double cal_score(vector <size_t> instance){ //f(x)=(UW)(TV)' + Px double score = 0.0; DblVec UW; DblVec TV; int dimLatent = W.size() / getUserFeaCount(); for (size_t j = 0 ; j < dimLatent; j++){ UW.push_back(0); TV.push_back(0); } for (size_t j = 0; j < instance.size(); j++){ score += P[instance[j]] * 1.0; if(instance[j] < getAdFeaCount()){ for(size_t k = 0; k < dimLatent; k++){ int v_index = instance[j] * dimLatent + k; TV[k]+=V[v_index]; } } else if(instance[j] < getAdFeaCount() + getUserFeaCount()){ for(size_t k = 0; k < dimLatent; k++){ int w_index = (instance[j] - getAdFeaCount())*dimLatent + k; UW[k] += W[w_index]; } } } for (size_t j = 0; j < dimLatent; j++){ score += UW[j]*TV[j]; } return score; }
ConvexConstraintsPtr ZMPConstraint::convex(const DblVec& x, Model* model) { DblVec curvals = getDblVec(x, m_vars); m_rad->SetDOFValues(curvals); DblMatrix jacmoment = DblMatrix::Zero(3, curvals.size()); OR::Vector moment(0,0,0); float totalmass = 0; BOOST_FOREACH(const KinBody::LinkPtr& link, m_rad->GetRobot()->GetLinks()) { if (!link->GetGeometries().empty()) { OR::Vector cm = link->GetGlobalCOM(); moment += cm * link->GetMass(); jacmoment += m_rad->PositionJacobian(link->GetIndex(), cm) * link->GetMass(); totalmass += link->GetMass(); } } moment /= totalmass; jacmoment /= totalmass; AffExpr x_expr = AffExpr(moment.x) + varDot(jacmoment.row(0), m_vars) - jacmoment.row(0).dot(toVectorXd(curvals)); AffExpr y_expr = AffExpr(moment.y) + varDot(jacmoment.row(1), m_vars) - jacmoment.row(1).dot(toVectorXd(curvals)); ConvexConstraintsPtr out(new ConvexConstraints(model)); for (int i=0; i < m_ab.rows(); ++i) { out->addIneqCnt(m_ab(i,0) * x_expr + m_ab(i,1) * y_expr + m_c(i)); } return out; }
int load_model(const char* model_path){ string line; char model_file_name[50]; sprintf(model_file_name, "%sP", model_path); double fea_weight; //load P ifstream pmodel(model_file_name); if(!pmodel.good()){ cerr << "error model file " << model_file_name << endl; exit(1); } while (getline(pmodel, line)){ fea_weight = atof(line.c_str()); P.push_back(fea_weight); } pmodel.close(); //load W sprintf(model_file_name, "%sX", model_path); ifstream xmodel(model_file_name); if(!xmodel.good()){ cerr << "error model file " << model_file_name << endl; exit(1); } while (getline(xmodel, line)){ fea_weight = atof(line.c_str()); X.push_back(fea_weight); } xmodel.close(); return 0; }
void clear() { x.clear(); status = INVALID; cost_vals.clear(); cnt_viols.clear(); n_func_evals = 0; n_qp_solves = 0; }
size_t NeedleCollisionHash::hash(const DblVec& x) { DblVec extended_x = x; for (int i = 0; i < helper->pis.size(); ++i) { for (int j = 0; j < helper->pis[i]->local_configs.size(); ++j) { DblVec state = toDblVec(logDown(helper->pis[i]->local_configs[j]->pose)); extended_x.insert(extended_x.end(), state.begin(), state.end()); } } return boost::hash_range(extended_x.begin(), extended_x.end()); }
VectorXd RotationError::operator()(const VectorXd& a) const { DblVec phis; DblVec Deltas; phis = toDblVec(a); VectorXd ret(1); ret(0) = -this->total_rotation_limit; for (int i = 0; i < phis.size(); ++i) { ret(0) += fabs(phis[i]); } return ret; }
