU_CreateImage(image->w, image->h, GPU_FORMAT_RGBA); GPU_LoadTarget(image1); GPU_Blit(image, NULL, image1->target, image1->target->w/2, image1->target->h/2); GPU_FreeTarget(image1->target); // Copying the normal way image2 = GPU_CopyImage(image); // Copying from a surface dump surface = GPU_CopySurfaceFromImage(image); //GPU_SaveSurface(surface, "save_surf1.bmp", GPU_FILE_AUTO); image3 = GPU_CopyImageFromSurface(surface); SDL_FreeSurface(surface); // A buffer for window capture image4 = NULL; keystates = SDL_GetKeyState(NULL); camera = GPU_GetDefaultCamera(); startTime = SDL_GetTicks(); frameCount = 0; dt = 0.010f; done = 0; while(!done) { while(SDL_PollEvent(&event)) { if(event.type == SDL_QUIT) done = 1; else if(event.type == SDL_KEYDOWN) { if(event.key.keysym.sym == SDLK_ESCAPE) done = 1; else if(event.key.keysym.sym == SDLK_SPACE) { // Take a window capture GPU_FreeImage(image4); image4 = GPU_CopyImageFromTarget(screen); } } } if(keystates[KEY_UP]) { camera.y -= 200*dt; } else if(keystates[KEY_DOWN]) { camera.y += 200*dt; } if(keystates[KEY_LEFT]) { camera.x -= 200*dt; } else if(keystates[KEY_RIGHT]) { camera.x += 200*dt; } if(keystates[KEY_MINUS]) { camera.zoom -= 1.0f*dt; } else if(keystates[KEY_EQUALS]) { camera.zoom += 1.0f*dt; } GPU_ClearRGBA(screen, 100, 100, 100, 255); GPU_SetCamera(screen, &camera); GPU_Blit(image, NULL, screen, 128, 128); GPU_Blit(image1, NULL, screen, 128 + 256, 128); GPU_Blit(image2, NULL, screen, 128 + 512, 128); GPU_Blit(image3, NULL, screen, 128, 128 + 256); if(image4 != NULL) GPU_BlitScale(image4, NULL, screen, 3*screen->w/4, 3*screen->h/4, 0.25f, 0.25f); GPU_Flip(screen); frameCount++; if(frameCount%500 == 0) GPU_LogError("Average FPS: %.2f\n", 1000.0f*frameCount/(SDL_GetTicks() - startTime)); } GPU_LogError("Average FPS: %.2f\n", 1000.0f*frameCount/(SDL_GetTicks() - startTime)); GPU_FreeImage(image); GPU_FreeImage(image1); GPU_FreeImage(image2); GPU_FreeImage(image3); GPU_FreeImage(image4); } GPU_Quit(); return 0; }
int main(int argc, char* argv[]) { GPU_Target* screen; printRenderers(); GPU_SetPreInitFlags(GPU_INIT_DISABLE_VSYNC); screen = GPU_Init(800, 600, GPU_DEFAULT_INIT_FLAGS); if(screen == NULL) return -1; printCurrentRenderer(); { Uint32 startTime; long frameCount; Uint8 done; SDL_Event event; float dt = 0.010f; int maxSprites = 50000; int numSprites = 101; float* x = (float*)malloc(sizeof(float)*maxSprites); float* y = (float*)malloc(sizeof(float)*maxSprites); float* velx = (float*)malloc(sizeof(float)*maxSprites); float* vely = (float*)malloc(sizeof(float)*maxSprites); int i; GPU_Image* image = GPU_LoadImage("data/small_test.png"); if(image == NULL) return -1; GPU_SetSnapMode(image, GPU_SNAP_NONE); startTime = SDL_GetTicks(); frameCount = 0; for(i = 0; i < maxSprites; i++) { x[i] = rand()%screen->w; y[i] = rand()%screen->h; velx[i] = 10 + rand()%screen->w/10; vely[i] = 10 + rand()%screen->h/10; if(rand()%2) velx[i] = -velx[i]; if(rand()%2) vely[i] = -vely[i]; } done = 0; while(!done) { while(SDL_PollEvent(&event)) { if(event.type == SDL_QUIT) done = 1; else if(event.type == SDL_KEYDOWN) { if(event.key.keysym.sym == SDLK_ESCAPE) done = 1; else if(event.key.keysym.sym == SDLK_EQUALS || event.key.keysym.sym == SDLK_PLUS) { if(numSprites < maxSprites) numSprites += 100; GPU_LogError("Sprites: %d\n", numSprites); frameCount = 0; startTime = SDL_GetTicks(); } else if(event.key.keysym.sym == SDLK_MINUS) { if(numSprites > 1) numSprites -= 100; if(numSprites < 1) numSprites = 1; GPU_LogError("Sprites: %d\n", numSprites); frameCount = 0; startTime = SDL_GetTicks(); } } } for(i = 0; i < numSprites; i++) { x[i] += velx[i]*dt; y[i] += vely[i]*dt; if(x[i] < 0) { x[i] = 0; velx[i] = -velx[i]; } else if(x[i]> screen->w) { x[i] = screen->w; velx[i] = -velx[i]; } if(y[i] < 0) { y[i] = 0; vely[i] = -vely[i]; } else if(y[i]> screen->h) { y[i] = screen->h; vely[i] = -vely[i]; } } GPU_Clear(screen); for(i = 0; i < numSprites; i++) { GPU_Blit(image, NULL, screen, x[i], y[i]); } GPU_Flip(screen); frameCount++; if(SDL_GetTicks() - startTime > 5000) { printf("Average FPS: %.2f\n", 1000.0f*frameCount/(SDL_GetTicks() - startTime)); frameCount = 0; startTime = SDL_GetTicks(); } } printf("Average FPS: %.2f\n", 1000.0f*frameCount/(SDL_GetTicks() - startTime)); free(x); free(y); free(velx); free(vely); GPU_FreeImage(image); } GPU_Quit(); return 0; }
int main(int argc, char* argv[]) { GPU_Target* screen; printRenderers(); screen = GPU_Init(800, 600, GPU_DEFAULT_INIT_FLAGS); if(screen == NULL) { GPU_LogError("Failed to init SDL_gpu.\n"); return -1; } printCurrentRenderer(); { Uint32 startTime; long frameCount; Uint8 done; SDL_Event event; GPU_Image* image; GPU_Image* image1; GPU_LogError("Loading image\n"); image = GPU_LoadImage(IMAGE_FILE); if(image == NULL) { GPU_LogError("Failed to load image.\n"); return -1; } GPU_LogError("Saving image\n"); GPU_SaveImage(image, SAVE_FILE, GPU_FILE_AUTO); GPU_LogError("Reloading image\n"); image1 = GPU_LoadImage(SAVE_FILE); if(image1 == NULL) { GPU_LogError("Failed to reload image.\n"); return -1; } startTime = SDL_GetTicks(); frameCount = 0; done = 0; while(!done) { while(SDL_PollEvent(&event)) { if(event.type == SDL_QUIT) done = 1; else if(event.type == SDL_KEYDOWN) { if(event.key.keysym.sym == SDLK_ESCAPE) done = 1; } } GPU_Clear(screen); GPU_Blit(image, NULL, screen, screen->w/4, screen->h/2); GPU_Blit(image1, NULL, screen, 3*screen->w/4, screen->h/2); GPU_Flip(screen); frameCount++; if(frameCount%500 == 0) printf("Average FPS: %.2f\n", 1000.0f*frameCount/(SDL_GetTicks() - startTime)); } printf("Average FPS: %.2f\n", 1000.0f*frameCount/(SDL_GetTicks() - startTime)); GPU_FreeImage(image); GPU_FreeImage(image1); } GPU_Quit(); return 0; }
int main(int argc, char* argv[]) { GPU_Target* screen; printRenderers(); screen = GPU_Init(800, 600, GPU_DEFAULT_INIT_FLAGS); if(screen == NULL) return -1; printCurrentRenderer(); { GPU_Image* image; GPU_Target* alias_target; GPU_Image* alias_image; Uint32 startTime; long frameCount; Uint8 done; SDL_Event event; image = GPU_LoadImage("data/test.bmp"); if (image == NULL) return -1; alias_target = GPU_CreateAliasTarget(screen); GPU_SetViewport(screen, GPU_MakeRect(50, 30, 400, 300)); GPU_SetViewport(alias_target, GPU_MakeRect(400, 30, 400, 300)); GPU_SetTargetRGBA(alias_target, 255, 100, 100, 200); alias_image = GPU_CreateAliasImage(image); GPU_SetImageFilter(alias_image, GPU_FILTER_NEAREST); GPU_SetRGBA(alias_image, 100, 255, 100, 200); startTime = SDL_GetTicks(); frameCount = 0; done = 0; while (!done) { while (SDL_PollEvent(&event)) { if (event.type == SDL_QUIT) done = 1; else if (event.type == SDL_KEYDOWN) { if (event.key.keysym.sym == SDLK_ESCAPE) done = 1; } } GPU_Clear(screen); GPU_Blit(image, NULL, screen, image->w / 2, image->h / 2); GPU_Blit(alias_image, NULL, screen, image->w + alias_image->w / 2, alias_image->h / 2); GPU_Blit(image, NULL, alias_target, image->w / 2, image->h / 2); GPU_Blit(alias_image, NULL, alias_target, image->w + alias_image->w / 2, alias_image->h / 2); GPU_Flip(screen); frameCount++; if (frameCount % 500 == 0) printf("Average FPS: %.2f\n", 1000.0f*frameCount / (SDL_GetTicks() - startTime)); } printf("Average FPS: %.2f\n", 1000.0f*frameCount / (SDL_GetTicks() - startTime)); GPU_FreeImage(alias_image); GPU_FreeImage(image); GPU_FreeTarget(alias_target); } GPU_Quit(); return 0; }
