EVT VectorProcTargetLowering::getSetCCResultType(EVT VT) const { if (!VT.isVector()) return MVT::i32; return VT.changeVectorElementTypeToInteger(); }
SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const { SDValue Data = Op.getOperand(0); VTSDNode *BaseType = cast<VTSDNode>(Op.getOperand(1)); DebugLoc DL = Op.getDebugLoc(); EVT DVT = Data.getValueType(); EVT BVT = BaseType->getVT(); unsigned baseBits = BVT.getScalarType().getSizeInBits(); unsigned srcBits = DVT.isSimple() ? DVT.getScalarType().getSizeInBits() : 1; unsigned shiftBits = srcBits - baseBits; if (srcBits < 32) { // If the op is less than 32 bits, then it needs to extend to 32bits // so it can properly keep the upper bits valid. EVT IVT = genIntType(32, DVT.isVector() ? DVT.getVectorNumElements() : 1); Data = DAG.getNode(ISD::ZERO_EXTEND, DL, IVT, Data); shiftBits = 32 - baseBits; DVT = IVT; } SDValue Shift = DAG.getConstant(shiftBits, DVT); // Shift left by 'Shift' bits. Data = DAG.getNode(ISD::SHL, DL, DVT, Data, Shift); // Signed shift Right by 'Shift' bits. Data = DAG.getNode(ISD::SRA, DL, DVT, Data, Shift); if (srcBits < 32) { // Once the sign extension is done, the op needs to be converted to // its original type. Data = DAG.getSExtOrTrunc(Data, DL, Op.getOperand(0).getValueType()); } return Data; }
SDValue NVPTXTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl<ISD::OutputArg> &Outs, const SmallVectorImpl<SDValue> &OutVals, DebugLoc dl, SelectionDAG &DAG) const { bool isABI = (nvptxSubtarget.getSmVersion() >= 20); unsigned sizesofar = 0; unsigned idx = 0; for (unsigned i=0, e=Outs.size(); i!=e; ++i) { SDValue theVal = OutVals[i]; EVT theValType = theVal.getValueType(); unsigned numElems = 1; if (theValType.isVector()) numElems = theValType.getVectorNumElements(); for (unsigned j=0,je=numElems; j!=je; ++j) { SDValue tmpval = theVal; if (theValType.isVector()) tmpval = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, theValType.getVectorElementType(), tmpval, DAG.getIntPtrConstant(j)); Chain = DAG.getNode(isABI ? NVPTXISD::StoreRetval :NVPTXISD::MoveToRetval, dl, MVT::Other, Chain, DAG.getConstant(isABI ? sizesofar : idx, MVT::i32), tmpval); if (theValType.isVector()) sizesofar += theValType.getVectorElementType().getStoreSizeInBits()/8; else sizesofar += theValType.getStoreSizeInBits()/8; ++idx; } } return DAG.getNode(NVPTXISD::RET_FLAG, dl, MVT::Other, Chain); }
// There is no native floating point division, but we can convert this to a // reciprocal/multiply operation. If the first parameter is constant 1.0, then // just a reciprocal will suffice. SDValue VectorProcTargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const { DebugLoc dl = Op.getDebugLoc(); EVT type = Op.getOperand(1).getValueType(); SDValue two = DAG.getConstantFP(2.0, type); SDValue denom = Op.getOperand(1); SDValue estimate = DAG.getNode(VectorProcISD::RECIPROCAL_EST, dl, type, denom); // Perform a series of newton/raphson refinements. Each iteration doubles // the precision. The initial estimate has 6 bits of precision, so two iteration // results in 24 bits, which is larger than the significand. for (int i = 0; i < 2; i++) { // trial = x * estimate (ideally, x * 1/x should be 1.0) // error = 2.0 - trial // estimate = estimate * error SDValue trial = DAG.getNode(ISD::FMUL, dl, type, estimate, denom); SDValue error = DAG.getNode(ISD::FSUB, dl, type, two, trial); estimate = DAG.getNode(ISD::FMUL, dl, type, estimate, error); } // Check if the first parameter is constant 1.0. If so, we don't need // to multiply. bool isOne = false; if (type.isVector()) { if (isSplatVector(Op.getOperand(0).getNode())) { ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op.getOperand(0).getOperand(0)); isOne = C && C->isExactlyValue(1.0); } } else { ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op.getOperand(0)); isOne = C && C->isExactlyValue(1.0); } if (!isOne) estimate = DAG.getNode(ISD::FMUL, dl, type, Op.getOperand(0), estimate); return estimate; }
