/* Benchmark certain kernel operations */ void time_kernels ( struct vtx_data **A, /* matrix/graph being analyzed */ int n, /* number of rows/columns in matrix */ double *vwsqrt /* square roots of vertex weights */ ) { extern int DEBUG_PERTURB; /* debug flag for matrix perturbation */ extern int PERTURB; /* randomly perturb to break symmetry? */ extern int NPERTURB; /* number of edges to perturb */ extern int DEBUG_TRACE; /* trace main execution path */ extern double PERTURB_MAX; /* maximum size of perturbation */ int i, beg, end; double *dvec1, *dvec2, *dvec3; float *svec1, *svec2, *svec3, *vwsqrt_float; double norm_dvec, norm_svec; double dot_dvec, dot_svec; double time, time_dvec, time_svec; double diff; double factor, fac; float factor_float, fac_float; int loops; double min_time, target_time; double *mkvec(); float *mkvec_float(); void frvec(), frvec_float(); void vecran(); double ch_norm(), dot(); double norm_float(), dot_float(); double seconds(); void scadd(), scadd_float(), update(), update_float(); void splarax(), splarax_float(); void perturb_init(), perturb_clear(); if (DEBUG_TRACE > 0) { printf("<Entering time_kernels>\n"); } beg = 1; end = n; dvec1 = mkvec(beg, end); dvec2 = mkvec(beg, end); dvec3 = mkvec(beg - 1, end); svec1 = mkvec_float(beg, end); svec2 = mkvec_float(beg, end); svec3 = mkvec_float(beg - 1, end); if (vwsqrt == NULL) { vwsqrt_float = NULL; } else { vwsqrt_float = mkvec_float(beg - 1, end); for (i = beg - 1; i <= end; i++) { vwsqrt_float[i] = vwsqrt[i]; } } vecran(dvec1, beg, end); vecran(dvec2, beg, end); vecran(dvec3, beg, end); for (i = beg; i <= end; i++) { svec1[i] = dvec1[i]; svec2[i] = dvec2[i]; svec3[i] = dvec3[i]; } /* Set number of loops so that ch_norm() takes about one second. This should insulate against inaccurate timings on faster machines. */ loops = 1; time_dvec = 0; min_time = 0.5; target_time = 1.0; while (time_dvec < min_time) { time = seconds(); for (i = loops; i; i--) { norm_dvec = ch_norm(dvec1, beg, end); } time_dvec = seconds() - time; if (time_dvec < min_time) { loops = 10 * loops; } } loops = (target_time / time_dvec) * loops; if (loops < 1) loops = 1; printf(" Kernel benchmarking\n"); printf("Time (in seconds) for %d loops of each operation:\n\n", loops); printf("Routine Double Float Discrepancy Description\n"); printf("------- ------ ----- ----------- -----------\n"); /* Norm operation */ time = seconds(); for (i = loops; i; i--) { norm_dvec = ch_norm(dvec1, beg, end); } time_dvec = seconds() - time; time = seconds(); for (i = loops; i; i--) { norm_svec = norm_float(svec1, beg, end); } time_svec = seconds() - time; diff = norm_dvec - norm_svec; printf("norm %6.2f %6.2f %14.5e", time_dvec, time_svec, diff); printf(" 2 norm\n"); /* Dot operation */ time = seconds(); for (i = loops; i; i--) { dot_dvec = dot(dvec1, beg, end, dvec2); } time_dvec = seconds() - time; time = seconds(); for (i = loops; i; i--) { dot_svec = dot_float(svec1, beg, end, svec2); } time_svec = seconds() - time; diff = dot_dvec - dot_svec; printf("dot %6.2f %6.2f %14.5e", time_dvec, time_svec, diff); printf(" scalar product\n"); /* Scadd operation */ factor = 1.01; factor_float = factor; fac = factor; time = seconds(); for (i = loops; i; i--) { scadd(dvec1, beg, end, fac, dvec2); fac = -fac; /* to keep things in scale */ } time_dvec = seconds() - time; fac_float = factor_float; time = seconds(); for (i = loops; i; i--) { scadd_float(svec1, beg, end, fac_float, svec2); fac_float = -fac_float; /* to keep things in scale */ } time_svec = seconds() - time; diff = checkvec(dvec1, beg, end, svec1); printf("scadd %6.2f %6.2f %14.5e", time_dvec, time_svec, diff); printf(" vec1 <- vec1 + alpha*vec2\n"); /* Update operation */ time = seconds(); for (i = loops; i; i--) { update(dvec1, beg, end, dvec2, factor, dvec3); } time_dvec = seconds() - time; time = seconds(); for (i = loops; i; i--) { update_float(svec1, beg, end, svec2, factor_float, svec3); } time_svec = seconds() - time; diff = checkvec(dvec1, beg, end, svec1); printf("update %6.2f %6.2f %14.2g", time_dvec, time_svec, diff); printf(" vec1 <- vec2 + alpha*vec3\n"); /* splarax operation */ if (PERTURB) { if (NPERTURB > 0 && PERTURB_MAX > 0.0) { perturb_init(n); if (DEBUG_PERTURB > 0) { printf("Matrix being perturbed with scale %e\n", PERTURB_MAX); } } else if (DEBUG_PERTURB > 0) { printf("Matrix not being perturbed\n"); } } time = seconds(); for (i = loops; i; i--) { splarax(dvec1, A, n, dvec2, vwsqrt, dvec3); } time_dvec = seconds() - time; time = seconds(); for (i = loops; i; i--) { splarax_float(svec1, A, n, svec2, vwsqrt_float, svec3); } time_svec = seconds() - time; diff = checkvec(dvec1, beg, end, svec1); printf("splarax %6.2f %6.2f %14.5e", time_dvec, time_svec, diff); printf(" sparse matrix vector multiply\n"); if (PERTURB && NPERTURB > 0 && PERTURB_MAX > 0.0) { perturb_clear(); } printf("\n"); /* Free memory */ frvec(dvec1, 1); frvec(dvec2, 1); frvec(dvec3, 0); frvec_float(svec1, 1); frvec_float(svec2, 1); frvec_float(svec3, 0); if (vwsqrt_float != NULL) { frvec_float(vwsqrt_float, beg - 1); } }
void lanczos_FO ( struct vtx_data **A, /* graph data structure */ int n, /* number of rows/colums in matrix */ int d, /* problem dimension = # evecs to find */ double **y, /* columns of y are eigenvectors of A */ double *lambda, /* ritz approximation to eigenvals of A */ double *bound, /* on ritz pair approximations to eig pairs of A */ double eigtol, /* tolerance on eigenvectors */ double *vwsqrt, /* square root of vertex weights */ double maxdeg, /* maximum degree of graph */ int version /* 1 = standard mode, 2 = inverse operator mode */ ) { extern FILE *Output_File; /* output file or NULL */ extern int DEBUG_EVECS; /* print debugging output? */ extern int DEBUG_TRACE; /* trace main execution path */ extern int WARNING_EVECS; /* print warning messages? */ extern int LANCZOS_MAXITNS; /* maximum Lanczos iterations allowed */ extern double BISECTION_SAFETY; /* safety factor for bisection algorithm */ extern double SRESTOL; /* resid tol for T evec comp */ extern double DOUBLE_MAX; /* Warning on inaccurate computation of evec of T */ extern double splarax_time; /* time matvecs */ extern double orthog_time; /* time orthogonalization work */ extern double tevec_time; /* time tridiagonal eigvec work */ extern double evec_time; /* time to generate eigenvectors */ extern double ql_time; /* time tridiagonal eigval work */ extern double blas_time; /* time for blas (not assembly coded) */ extern double init_time; /* time for allocating memory, etc. */ extern double scan_time; /* time for scanning bounds list */ extern double debug_time; /* time for debug computations and output */ int