static bool CC_X86_VectorCallAssignRegister(unsigned &ValNo, MVT &ValVT, MVT &LocVT, CCValAssign::LocInfo &LocInfo, ISD::ArgFlagsTy &ArgFlags, CCState &State) { ArrayRef<MCPhysReg> RegList = CC_X86_VectorCallGetSSEs(ValVT); bool Is64bit = static_cast<const X86Subtarget &>( State.getMachineFunction().getSubtarget()) .is64Bit(); for (auto Reg : RegList) { // If the register is not marked as allocated - assign to it. if (!State.isAllocated(Reg)) { unsigned AssigedReg = State.AllocateReg(Reg); assert(AssigedReg == Reg && "Expecting a valid register allocation"); State.addLoc( CCValAssign::getReg(ValNo, ValVT, AssigedReg, LocVT, LocInfo)); return true; } // If the register is marked as shadow allocated - assign to it. if (Is64bit && State.IsShadowAllocatedReg(Reg)) { State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); return true; } } llvm_unreachable("Clang should ensure that hva marked vectors will have " "an available register."); return false; }
bool CC_X86_64_VectorCall(unsigned &ValNo, MVT &ValVT, MVT &LocVT, CCValAssign::LocInfo &LocInfo, ISD::ArgFlagsTy &ArgFlags, CCState &State) { // On the second pass, go through the HVAs only. if (ArgFlags.isSecArgPass()) { if (ArgFlags.isHva()) return CC_X86_VectorCallAssignRegister(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State); return true; } // Process only vector types as defined by vectorcall spec: // "A vector type is either a floating-point type, for example, // a float or double, or an SIMD vector type, for example, __m128 or __m256". if (!(ValVT.isFloatingPoint() || (ValVT.isVector() && ValVT.getSizeInBits() >= 128))) { // If R9 was already assigned it means that we are after the fourth element // and because this is not an HVA / Vector type, we need to allocate // shadow XMM register. if (State.isAllocated(X86::R9)) { // Assign shadow XMM register. (void)State.AllocateReg(CC_X86_VectorCallGetSSEs(ValVT)); } return false; } if (!ArgFlags.isHva() || ArgFlags.isHvaStart()) { // Assign shadow GPR register. (void)State.AllocateReg(CC_X86_64_VectorCallGetGPRs()); // Assign XMM register - (shadow for HVA and non-shadow for non HVA). if (unsigned Reg = State.AllocateReg(CC_X86_VectorCallGetSSEs(ValVT))) { // In Vectorcall Calling convention, additional shadow stack can be // created on top of the basic 32 bytes of win64. // It can happen if the fifth or sixth argument is vector type or HVA. // At that case for each argument a shadow stack of 8 bytes is allocated. if (Reg == X86::XMM4 || Reg == X86::XMM5) State.AllocateStack(8, 8); if (!ArgFlags.isHva()) { State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); return true; // Allocated a register - Stop the search. } } } // If this is an HVA - Stop the search, // otherwise continue the search. return ArgFlags.isHva(); }
bool CC_X86_32_RegCall_Assign2Regs(unsigned &ValNo, MVT &ValVT, MVT &LocVT, CCValAssign::LocInfo &LocInfo, ISD::ArgFlagsTy &ArgFlags, CCState &State) { // List of GPR registers that are available to store values in regcall // calling convention. static const MCPhysReg RegList[] = {X86::EAX, X86::ECX, X86::EDX, X86::EDI, X86::ESI}; // The vector will save all the available registers for allocation. SmallVector<unsigned, 5> AvailableRegs; // searching for the available registers. for (auto Reg : RegList) { if (!State.isAllocated(Reg)) AvailableRegs.push_back(Reg); } const size_t RequiredGprsUponSplit = 2; if (AvailableRegs.size() < RequiredGprsUponSplit) return false; // Not enough free registers - continue the search. // Allocating the available registers for (unsigned I = 0; I < RequiredGprsUponSplit; I++) { // Marking the register as located unsigned Reg = State.AllocateReg(AvailableRegs[I]); // Since we previously made sure that 2 registers are available // we expect that a real register number will be returned assert(Reg && "Expecting a register will be available"); // Assign the value to the allocated register State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); } // Successful in allocating regsiters - stop scanning next rules. return true; }