VectorXd CurvatureError::operator()(const VectorXd& a) const { DblVec curvatures; DblVec Deltas; curvatures = toDblVec(a.head(pi->curvature_vars.size())); Deltas = DblVec(pi->curvature_vars.size(), a(a.size() - 1)); VectorXd ret(1); ret(0) = -this->total_curvature_limit; for (int i = 0; i < curvatures.size(); ++i) { ret(0) += fabs(curvatures[i]) * Deltas[i]; } return ret; }
double CurvatureCost::operator()(const VectorXd& a) const { DblVec curvatures; DblVec Deltas; curvatures = toDblVec(a.head(pi->curvature_vars.size())); Deltas = DblVec(pi->curvature_vars.size(), a(a.size() - 1)); double ret = 0; for (int i = 0; i < curvatures.size(); ++i) { double tmp = curvatures[i] * Deltas[i]; ret += tmp * tmp; } return ret * coeff; }
double LogisticRegressionObjective::EvalLocal(const DblVec& input, DblVec& gradient){ double loss = 0.0; for (size_t i = 0; i < input.size(); i++){ loss += 0.5 * input[i] * input[i] * l2weight; gradient[i] = l2weight * input[i]; } for (size_t i = 0; i < problem.NumInstances(); i++){ double score = problem.ScoreOf(i, input); double insLoss, insProb; if (score < -30){ insLoss = -score; insProb = 0; }else if (score > 30){ insLoss = 0; insProb = 1; }else { double temp = 1.0 + exp(-score); insLoss = log(temp); insProb = 1.0/ temp; } loss += insLoss; problem.AddMultTo(i, 1.0 - insProb, gradient); } return loss ; }
void displayGradient(DblVec& gradientP){ cout << "DEBUG DISPLAY GRADIENT\n"; for(size_t i = 0; i < gradientP.size(); i++){ if(gradientP[i] != 0) cout << i << " : " << gradientP[i] << endl; } cout << "DEBUG DISPLAY GRADIENT OVER\n"; }
double NeedleCollisionClearanceCost::value(const vector<double>& x, Model* model) { DblVec dists; EnvironmentBasePtr env = helper->pis[0]->local_configs[0]->GetEnv(); BOOST_FOREACH(const CollisionEvaluatorPtr& cc, this->ccs) { DblVec tmp_dists; cc->CalcDists(x, tmp_dists); for (int i = 0; i < tmp_dists.size(); ++i) { dists.push_back(-tmp_dists[i]); } } if (dists.size() > 0) { return vecMax(dists) * this->coeff; } else { return - helper->collision_clearance_threshold * this->coeff; } }
double OptimizerState::dotProduct(const DblVec& a, const DblVec& b){ double result = 0; for(size_t i=0; i < a.size(); i++){ result += a[i] * b[i]; } return result; }
double OptimizerState::dotProduct(const DblVec& a, const DblVec& b){ double result = 0; // cout << a[0] << " " << b[0] << endl; for(size_t i=0; i < a.size(); i++){ result += a[i] * b[i]; } return result; }
void testProblem(ScalarOfVectorPtr f, VectorOfVectorPtr g, ConstraintType cnt_type, const DblVec& init, const DblVec& sol) { OptProbPtr prob; size_t n = init.size(); assert (sol.size() == n); setupProblem(prob, n); prob->addCost(CostPtr(new CostFromFunc(f, prob->getVars(), "f", true))); prob->addConstraint(ConstraintPtr(new ConstraintFromFunc(g, prob->getVars(), VectorXd(), cnt_type,"g"))); BasicTrustRegionSQP solver(prob); solver.max_iter_ = 1000; solver.min_trust_box_size_ = 1e-5; solver.min_approx_improve_ = 1e-10; solver.merit_error_coeff_ = 1; solver.initialize(init); OptStatus status = solver.optimize(); EXPECT_EQ(status, OPT_CONVERGED); expectAllNear(solver.x(), sol, .01); }
void printVector(const DblVec &vec, const char* filename) { ofstream outfile(filename); if (!outfile.good()) { cerr << "error opening matrix file " << filename << endl; exit(1); } for (size_t i=0; i<vec.size(); i++) { outfile << vec[i] << endl; } outfile.close(); }