i, j; /* indicies */ int maxj; /* maximum number of Lanczos iterations */ double *u, *r; /* Lanczos vectors */ double *Aq; /* sparse matrix-vector product vector */ double *alpha, *beta; /* the Lanczos scalars from each step */ double *ritz; /* copy of alpha for tqli */ double *workj; /* work vector (eg. for tqli) */ double *workn; /* work vector (eg. for checkeig) */ double *s; /* eigenvector of T */ double **q; /* columns of q = Lanczos basis vectors */ double *bj; /* beta(j)*(last element of evecs of T) */ double bis_safety; /* real safety factor for bisection algorithm */ double Sres; /* how well Tevec calculated eigvecs */ double Sres_max; /* Maximum value of Sres */ int inc_bis_safety; /* need to increase bisection safety */ double *Ares; /* how well Lanczos calculated each eigpair */ double *inv_lambda; /* eigenvalues of inverse operator */ int *index; /* the Ritz index of an eigenpair */ struct orthlink *orthlist = NULL; /* vectors to orthogonalize against in Lanczos */ struct orthlink *orthlist2 = NULL; /* vectors to orthogonalize against in Symmlq */ struct orthlink *temp; /* for expanding orthogonalization list */ double *ritzvec=NULL; /* ritz vector for current iteration */ double *zeros=NULL; /* vector of all zeros */ double *ones=NULL; /* vector of all ones */ struct scanlink *scanlist; /* list of fields for min ritz vals */ struct scanlink *curlnk; /* for traversing the scanlist */ double bji_tol; /* tol on bji estimate of A e-residual */ int converged; /* has the iteration converged? */ double time; /* current clock time */ double shift, rtol; /* symmlq input */ long precon, goodb, nout; /* symmlq input */ long checka, intlim; /* symmlq input */ double anorm, acond; /* symmlq output */ double rnorm, ynorm; /* symmlq output */ long istop, itn; /* symmlq output */ double macheps; /* machine precision calculated by symmlq */ double normxlim; /* a stopping criteria for symmlq */ long itnmin; /* enforce minimum number of iterations */ int symmlqitns; /* # symmlq itns */ double *wv1=NULL, *wv2=NULL, *wv3=NULL; /* Symmlq work space */ double *wv4=NULL, *wv5=NULL, *wv6=NULL; /* Symmlq work space */ long long_n; /* long int copy of n for symmlq */ int ritzval_flag = 0; /* status flag for ql() */ double Anorm; /* Norm estimate of the Laplacian matrix */ int left, right; /* ranges on the search for ritzvals */ int memory_ok; /* TRUE as long as don't run out of memory */ double *mkvec(); /* allocates space for a vector */ double *mkvec_ret(); /* mkvec() which returns error code */ double dot(); /* standard dot product routine */ struct orthlink *makeorthlnk(); /* make space for entry in orthog. set */ double ch_norm(); /* vector norm */ double Tevec(); /* calc evec of T by linear recurrence */ struct scanlink *mkscanlist(); /* make scan list for min ritz vecs */ double lanc_seconds(); /* current clock timer */ int symmlq_(), get_ritzvals(); void setvec(), vecscale(), update(), vecran(), strout(); void splarax(), scanmin(), scanmax(), frvec(), orthogonalize(); void orthog1(), orthogvec(), bail(), warnings(), mkeigvecs(); if (DEBUG_TRACE > 0) { printf("<Entering lanczos_FO>\n"); } if (DEBUG_EVECS > 0) { if (version == 1) { printf("Full orthogonalization Lanczos, matrix size = %d\n", n); } else { printf("Full orthogonalization Lanczos, inverted operator, matrix size = %d\n", n); } } /* Initialize