unsigned ARMTTI::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const { int ISD = TLI->InstructionOpcodeToISD(Opcode); assert(ISD && "Invalid opcode"); // Single to/from double precision conversions. static const CostTblEntry<MVT::SimpleValueType> NEONFltDblTbl[] = { // Vector fptrunc/fpext conversions. { ISD::FP_ROUND, MVT::v2f64, 2 }, { ISD::FP_EXTEND, MVT::v2f32, 2 }, { ISD::FP_EXTEND, MVT::v4f32, 4 } }; if (Src->isVectorTy() && ST->hasNEON() && (ISD == ISD::FP_ROUND || ISD == ISD::FP_EXTEND)) { std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src); int Idx = CostTableLookup(NEONFltDblTbl, ISD, LT.second); if (Idx != -1) return LT.first * NEONFltDblTbl[Idx].Cost; } EVT SrcTy = TLI->getValueType(Src); EVT DstTy = TLI->getValueType(Dst); if (!SrcTy.isSimple() || !DstTy.isSimple()) return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src); // Some arithmetic, load and store operations have specific instructions // to cast up/down their types automatically at no extra cost. // TODO: Get these tables to know at least what the related operations are. static const TypeConversionCostTblEntry<MVT::SimpleValueType> NEONVectorConversionTbl[] = { { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0 }, { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0 }, { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1 }, { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1 }, { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 0 }, { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 }, // The number of vmovl instructions for the extension. { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, // Operations that we legalize using splitting. { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 }, { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 }, // Vector float <-> i32 conversions. { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 }, { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 }, { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 }, { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 }, { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 }, { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 }, { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 }, { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 }, { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 }, { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 }, { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 }, { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 }, { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 }, { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 }, { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 3 }, { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 3 }, { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 }, { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 }, // Vector double <-> i32 conversions. { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 }, { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 }, { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 }, { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 }, { ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f32, 4 }, { ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f32, 4 }, { ISD::FP_TO_SINT, MVT::v16i16, MVT::v16f32, 8 }, { ISD::FP_TO_UINT, MVT::v16i16, MVT::v16f32, 8 } }; if (SrcTy.isVector() && ST->hasNEON()) { int Idx = ConvertCostTableLookup(NEONVectorConversionTbl, ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT()); if (Idx != -1) return NEONVectorConversionTbl[Idx].Cost; } // Scalar float to integer conversions. static const TypeConversionCostTblEntry<MVT::SimpleValueType> NEONFloatConversionTbl[] = { { ISD::FP_TO_SINT, MVT::i1, MVT::f32, 2 }, { ISD::FP_TO_UINT, MVT::i1, MVT::f32, 2 }, { ISD::FP_TO_SINT, MVT::i1, MVT::f64, 2 }, { ISD::FP_TO_UINT, MVT::i1, MVT::f64, 2 }, { ISD::FP_TO_SINT, MVT::i8, MVT::f32, 2 }, { ISD::FP_TO_UINT, MVT::i8, MVT::f32, 2 }, { ISD::FP_TO_SINT, MVT::i8, MVT::f64, 2 }, { ISD::FP_TO_UINT, MVT::i8, MVT::f64, 2 }, { ISD::FP_TO_SINT, MVT::i16, MVT::f32, 2 }, { ISD::FP_TO_UINT, MVT::i16, MVT::f32, 2 }, { ISD::FP_TO_SINT, MVT::i16, MVT::f64, 2 }, { ISD::FP_TO_UINT, MVT::i16, MVT::f64, 2 }, { ISD::FP_TO_SINT, MVT::i32, MVT::f32, 2 }, { ISD::FP_TO_UINT, MVT::i32, MVT::f32, 2 }, { ISD::FP_TO_SINT, MVT::i32, MVT::f64, 2 }, { ISD::FP_TO_UINT, MVT::i32, MVT::f64, 2 }, { ISD::FP_TO_SINT, MVT::i64, MVT::f32, 10 }, { ISD::FP_TO_UINT, MVT::i64, MVT::f32, 10 }, { ISD::FP_TO_SINT, MVT::i64, MVT::f64, 10 }, { ISD::FP_TO_UINT, MVT::i64, MVT::f64, 10 } }; if (SrcTy.isFloatingPoint() && ST->hasNEON()) { int Idx = ConvertCostTableLookup(NEONFloatConversionTbl, ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT()); if (Idx != -1) return NEONFloatConversionTbl[Idx].Cost; } // Scalar integer to float conversions. static const TypeConversionCostTblEntry<MVT::SimpleValueType> NEONIntegerConversionTbl[] = { { ISD::SINT_TO_FP, MVT::f32, MVT::i1, 2 }, { ISD::UINT_TO_FP, MVT::f32, MVT::i1, 2 }, { ISD::SINT_TO_FP, MVT::f64, MVT::i1, 2 }, { ISD::UINT_TO_FP, MVT::f64, MVT::i1, 2 }, { ISD::SINT_TO_FP, MVT::f32, MVT::i8, 2 }, { ISD::UINT_TO_FP, MVT::f32, MVT::i8, 2 }, { ISD::SINT_TO_FP, MVT::f64, MVT::i8, 2 }, { ISD::UINT_TO_FP, MVT::f64, MVT::i8, 2 }, { ISD::SINT_TO_FP, MVT::f32, MVT::i16, 2 }, { ISD::UINT_TO_FP, MVT::f32, MVT::i16, 2 }, { ISD::SINT_TO_FP, MVT::f64, MVT::i16, 2 }, { ISD::UINT_TO_FP, MVT::f64, MVT::i16, 2 }, { ISD::SINT_TO_FP, MVT::f32, MVT::i32, 2 }, { ISD::UINT_TO_FP, MVT::f32, MVT::i32, 2 }, { ISD::SINT_TO_FP, MVT::f64, MVT::i32, 2 }, { ISD::UINT_TO_FP, MVT::f64, MVT::i32, 2 }, { ISD::SINT_TO_FP, MVT::f32, MVT::i64, 10 }, { ISD::UINT_TO_FP, MVT::f32, MVT::i64, 10 }, { ISD::SINT_TO_FP, MVT::f64, MVT::i64, 10 }, { ISD::UINT_TO_FP, MVT::f64, MVT::i64, 10 } }; if (SrcTy.isInteger() && ST->hasNEON()) { int Idx = ConvertCostTableLookup(NEONIntegerConversionTbl, ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT()); if (Idx != -1) return NEONIntegerConversionTbl[Idx].Cost; } // Scalar integer conversion costs. static const TypeConversionCostTblEntry<MVT::SimpleValueType> ARMIntegerConversionTbl[] = { // i16 -> i64 requires two dependent operations. { ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 2 }, // Truncates on i64 are assumed to be free. { ISD::TRUNCATE, MVT::i32, MVT::i64, 0 }, { ISD::TRUNCATE, MVT::i16, MVT::i64, 0 }, { ISD::TRUNCATE, MVT::i8, MVT::i64, 0 }, { ISD::TRUNCATE, MVT::i1, MVT::i64, 0 } }; if (SrcTy.isInteger()) { int Idx = ConvertCostTableLookup(ARMIntegerConversionTbl, ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT()); if (Idx != -1) return ARMIntegerConversionTbl[Idx].Cost; } return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src); }
SDValue NVPTXTargetLowering::LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl<ISD::InputArg> &Ins, DebugLoc dl, SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { MachineFunction &MF = DAG.getMachineFunction(); const DataLayout *TD = getDataLayout(); const Function *F = MF.getFunction(); const AttrListPtr &PAL = F->getAttributes(); SDValue Root = DAG.getRoot(); std::vector<SDValue> OutChains; bool isKernel = llvm::isKernelFunction(*F); bool isABI = (nvptxSubtarget.getSmVersion() >= 20); std::vector<Type *> argTypes; std::vector<const Argument *> theArgs; for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) { theArgs.push_back(I); argTypes.push_back(I->getType()); } assert(argTypes.size() == Ins.size() && "Ins types and function types did not match"); int idx = 0; for (unsigned i=0, e=Ins.size(); i!=e; ++i, ++idx) { Type *Ty = argTypes[i]; EVT ObjectVT = getValueType(Ty); assert(ObjectVT == Ins[i].VT && "Ins type did not match function type"); // If the kernel argument is image*_t or sampler_t, convert it to // a i32 constant holding the parameter position. This can later // matched in the AsmPrinter to output the correct mangled name. if (isImageOrSamplerVal(theArgs[i], (theArgs[i]->getParent() ? theArgs[i]->getParent()->getParent() : 0))) { assert(isKernel && "Only kernels can have image/sampler params"); InVals.push_back(DAG.getConstant(i+1, MVT::i32)); continue; } if (theArgs[i]->use_empty()) { // argument is dead InVals.push_back(DAG.getNode(ISD::UNDEF, dl, ObjectVT)); continue; } // In the following cases, assign a node order of "idx+1" // to newly created nodes. The SDNOdes for params have to // appear in the same order as their order of appearance // in the original function. "idx+1" holds