double calSparsity(const DblVec& vec, size_t dimLatent){ int num = vec.size() / dimLatent; int sparseNum = 0; double sum = 0; for(int i = 0; i < num; i++){ sum = 0; for(int j = 0; j < dimLatent; j++) sum += vec[i*dimLatent+j] * vec[i*dimLatent+j]; if(sum < 1e-10) sparseNum++; } return (double)sparseNum / num; }
double LogisticRegressionObjective::EvalLocalMultiThread(const DblVec& input, DblVec& gradient){ /* create 24 thread; each thread calculate a loss and gradient */ int threadNum = 24; double lossList[threadNum]; DblVec *gradList = new DblVec[threadNum]; for(int i = 0; i < threadNum; i++){ gradList[i] = DblVec(gradient.size()); } threadList = new pthread_t[threadNum]; for(int i = 0; i < threadNum; i++){ Parameter*p = new Parameter(*this, input, gradList[i], lossList[i], i, threadNum); pthread_create(&threadList[i], NULL, ThreadEvalLocal, p); } for(int i = 0; i < threadNum; i++){ pthread_join(threadList[i], NULL); } double loss = 0.0; for(int j = 0; j < gradient.size(); j++){ gradient[j] = 0.0; } for(int i = 0; i < threadNum; i++){ loss += lossList[i]; for(int j = 0; j < gradient.size(); j++){ gradient[j] += gradList[i][j]; } } delete []gradList; delete []threadList; return loss; }
double Mse(const DblVec &rec, const char* filename) { static DblVec temp(rec.size()); ifstream infile(filename); if (!infile.good()) { cerr << "error opening matrix file " << filename << endl; exit(1); } // outfile << "%%MatrixMarket matrix array real general" << endl; // outfile << "1 " << vec.size() << endl; for (size_t i=0; i<rec.size(); i++) { float val; infile >> val; temp[i] = val; } infile.close(); double final_mse = 0; for (size_t i=0; i<rec.size();i++){ final_mse += (rec[i]-temp[i])*(rec[i]-temp[i]); } final_mse /=rec.size(); return final_mse; }
void InitInfo::fromJson(const Json::Value& v) { string type_str; childFromJson(v, type_str, "type"); int n_steps = gPCI->basic_info.n_steps; int n_dof = gPCI->rad->GetDOF(); if (type_str == "stationary") { data = toVectorXd(gPCI->rad->GetDOFValues()).transpose().replicate(n_steps, 1); } else if (type_str == "given_traj") { FAIL_IF_FALSE(v.isMember("data")); const Value& vdata = v["data"]; if (vdata.size() != n_steps) { PRINT_AND_THROW("given initialization traj has wrong length"); } data.resize(n_steps, n_dof); for (int i=0; i < n_steps; ++i) { DblVec row; fromJsonArray(vdata[i], row, n_dof); data.row(i) = toVectorXd(row); } } else if (type_str == "straight_line") { FAIL_IF_FALSE(v.isMember("endpoint")); DblVec endpoint; childFromJson(v, endpoint, "endpoint"); if (endpoint.size() != n_dof) { PRINT_AND_THROW(boost::format("wrong number of dof values in initialization. expected %i got %j")%n_dof%endpoint.size()); } data = TrajArray(n_steps, n_dof); DblVec start = gPCI->rad->GetDOFValues(); for (int idof = 0; idof < n_dof; ++idof) { data.col(idof) = VectorXd::LinSpaced(n_steps, start[idof], endpoint[idof]); } } }
double LogisticRegressionObjective::Eval(const DblVec& input, DblVec& gradient){ // clock_t start,finish; // double totaltime; DblVec localInput = input; DblVec localGradient = gradient; MPI_Bcast(&localInput[0], localInput.size(), MPI_DOUBLE, 0, MPI_COMM_WORLD); MPI_Bcast(&localGradient[0], localGradient.size(), MPI_DOUBLE, 0, MPI_COMM_WORLD); double loss = EvalLocalMultiThread(localInput, localGradient); // start=clock(); // double loss = EvalLocal(localInput, localGradient); double gloss = 0.0; MPI_Reduce(&localGradient[0], &gradient[0], input.size(), MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD); MPI_Reduce(&loss, &gloss, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD); // finish=clock(); // totaltime=(double)(finish-start)/CLOCKS_PER_SEC; // cout<<"\nReduce Time: "<<totaltime<<"seconds"<<endl; return gloss; }