int main(int argc, char* argv[]) { GPU_Target* screen; printRenderers(); screen = GPU_Init(800, 600, GPU_DEFAULT_INIT_FLAGS); if(screen == NULL) return -1; printCurrentRenderer(); { int numImages; GPU_Image** images; int i; const Uint8* keystates; GPU_Camera camera; float dt; Uint8 done; SDL_Event event; float x, y; images = (GPU_Image**)malloc(sizeof(GPU_Image*)*(argc - 1)); numImages = 0; for (i = 1; i < argc; i++) { images[numImages] = GPU_LoadImage(argv[i]); if (images[numImages] != NULL) numImages++; } keystates = SDL_GetKeyState(NULL); camera = GPU_GetDefaultCamera(); dt = 0.010f; done = 0; while (!done) { while (SDL_PollEvent(&event)) { if (event.type == SDL_QUIT) done = 1; else if (event.type == SDL_KEYDOWN) { if (event.key.keysym.sym == SDLK_ESCAPE) done = 1; else if (event.key.keysym.sym == SDLK_r) { camera.x = 0.0f; camera.y = 0.0f; camera.z = -10.0f; camera.zoom = 1.0f; camera.angle = 0.0f; } } else if (event.type == SDL_MOUSEBUTTONDOWN) { float x, y; GPU_GetVirtualCoords(screen, &x, &y, event.button.x, event.button.y); printScreenToWorld(x, y); } } if (keystates[KEY_UP]) { camera.y -= 200 * dt; } else if (keystates[KEY_DOWN]) { camera.y += 200 * dt; } if (keystates[KEY_LEFT]) { camera.x -= 200 * dt; } else if (keystates[KEY_RIGHT]) { camera.x += 200 * dt; } if (keystates[KEY_MINUS]) { camera.zoom -= 1.0f*dt; } else if (keystates[KEY_EQUALS]) { camera.zoom += 1.0f*dt; } GPU_ClearRGBA(screen, 255, 255, 255, 255); GPU_SetCamera(screen, &camera); x = 0; y = 0; for (i = 0; i < numImages; i++) { x += images[i]->w / 2.0f; y += images[i]->h / 2.0f; GPU_Blit(images[i], NULL, screen, x, y); x += images[i]->w / 2.0f; y += images[i]->h / 2.0f; } GPU_Flip(screen); SDL_Delay(10); } for (i = 0; i < numImages; i++) { GPU_FreeImage(images[i]); } free(images); } GPU_Quit(); return 0; }
int main(int argc, char* argv[]) { GPU_Target* screen; printRenderers(); screen = GPU_Init(800, 600, GPU_DEFAULT_INIT_FLAGS); if(screen == NULL) return -1; printCurrentRenderer(); { Uint32 startTime; long frameCount; Uint8 done; SDL_Event event; int i = 0; float dt = 0.010f; #define MAX_GROUPS 30 Group groups[MAX_GROUPS]; int num_groups; memset(groups, 0, sizeof(Group)*MAX_GROUPS); num_groups = 0; groups[num_groups] = create_first_group(); num_groups++; startTime = SDL_GetTicks(); frameCount = 0; done = 0; while(!done) { while(SDL_PollEvent(&event)) { if(event.type == SDL_QUIT) done = 1; else if(event.type == SDL_KEYDOWN) { if(event.key.keysym.sym == SDLK_ESCAPE) done = 1; else if(event.key.keysym.sym == SDLK_EQUALS || event.key.keysym.sym == SDLK_PLUS) { for(i = 0; i < MAX_GROUPS; i++) { if(groups[i].target == NULL) { groups[i] = create_group(); num_groups++; GPU_Log("Added window %u. num_groups: %d\n", groups[i].target->context->windowID, num_groups); break; } } } else if(event.key.keysym.sym == SDLK_MINUS) { if(num_groups > 0) { for(i = MAX_GROUPS-1; i >= 0; i--) { if(groups[i].target != NULL) { GPU_Log("Removed window %u. num_groups: %d\n", groups[i].target->context->windowID, num_groups-1); destroy_group(groups, i); num_groups--; break; } } if(num_groups == 0) done = 1; } } } else if(event.type == SDL_MOUSEBUTTONDOWN) { GPU_Target* target = GPU_GetWindowTarget(event.button.windowID); if(target == NULL) GPU_Log("Clicked on window %u. NULL target.