that order. if (PAL.getParamAttributes(i+1).hasAttribute(Attributes::ByVal) == false) { // A plain scalar. if (isABI || isKernel) { // If ABI, load from the param symbol SDValue Arg = getParamSymbol(DAG, idx); Value *srcValue = new Argument(PointerType::get(ObjectVT.getTypeForEVT( F->getContext()), llvm::ADDRESS_SPACE_PARAM)); SDValue p = DAG.getLoad(ObjectVT, dl, Root, Arg, MachinePointerInfo(srcValue), false, false, false, TD->getABITypeAlignment(ObjectVT.getTypeForEVT( F->getContext()))); if (p.getNode()) DAG.AssignOrdering(p.getNode(), idx+1); InVals.push_back(p); } else { // If no ABI, just move the param symbol SDValue Arg = getParamSymbol(DAG, idx, ObjectVT); SDValue p = DAG.getNode(NVPTXISD::MoveParam, dl, ObjectVT, Arg); if (p.getNode()) DAG.AssignOrdering(p.getNode(), idx+1); InVals.push_back(p); } continue; } // Param has ByVal attribute if (isABI || isKernel) { // Return MoveParam(param symbol). // Ideally, the param symbol can be returned directly, // but when SDNode builder decides to use it in a CopyToReg(), // machine instruction fails because TargetExternalSymbol // (not lowered) is target dependent, and CopyToReg assumes // the source is lowered. SDValue Arg = getParamSymbol(DAG, idx, getPointerTy()); SDValue p = DAG.getNode(NVPTXISD::MoveParam, dl, ObjectVT, Arg); if (p.getNode()) DAG.AssignOrdering(p.getNode(), idx+1); if (isKernel) InVals.push_back(p); else { SDValue p2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, ObjectVT, DAG.getConstant(Intrinsic::nvvm_ptr_local_to_gen, MVT::i32), p); InVals.push_back(p2); } } else { // Have to move a set of param symbols to registers and // store them locally and return the local pointer in InVals const PointerType *elemPtrType = dyn_cast<PointerType>(argTypes[i]); assert(elemPtrType && "Byval parameter should be a pointer type"); Type *elemType = elemPtrType->getElementType(); // Compute the constituent parts SmallVector<EVT, 16> vtparts; SmallVector<uint64_t, 16> offsets; ComputeValueVTs(*this, elemType, vtparts, &offsets, 0); unsigned totalsize = 0; for (unsigned j=0, je=vtparts.size(); j!=je; ++j) totalsize += vtparts[j].getStoreSizeInBits(); SDValue localcopy = DAG.getFrameIndex(MF.getFrameInfo()-> CreateStackObject(totalsize/8, 16, false), getPointerTy()); unsigned sizesofar = 0; std::vector<SDValue> theChains; for (unsigned j=0, je=vtparts.size(); j!=je; ++j) { unsigned numElems = 1; if (vtparts[j].isVector()) numElems = vtparts[j].getVectorNumElements(); for (unsigned k=0, ke=numElems; k!=ke; ++k) { EVT tmpvt = vtparts[j]; if (tmpvt.isVector()) tmpvt = tmpvt.getVectorElementType(); SDValue arg = DAG.getNode(NVPTXISD::MoveParam, dl, tmpvt, getParamSymbol(DAG, idx, tmpvt)); SDValue addr = DAG.getNode(ISD::ADD, dl, getPointerTy(), localcopy, DAG.getConstant(sizesofar, getPointerTy())); theChains.push_back(DAG.getStore(Chain, dl, arg, addr, MachinePointerInfo(), false, false, 0)); sizesofar += tmpvt.getStoreSizeInBits()/8; ++idx; } } --idx; Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &theChains[0], theChains.size()); InVals.push_back(localcopy); } } // Clang will check explicit VarArg and issue error if any. However, Clang // will let code with // implicit var arg like f() pass. // We treat this case as if the arg list is empty. //if (F.isVarArg()) { // assert(0 && "VarArg not supported yet!"); //} if (!OutChains.empty()) DAG.setRoot(DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &OutChains[0], OutChains.size())); return Chain; }
void DAGTypeLegalizer::ExpandRes_BITCAST(SDNode *N, SDValue &Lo, SDValue &Hi) { EVT OutVT = N->getValueType(0); EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT); SDValue InOp = N->getOperand(0); EVT InVT = InOp.getValueType(); SDLoc dl(N); // Handle some special cases efficiently. switch (getTypeAction(InVT)) { case TargetLowering::TypeLegal: case TargetLowering::TypePromoteInteger: break; case TargetLowering::TypePromoteFloat: llvm_unreachable("Bitcast of a promotion-needing float should never need" "expansion"); case TargetLowering::TypeSoftenFloat: // Convert the integer operand instead. SplitInteger(GetSoftenedFloat(InOp), Lo, Hi); Lo = DAG.getNode(ISD::BITCAST, dl, NOutVT, Lo); Hi = DAG.getNode(ISD::BITCAST, dl, NOutVT, Hi); return; case TargetLowering::TypeExpandInteger: case TargetLowering::TypeExpandFloat: // Convert the expanded pieces of the input. GetExpandedOp(InOp, Lo, Hi); if (TLI.hasBigEndianPartOrdering(InVT) != TLI.hasBigEndianPartOrdering(OutVT)) std::swap(Lo, Hi); Lo = DAG.getNode(ISD::BITCAST, dl, NOutVT, Lo); Hi = DAG.getNode(ISD::BITCAST, dl, NOutVT, Hi); return; case TargetLowering::TypeSplitVector: GetSplitVector(InOp, Lo, Hi); if (TLI.hasBigEndianPartOrdering(OutVT)) std::swap(Lo, Hi); Lo = DAG.getNode(ISD::BITCAST, dl, NOutVT, Lo); Hi = DAG.getNode(ISD::BITCAST, dl, NOutVT, Hi); return; case TargetLowering::TypeScalarizeVector: // Convert the element instead. SplitInteger(BitConvertToInteger(GetScalarizedVector(InOp)), Lo, Hi); Lo = DAG.getNode(ISD::BITCAST, dl, NOutVT, Lo); Hi = DAG.getNode(ISD::BITCAST, dl, NOutVT, Hi); return; case TargetLowering::TypeWidenVector: { assert(!(InVT.getVectorNumElements() & 1) && "Unsupported BITCAST"); InOp = GetWidenedVector(InOp); EVT LoVT, HiVT; std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(InVT); std::tie(Lo, Hi) = DAG.SplitVector(InOp, dl, LoVT, HiVT); if (TLI.hasBigEndianPartOrdering(OutVT)) std::swap(Lo, Hi); Lo = DAG.getNode(ISD::BITCAST, dl, NOutVT, Lo); Hi = DAG.getNode(ISD::BITCAST, dl, NOutVT, Hi); return; } } if (InVT.isVector() && OutVT.isInteger()) { // Handle cases like i64 = BITCAST v1i64 on x86, where the operand // is legal but the result is not. unsigned NumElems = 2; EVT ElemVT = NOutVT; EVT NVT = EVT::getVectorVT(*DAG.getContext(), ElemVT, NumElems); // If <ElemVT * N> is not a legal type, try <ElemVT/2 * (N*2)>. while (!isTypeLegal(NVT)) { unsigned NewSizeInBits = ElemVT.getSizeInBits() / 2; // If the element size is smaller than byte, bail. if (NewSizeInBits < 8) break; NumElems *= 2; ElemVT = EVT::getIntegerVT(*DAG.getContext(), NewSizeInBits); NVT = EVT::getVectorVT(*DAG.getContext(), ElemVT, NumElems); } if (isTypeLegal(NVT)) { SDValue CastInOp = DAG.getNode(ISD::BITCAST, dl, NVT, InOp); SmallVector<SDValue, 8> Vals; for (unsigned i = 0; i < NumElems; ++i) Vals.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ElemVT, CastInOp, DAG.getConstant(i, dl, TLI.getVectorIdxTy()))); // Build Lo, Hi pair by pairing extracted elements if needed. unsigned Slot = 0; for (unsigned e = Vals.size(); e - Slot > 2; Slot += 2, e += 1) { // Each iteration will BUILD_PAIR two nodes and append the result until // there are only two nodes left, i.e. Lo and Hi. SDValue LHS = Vals[Slot]; SDValue RHS = Vals[Slot + 1]; if (TLI.isBigEndian()) std::swap(LHS, RHS); Vals.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, EVT::getIntegerVT( *DAG.getContext(), LHS.getValueType().getSizeInBits() << 1), LHS, RHS)); } Lo = Vals[Slot++]; Hi = Vals[Slot++]; if (TLI.isBigEndian()) std::swap(Lo, Hi); return; } } // Lower the bit-convert to a store/load from the stack. assert(NOutVT.isByteSized() && "Expanded type not byte sized!"); // Create the stack frame object. Make sure it is aligned for both // the source and expanded destination types. unsigned Alignment = TLI.getDataLayout()->getPrefTypeAlignment(NOutVT. getTypeForEVT(*DAG.getContext())); SDValue StackPtr = DAG.CreateStackTemporary(InVT, Alignment); int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(SPFI); // Emit a store to the stack slot. SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, InOp, StackPtr, PtrInfo, false, false, 0); // Load the first half from the stack slot. Lo = DAG.getLoad(NOutVT, dl, Store, StackPtr, PtrInfo, false, false, false, 0); // Increment the pointer to the other half. unsigned IncrementSize = NOutVT.getSizeInBits() / 8; StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr, DAG.getConstant(IncrementSize, dl, StackPtr.getValueType())); // Load the second half from the stack slot. Hi = DAG.getLoad(NOutVT, dl, Store, StackPtr, PtrInfo.getWithOffset(IncrementSize), false, false, false, MinAlign(Alignment, IncrementSize)); // Handle endianness of the load. if (TLI.hasBigEndianPartOrdering(OutVT)) std::swap(Lo, Hi); }