void CirclesSeparation::initialize(DblVec &x, DblVec &y, DblVec r, DblVec m) { _N = (int)x.size(); double minx = 10000, maxx = -10000, miny = 10000, maxy = -10000; int i; for (i = 0; i < _N; ++i) { minx = min(minx, x[i]); maxx = max(maxx, x[i]); miny = min(miny, y[i]); maxy = max(maxy, y[i]); } _cenx = (minx+maxx) * 0.5; _ceny = (miny+maxy) * 0.5; for (i = 0; i < _N; ++i) { x[i] -= _cenx, y[i] -= _ceny; } _x = x, _y = y, _r = r, _m = m, _ox = x, _oy = y; }
void SingleTimestepCollisionEvaluator::CalcDists(const DblVec& x, DblVec& dists, DblVec& weights) { DblVec dofvals = getDblVec(x, m_vars); m_rad->SetDOFValues(dofvals); vector<Collision> collisions; GetCollisionsCached(dofvals, collisions); dists.reserve(dists.size() + collisions.size()); weights.reserve(weights.size() + collisions.size()); BOOST_FOREACH(const Collision& col, collisions) { Link2Int::iterator itA = m_link2ind.find(col.linkA), itB = m_link2ind.find(col.linkB); if (itA != m_link2ind.end() || itB != m_link2ind.end()) { dists.push_back(col.distance); weights.push_back(col.weight); } }
double SparseLeastSquaresObjective::Eval(const DblVec& input, DblVec& gradient) { static DblVec temp(problem.n); if (input.size() != problem.numFeats) { cerr << "Error: input is not the correct size." << endl; exit(1); } for (size_t i=0; i<problem.n; i++) { temp[i] = -problem.target[i]; for (size_t j=problem.instance_starts[i]; j < problem.instance_starts[i+1]; j++) { size_t idx = problem.indices[j]; double val = (double) problem.values[j]; temp[i] += input[idx] * val; } } double value = 0.0; for (size_t j=0; j<problem.numFeats; j++) { value += input[j] * input[j] * l2weight; gradient[j] = l2weight * input[j]; } for (size_t i=0; i<problem.n; i++) { if (temp[i] == 0) continue; value += temp[i] * temp[i]; for (size_t j=problem.instance_starts[i]; j<problem.instance_starts[i+1]; j++) { size_t idx = problem.indices[j]; double val = (double) problem.values[j]; gradient[idx] += val * temp[i]; } } return 0.5 * value + 1.0; }
void expectAllNear(const DblVec& x, const DblVec& y, double abstol) { EXPECT_EQ(x.size(), y.size()); stringstream ss; LOG_INFO("checking %s ?= %s", CSTR(x), CSTR(y)); for (size_t i=0; i < x.size(); ++i) EXPECT_NEAR(x[i], y[i], abstol); }
void OptimizerState::scaleInto(DblVec& a, const DblVec& b, double c){ for (size_t i= 0; i < a.size(); i++){ a[i] = b[i] * c; } }
void OptimizerState::scale(DblVec& a, double b){ for (size_t i = 0; i < a.size(); i++){ a[i] *= b; } }
void OptimizerState::addMultInto(DblVec& a, const DblVec& b, const DblVec& c, double d){ for (size_t i = 0; i < a.size(); i++){ a[i] = b[i] + c[i] * d; } }
void OptimizerState::add(DblVec& a, const DblVec& b){ for (size_t i = 0; i <a.size(); i++){ a[i] += b[i]; } }
void OptimizerState::addMult(DblVec& a, const DblVec& b, double c){ for (size_t i = 0; i < a.size(); i++){ a[i] += b[i] * c; } }
inline double vecDot(const DblVec& a, const DblVec& b) { assert(a.size() == b.size()); double out=0; for (int i=0; i < a.size(); ++i) out += a[i]*b[i]; return out; }