time. */ time = lanc_seconds(); if (n < d + 1) { bail("ERROR: System too small for number of eigenvalues requested.",1); /* d+1 since don't use zero eigenvalue pair */ } /* Allocate Lanczos space. */ maxj = LANCZOS_MAXITNS; u = mkvec(1, n); r = mkvec(1, n); Aq = mkvec(1, n); ritzvec = mkvec(1, n); zeros = mkvec(1, n); setvec(zeros, 1, n, 0.0); workn = mkvec(1, n); Ares = mkvec(1, d); inv_lambda = mkvec(1, d); index = smalloc((d + 1) * sizeof(int)); alpha = mkvec(1, maxj); beta = mkvec(1, maxj + 1); ritz = mkvec(1, maxj); s = mkvec(1, maxj); bj = mkvec(1, maxj); workj = mkvec(1, maxj + 1); q = smalloc((maxj + 1) * sizeof(double *)); scanlist = mkscanlist(d); if (version == 2) { /* Allocate Symmlq space all in one chunk. */ wv1 = smalloc(6 * (n + 1) * sizeof(double)); wv2 = &wv1[(n + 1)]; wv3 = &wv1[2 * (n + 1)]; wv4 = &wv1[3 * (n + 1)]; wv5 = &wv1[4 * (n + 1)]; wv6 = &wv1[5 * (n + 1)]; /* Set invariant symmlq parameters */ precon = FALSE; /* FALSE until we figure out a good way */ goodb = FALSE; /* should be FALSE for this application */ checka = FALSE; /* if don't know by now, too bad */ intlim = n; /* set to enforce a maximum number of Symmlq itns */ itnmin = 0; /* set to enforce a minimum number of Symmlq itns */ shift = 0.0; /* since just solving rather than doing RQI */ symmlqitns = 0; /* total number of Symmlq iterations */ nout = 0; /* Effectively disabled - see notes in symmlq.f */ rtol = 1.0e-5; /* requested residual tolerance */ normxlim = DOUBLE_MAX; /* Effectively disables ||x|| termination criterion */ long_n = n; /* copy to long for linting */ } /* Initialize. */ vecran(r, 1, n); if (vwsqrt == NULL) { /* whack one's direction from initial vector */ orthog1(r, 1, n); /* list the ones direction for later use in Symmlq */ if (version == 2) { orthlist2 = makeorthlnk(); ones = mkvec(1, n); setvec(ones, 1, n, 1.0); orthlist2->vec = ones; orthlist2->pntr = NULL; } } else { /* whack vwsqrt direction from initial vector */ orthogvec(r, 1, n, vwsqrt); if (version == 2) { /* list the vwsqrt direction for later use in Symmlq */ orthlist2 = makeorthlnk(); orthlist2->vec = vwsqrt; orthlist2->pntr = NULL; } } beta[1] = ch_norm(r, 1, n); q[0] = zeros; bji_tol = eigtol; orthlist = NULL; Sres_max = 0.0; Anorm = 2 * maxdeg; /* Gershgorin estimate for ||A|| */ bis_safety = BISECTION_SAFETY; inc_bis_safety = FALSE; init_time += lanc_seconds() - time; /* Main Lanczos loop. */ j = 1; converged = FALSE; memory_ok = TRUE; while ((j <= maxj) && (converged == FALSE) && memory_ok) { time = lanc_seconds(); /* Allocate next Lanczos vector. If fail, back up one step and compute approx. eigvec. */ q[j] = mkvec_ret(1, n); if (q[j] == NULL) { memory_ok = FALSE; if (DEBUG_EVECS > 0 || WARNING_EVECS > 0) { strout("WARNING: Lanczos out of memory; computing best approximation available.\n"); } if (j <= 2) { bail("ERROR: Sorry, can't salvage Lanczos.",1); /* ... save yourselves, men. */ } j--; } vecscale(q[j], 1, n, 1.0 / beta[j], r); blas_time += lanc_seconds() - time; time = lanc_seconds(); if (version == 1) { splarax(Aq, A, n, q[j], vwsqrt, workn); } else { symmlq_(&long_n, &(q[j][1]), &wv1[1], &wv2[1], &wv3[1], &wv4[1], &Aq[1], &wv5[1], &wv6[1], &checka, &goodb, &precon, &shift, &nout, &intlim, &rtol, &istop, &itn, &anorm, &acond, &rnorm, &ynorm, (double *) A, vwsqrt, (double *) orthlist2, &macheps, &normxlim, &itnmin); symmlqitns += itn; if (DEBUG_EVECS > 2) { printf("Symmlq report: rtol %g\n", rtol); printf(" system norm %g, solution norm %g\n", anorm, ynorm); printf(" system condition %g, residual %g\n", acond, rnorm); printf(" termination condition %2ld, iterations %3ld\n", istop, itn); } } splarax_time += lanc_seconds() - time; time = lanc_seconds(); update(u, 1, n, Aq, -beta[j], q[j - 1]); alpha[j] = dot(u, 1, n, q[j]); update(r, 1, n, u, -alpha[j], q[j]); blas_time += lanc_seconds() - time; time = lanc_seconds(); if (vwsqrt == NULL) { orthog1(r, 1, n); } else { orthogvec(r, 1, n, vwsqrt); } orthogonalize(r, n, orthlist); temp = orthlist; orthlist = makeorthlnk(); orthlist->vec = q[j]; orthlist->pntr = temp; beta[j + 1] = ch_norm(r, 1, n); orthog_time += lanc_seconds() - time; time = lanc_seconds(); left = j/2; right = j - left + 1; if (inc_bis_safety) { bis_safety *= 10; inc_bis_safety = FALSE; } ritzval_flag = get_ritzvals(alpha, beta+1, j, Anorm, workj+1, ritz, d, left, right, eigtol, bis_safety); /* ... have to off-set beta and workj since full orthogonalization indexes these from 1 to maxj+1 whereas selective orthog. indexes them from 0 to maxj */ if (ritzval_flag != 0) { bail("ERROR: Both Sturm bisection and QL failed.",1); /* ... give up. */ } ql_time += lanc_seconds() - time; /* Convergence check using Paige bji estimates. */ time = lanc_seconds(); for (i = 1; i <= j; i++) { Sres = Tevec(alpha, beta, j, ritz[i], s); if (Sres > Sres_max) { Sres_max = Sres; } if (Sres > SRESTOL) { inc_bis_safety = TRUE; } bj[i] = s[j] * beta[j + 1]; } tevec_time += lanc_seconds() - time; time = lanc_seconds(); if (version == 1) { scanmin(ritz, 1, j, &scanlist); } else { scanmax(ritz, 1, j, &scanlist); } converged = TRUE; if (j < d) converged = FALSE; else { curlnk = scanlist; while (curlnk != NULL) { if (bj[curlnk->indx] > bji_tol) { converged = FALSE; } curlnk = curlnk->pntr; } } scan_time += lanc_seconds() - time; j++; } j--; /* Collect eigenvalue and bound information. */ time = lanc_seconds(); mkeigvecs(scanlist,lambda,bound,index,bj,d,&Sres_max,alpha,beta+1,j,s,y,n,q); evec_time += lanc_seconds() - time; /* Analyze computation for and report additional problems */ time = lanc_seconds(); if (DEBUG_EVECS>0 && version == 2) { printf("\nTotal Symmlq iterations %3d\n", symmlqitns); } if (version == 2) { for (i = 1; i <= d; i++) { lambda[i] = 1.0/lambda[i]; } } warnings(workn, A, y, n, lambda, vwsqrt, Ares, bound, index, d, j, maxj, Sres_max, eigtol, u, Anorm, Output_File); debug_time += lanc_seconds() - time; /* Free any memory allocated in this routine. */ time = lanc_seconds(); frvec(u, 1); frvec(r, 1); frvec(Aq, 1); frvec(ritzvec, 1); frvec(zeros, 1); if (vwsqrt == NULL && version == 2) { frvec(ones, 1); } frvec(workn, 1); frvec(Ares, 1); frvec(inv_lambda, 1); sfree(index); frvec(alpha, 1); frvec(beta, 1); frvec(ritz, 1); frvec(s, 1); frvec(bj, 1); frvec(workj, 1); if (version == 2) { frvec(wv1, 0); } while (scanlist != NULL) { curlnk = scanlist->pntr; sfree(scanlist); scanlist = curlnk; } for (i = 1; i <= j; i++) { frvec(q[i], 1); } while (orthlist != NULL) { temp = orthlist->pntr; sfree(orthlist); orthlist = temp; } while (version == 2 && orthlist2 != NULL) { temp = orthlist2->pntr; sfree(orthlist2); orthlist2 = temp; } sfree(q); init_time += lanc_seconds() - time; }