SDValue AMDGPUTargetLowering::LowerSDIV24(SDValue Op, SelectionDAG &DAG) const { DebugLoc DL = Op.getDebugLoc(); EVT OVT = Op.getValueType(); SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); MVT INTTY; MVT FLTTY; if (!OVT.isVector()) { INTTY = MVT::i32; FLTTY = MVT::f32; } else if (OVT.getVectorNumElements() == 2) { INTTY = MVT::v2i32; FLTTY = MVT::v2f32; } else if (OVT.getVectorNumElements() == 4) { INTTY = MVT::v4i32; FLTTY = MVT::v4f32; } unsigned bitsize = OVT.getScalarType().getSizeInBits(); // char|short jq = ia ^ ib; SDValue jq = DAG.getNode(ISD::XOR, DL, OVT, LHS, RHS); // jq = jq >> (bitsize - 2) jq = DAG.getNode(ISD::SRA, DL, OVT, jq, DAG.getConstant(bitsize - 2, OVT)); // jq = jq | 0x1 jq = DAG.getNode(ISD::OR, DL, OVT, jq, DAG.getConstant(1, OVT)); // jq = (int)jq jq = DAG.getSExtOrTrunc(jq, DL, INTTY); // int ia = (int)LHS; SDValue ia = DAG.getSExtOrTrunc(LHS, DL, INTTY); // int ib, (int)RHS; SDValue ib = DAG.getSExtOrTrunc(RHS, DL, INTTY); // float fa = (float)ia; SDValue fa = DAG.getNode(ISD::SINT_TO_FP, DL, FLTTY, ia); // float fb = (float)ib; SDValue fb = DAG.getNode(ISD::SINT_TO_FP, DL, FLTTY, ib); // float fq = native_divide(fa, fb); SDValue fq = DAG.getNode(AMDGPUISD::DIV_INF, DL, FLTTY, fa, fb); // fq = trunc(fq); fq = DAG.getNode(ISD::FTRUNC, DL, FLTTY, fq); // float fqneg = -fq; SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FLTTY, fq); // float fr = mad(fqneg, fb, fa); SDValue fr = DAG.getNode(AMDGPUISD::MAD, DL, FLTTY, fqneg, fb, fa); // int iq = (int)fq; SDValue iq = DAG.getNode(ISD::FP_TO_SINT, DL, INTTY, fq); // fr = fabs(fr); fr = DAG.getNode(ISD::FABS, DL, FLTTY, fr); // fb = fabs(fb); fb = DAG.getNode(ISD::FABS, DL, FLTTY, fb); // int cv = fr >= fb; SDValue cv; if (INTTY == MVT::i32) { cv = DAG.getSetCC(DL, INTTY, fr, fb, ISD::SETOGE); } else { cv = DAG.getSetCC(DL, INTTY, fr, fb, ISD::SETOGE); } // jq = (cv ? jq : 0); jq = DAG.getNode(ISD::SELECT, DL, OVT, cv, jq, DAG.getConstant(0, OVT)); // dst = iq + jq; iq = DAG.getSExtOrTrunc(iq, DL, OVT); iq = DAG.getNode(ISD::ADD, DL, OVT, iq, jq); return iq; }
void DAGTypeLegalizer::ExpandRes_BIT_CONVERT(SDNode *N, SDValue &Lo, SDValue &Hi) { EVT OutVT = N->getValueType(0); EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT); SDValue InOp = N->getOperand(0); EVT InVT = InOp.getValueType(); DebugLoc dl = N->getDebugLoc(); // Handle some special cases efficiently. switch (getTypeAction(InVT)) { default: assert(false && "Unknown type action!"); case Legal: case PromoteInteger: break; case SoftenFloat: // Convert the integer operand instead. SplitInteger(GetSoftenedFloat(InOp), Lo, Hi); Lo = DAG.getNode(ISD::BIT_CONVERT, dl, NOutVT, Lo); Hi = DAG.getNode(ISD::BIT_CONVERT, dl, NOutVT, Hi); return; case ExpandInteger: case ExpandFloat: // Convert the expanded pieces of the input. GetExpandedOp(InOp, Lo, Hi); Lo = DAG.getNode(ISD::BIT_CONVERT, dl, NOutVT, Lo); Hi = DAG.getNode(ISD::BIT_CONVERT, dl, NOutVT, Hi); return; case SplitVector: GetSplitVector(InOp, Lo, Hi); if (TLI.isBigEndian()) std::swap(Lo, Hi); Lo = DAG.getNode(ISD::BIT_CONVERT, dl, NOutVT, Lo); Hi = DAG.getNode(ISD::BIT_CONVERT, dl, NOutVT, Hi); return; case ScalarizeVector: // Convert the element instead. SplitInteger(BitConvertToInteger(GetScalarizedVector(InOp)), Lo, Hi); Lo = DAG.getNode(ISD::BIT_CONVERT, dl, NOutVT, Lo); Hi = DAG.getNode(ISD::BIT_CONVERT, dl, NOutVT, Hi); return; case WidenVector: { assert(!(InVT.getVectorNumElements() & 1) && "Unsupported BIT_CONVERT"); InOp = GetWidenedVector(InOp); EVT InNVT = EVT::getVectorVT(*DAG.getContext(), InVT.getVectorElementType(), InVT.getVectorNumElements()/2); Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InNVT, InOp, DAG.getIntPtrConstant(0)); Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InNVT, InOp, DAG.getIntPtrConstant(InNVT.getVectorNumElements())); if (TLI.isBigEndian()) std::swap(Lo, Hi); Lo = DAG.getNode(ISD::BIT_CONVERT, dl, NOutVT, Lo); Hi = DAG.getNode(ISD::BIT_CONVERT, dl, NOutVT, Hi); return; } } if (InVT.isVector() && OutVT.isInteger()) { // Handle cases like i64 = BIT_CONVERT v1i64 on x86, where the operand // is legal but the result is not. EVT NVT = EVT::getVectorVT(*DAG.getContext(), NOutVT, 2); if (isTypeLegal(NVT)) { SDValue