\n", event.button.windowID); else GPU_Log("Clicked on window %u. Target dims: %dx%d\n", event.button.windowID, target->w, target->h); } else if(event.type == SDL_WINDOWEVENT) { if(event.window.event == SDL_WINDOWEVENT_CLOSE) { Uint8 closed = 0; for(i = 0; i < MAX_GROUPS; i++) { if(groups[i].target != NULL && groups[i].target->context->windowID == event.window.windowID) { closed = 1; GPU_Log("Removed window %u. num_groups: %d\n", groups[i].target->context->windowID, num_groups-1); destroy_group(groups, i); num_groups--; break; } } // The last window was closed, then. if(!closed || num_groups == 0) done = 1; } } } for(i = 0; i < MAX_GROUPS; i++) { if(groups[i].target == NULL) continue; groups[i].sprite.x += groups[i].sprite.velx*dt; groups[i].sprite.y += groups[i].sprite.vely*dt; if(groups[i].sprite.x < 0) { groups[i].sprite.x = 0; groups[i].sprite.velx = -groups[i].sprite.velx; } else if(groups[i].sprite.x > screen_w) { groups[i].sprite.x = screen_w; groups[i].sprite.velx = -groups[i].sprite.velx; } if(groups[i].sprite.y < 0) { groups[i].sprite.y = 0; groups[i].sprite.vely = -groups[i].sprite.vely; } else if(groups[i].sprite.y > screen_h) { groups[i].sprite.y = screen_h; groups[i].sprite.vely = -groups[i].sprite.vely; } } for(i = 0; i < MAX_GROUPS; i++) { if(groups[i].target == NULL) continue; GPU_Clear(groups[i].target); GPU_Blit(groups[i].sprite.image, NULL, groups[i].target, groups[i].sprite.x, groups[i].sprite.y); GPU_Flip(groups[i].target); } frameCount++; if(frameCount%500 == 0) GPU_Log("Average FPS: %.2f\n", 1000.0f*frameCount/(SDL_GetTicks() - startTime)); } GPU_Log("Average FPS: %.2f\n", 1000.0f*frameCount/(SDL_GetTicks() - startTime)); for(i = 0; i < MAX_GROUPS; i++) { if(groups[i].target == NULL) continue; destroy_group(groups, i); } } GPU_Quit(); return 0; }
int main(int argc, char* argv[]) { GPU_Target* screen; printRenderers(); screen = GPU_Init(800, 600, GPU_DEFAULT_INIT_FLAGS); if(screen == NULL) return -1; printCurrentRenderer(); { Uint32 startTime; long frameCount; Uint8 done; SDL_Event event; GPU_Image* image; GPU_Image* image1; GPU_Image* image1a; SDL_Color yellow = {246, 255, 0}; SDL_Color red = {200, 0, 0}; GPU_Image* image2; GPU_Image* image3; GPU_Image* image4; image = GPU_LoadImage("data/test3.png"); if(image == NULL) return -1; image1 = GPU_CopyImage(image); makeColorTransparent(image1, yellow); image1a = GPU_CopyImage(image); replaceColor(image1a, yellow, red); image2 = GPU_CopyImage(image); shiftHSV(image2, 100, 0, 0); image3 = GPU_CopyImage(image); shiftHSV(image3, 0, -100, 0); image4 = GPU_CopyImage(image); shiftHSV(image4, 0, 0, 100); startTime = SDL_GetTicks(); frameCount = 0; done = 0; while(!done) { while(SDL_PollEvent(&event)) { if(event.type == SDL_QUIT) done = 1; else if(event.type == SDL_KEYDOWN) { if(event.key.keysym.sym == SDLK_ESCAPE) done = 1; } } GPU_Clear(screen); GPU_Blit(image, NULL, screen, 150, 150); GPU_Blit(image1, NULL, screen, 300, 150); GPU_Blit(image1a, NULL, screen, 450, 150); GPU_Blit(image2, NULL, screen, 150, 300); GPU_Blit(image3, NULL, screen, 300, 300); GPU_Blit(image4, NULL, screen, 450, 300); GPU_Flip(screen); frameCount++; if(frameCount%500 == 0) printf("Average FPS: %.2f\n", 1000.0f*frameCount/(SDL_GetTicks() - startTime)); } printf("Average FPS: %.2f\n", 1000.0f*frameCount/(SDL_GetTicks() - startTime)); GPU_FreeImage(image); GPU_FreeImage(image1); GPU_FreeImage(image1a); GPU_FreeImage(image2); GPU_FreeImage(image3); GPU_FreeImage(image4); } GPU_Quit(); return 0; }