CastInOp = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, InOp); Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NOutVT, CastInOp, DAG.getIntPtrConstant(0)); Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NOutVT, CastInOp, DAG.getIntPtrConstant(1)); if (TLI.isBigEndian()) std::swap(Lo, Hi); return; } } // Lower the bit-convert to a store/load from the stack. assert(NOutVT.isByteSized() && "Expanded type not byte sized!"); // Create the stack frame object. Make sure it is aligned for both // the source and expanded destination types. unsigned Alignment = TLI.getTargetData()->getPrefTypeAlignment(NOutVT.getTypeForEVT(*DAG.getContext())); SDValue StackPtr = DAG.CreateStackTemporary(InVT, Alignment); int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); const Value *SV = PseudoSourceValue::getFixedStack(SPFI); // Emit a store to the stack slot. SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, InOp, StackPtr, SV, 0); // Load the first half from the stack slot. Lo = DAG.getLoad(NOutVT, dl, Store, StackPtr, SV, 0); // Increment the pointer to the other half. unsigned IncrementSize = NOutVT.getSizeInBits() / 8; StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr, DAG.getIntPtrConstant(IncrementSize)); // Load the second half from the stack slot. Hi = DAG.getLoad(NOutVT, dl, Store, StackPtr, SV, IncrementSize, false, MinAlign(Alignment, IncrementSize)); // Handle endianness of the load. if (TLI.isBigEndian()) std::swap(Lo, Hi); }
EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy) const { assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); if (LHSTy.isVector()) return LHSTy; return getScalarShiftAmountTy(LHSTy); }
EVT TargetLoweringBase::getSetCCResultType(LLVMContext &, EVT VT) const { assert(!VT.isVector() && "No default SetCC type for vectors!"); return getPointerTy(0).SimpleTy; }
bool PPCCTRLoops::mightUseCTR(BasicBlock *BB) { for (BasicBlock::iterator J = BB->begin(), JE = BB->end(); J != JE; ++J) { if (CallInst *CI = dyn_cast<CallInst>(J)) { // Inline ASM is okay, unless it clobbers the ctr register. if (InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue())) { if (asmClobbersCTR(IA)) return true; continue; } if (Function *F = CI->getCalledFunction()) { // Most intrinsics don't become function calls, but some might. // sin, cos, exp and log are always calls. unsigned Opcode = 0; if (F->getIntrinsicID() != Intrinsic::not_intrinsic) { switch (F->getIntrinsicID()) { default: continue; // If we have a call to ppc_is_decremented_ctr_nonzero, or ppc_mtctr // we're definitely using CTR. case Intrinsic::ppc_is_decremented_ctr_nonzero: case Intrinsic::ppc_mtctr: return true; // VisualStudio defines setjmp as _setjmp #if defined(_MSC_VER) && defined(setjmp) && \ !defined(setjmp_undefined_for_msvc) # pragma push_macro("setjmp") # undef setjmp # define setjmp_undefined_for_msvc #endif case Intrinsic::setjmp: #if defined(_MSC_VER) && defined(setjmp_undefined_for_msvc) // let's return it to _setjmp state # pragma pop_macro("setjmp") # undef setjmp_undefined_for_msvc #endif case Intrinsic::longjmp: // Exclude eh_sjlj_setjmp; we don't need to exclude eh_sjlj_longjmp // because, although it does clobber the counter register, the // control can't then return to inside the loop unless there is also // an eh_sjlj_setjmp. case Intrinsic::eh_sjlj_setjmp: case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset: case Intrinsic::powi: case Intrinsic::log: case Intrinsic::log2: case Intrinsic::log10: case Intrinsic::exp: case Intrinsic::exp2: case Intrinsic::pow: case Intrinsic::sin: case Intrinsic::cos: return true; case Intrinsic::copysign: if (CI->getArgOperand(0)->getType()->getScalarType()-> isPPC_FP128Ty()) return true; else continue; // ISD::FCOPYSIGN is never a library call. case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; case Intrinsic::floor: Opcode = ISD::FFLOOR; break; case Intrinsic::ceil: Opcode = ISD::FCEIL; break; case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; case Intrinsic::rint: Opcode = ISD::FRINT; break; case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; case Intrinsic::round: Opcode = ISD::FROUND; break; case Intrinsic::minnum: Opcode = ISD::FMINNUM; break; case Intrinsic::maxnum: Opcode = ISD::FMAXNUM; break; case Intrinsic::umul_with_overflow: Opcode = ISD::UMULO; break; case Intrinsic::smul_with_overflow: Opcode = ISD::SMULO; break; } } // PowerPC does not use [US]DIVREM or other library calls for // operations on regular types which are not otherwise library calls // (i.e. soft float or atomics). If adapting for targets that do, // additional care is required here. LibFunc Func; if (!F->hasLocalLinkage() && F->hasName() && LibInfo && LibInfo->getLibFunc(F->getName(), Func) && LibInfo->hasOptimizedCodeGen(Func)) { // Non-read-only functions are never treated as intrinsics. if (!CI->onlyReadsMemory()) return true; // Conversion happens only for FP calls. if (!CI->getArgOperand(0)->getType()->isFloatingPointTy()) return true; switch (Func) { default: return true; case LibFunc_copysign: case LibFunc_copysignf: continue; // ISD::FCOPYSIGN is never a library call. case LibFunc_copysignl: return true; case LibFunc_fabs: case LibFunc_fabsf: case LibFunc_fabsl: continue; // ISD::FABS is never a library call. case LibFunc_sqrt: case LibFunc_sqrtf: case LibFunc_sqrtl: Opcode = ISD::FSQRT; break; case LibFunc_floor: case LibFunc_floorf: case LibFunc_floorl: Opcode = ISD::FFLOOR; break; case LibFunc_nearbyint: case LibFunc_nearbyintf: case LibFunc_nearbyintl: Opcode = ISD::FNEARBYINT; break; case LibFunc_ceil: case LibFunc_ceilf: case LibFunc_ceill: Opcode = ISD::FCEIL; break; case LibFunc_rint: case LibFunc_rintf: case LibFunc_rintl: Opcode = ISD::FRINT; break; case LibFunc_round: case LibFunc_roundf: case LibFunc_roundl: Opcode = ISD::FROUND; break; case LibFunc_trunc: case LibFunc_truncf: case LibFunc_truncl: Opcode = ISD::FTRUNC; break; case LibFunc_fmin: case LibFunc_fminf: case LibFunc_fminl: Opcode = ISD::FMINNUM; break; case LibFunc_fmax: case LibFunc_fmaxf: case LibFunc_fmaxl: Opcode = ISD::FMAXNUM; break; } } if (Opcode) { EVT EVTy = TLI->getValueType(*DL, CI->getArgOperand(0)->getType(), true); if (EVTy == MVT::Other) return true; if (TLI->isOperationLegalOrCustom(Opcode, EVTy)) continue; else if (EVTy.isVector() && TLI->isOperationLegalOrCustom(Opcode, EVTy.getScalarType())) continue; return true; } } return true; } else if (isa<BinaryOperator>(J) && J->getType()->getScalarType()->isPPC_FP128Ty()) { // Most operations on ppc_f128 values become calls. return true; } else if (isa<UIToFPInst>(J) || isa<SIToFPInst>(J) || isa<FPToUIInst>(J) || isa<FPToSIInst>(J)) { CastInst *CI = cast<CastInst>(J); if (CI->getSrcTy()->getScalarType()->isPPC_FP128Ty() || CI->getDestTy()->getScalarType()->isPPC_FP128Ty() || isLargeIntegerTy(!TM->isPPC64(), CI->getSrcTy()->getScalarType()) || isLargeIntegerTy(!TM->isPPC64(), CI->getDestTy()->getScalarType())) return true; } else if (isLargeIntegerTy(!TM->isPPC64(), J->getType()->getScalarType()) && (J->getOpcode() == Instruction::UDiv || J->getOpcode() == Instruction::SDiv || J->getOpcode() == Instruction::URem || J->getOpcode() == Instruction::SRem)) { return true; } else if (!TM->isPPC64() && isLargeIntegerTy(false, J->getType()->getScalarType()) && (J->getOpcode() == Instruction::Shl || J->getOpcode() == Instruction::AShr || J->getOpcode() == Instruction::LShr)) { // Only on PPC32, for 128-bit integers (specifically not 64-bit // integers), these might be runtime calls. return true; } else if (isa<IndirectBrInst>(J) || isa<InvokeInst>(J)) { // On PowerPC, indirect jumps use the counter register. return true; } else if (SwitchInst *SI = dyn_cast<SwitchInst>(J)) { if (SI->getNumCases() + 1 >= (unsigned)TLI->getMinimumJumpTableEntries()) return true; } // FREM is always a call. if (J->getOpcode() == Instruction::FRem) return true; if (STI->useSoftFloat()) { switch(J->getOpcode()) { case Instruction::FAdd: case Instruction::FSub: case Instruction::FMul: case Instruction::FDiv: case Instruction::FPTrunc: case Instruction::FPExt: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::UIToFP: case Instruction::SIToFP: case Instruction::FCmp: return true; } } for (Value *Operand : J->operands()) if (memAddrUsesCTR(*TM, Operand)) return true; } return false; }