예제 #1
0
void GrVkPipelineState::BuildStateKey(const GrPipeline& pipeline, GrPrimitiveType primitiveType,
                                      SkTArray<uint8_t, true>* key) {
    // Save room for the key length and key header
    key->reset();
    key->push_back_n(kData_StateKeyOffset);

    GrProcessorKeyBuilder b(key);

    GrVkRenderTarget* vkRT = (GrVkRenderTarget*)pipeline.getRenderTarget();
    vkRT->simpleRenderPass()->genKey(&b);

    pipeline.getStencil().genKey(&b);

    SkASSERT(sizeof(GrPipelineBuilder::DrawFace) <= sizeof(uint32_t));
    b.add32(pipeline.getDrawFace());

    b.add32(get_blend_info_key(pipeline));

    b.add32(primitiveType);

    // Set key length
    int keyLength = key->count();
    SkASSERT(0 == (keyLength % 4));
    *reinterpret_cast<uint32_t*>(key->begin()) = SkToU32(keyLength);
}
예제 #2
0
void GrVkGpuCommandBuffer::onDraw(const GrPipeline& pipeline,
                                  const GrPrimitiveProcessor& primProc,
                                  const GrMesh* meshes,
                                  int meshCount) {
    if (!meshCount) {
        return;
    }
    GrRenderTarget* rt = pipeline.getRenderTarget();
    GrVkRenderTarget* vkRT = static_cast<GrVkRenderTarget*>(rt);
    const GrVkRenderPass* renderPass = vkRT->simpleRenderPass();
    SkASSERT(renderPass);

    prepare_sampled_images(primProc, fGpu);
    GrFragmentProcessor::Iter iter(pipeline);
    while (const GrFragmentProcessor* fp = iter.next()) {
        prepare_sampled_images(*fp, fGpu);
    }
    prepare_sampled_images(pipeline.getXferProcessor(), fGpu);

    GrPrimitiveType primitiveType = meshes[0].primitiveType();
    sk_sp<GrVkPipelineState> pipelineState = this->prepareDrawState(pipeline,
                                                                    primProc,
                                                                    primitiveType,
                                                                    *renderPass);
    if (!pipelineState) {
        return;
    }

    for (int i = 0; i < meshCount; ++i) {
        const GrMesh& mesh = meshes[i];
        GrMesh::Iterator iter;
        const GrNonInstancedMesh* nonIdxMesh = iter.init(mesh);
        do {
            if (nonIdxMesh->primitiveType() != primitiveType) {
                // Technically we don't have to call this here (since there is a safety check in
                // pipelineState:setData but this will allow for quicker freeing of resources if the
                // pipelineState sits in a cache for a while.
                pipelineState->freeTempResources(fGpu);
                SkDEBUGCODE(pipelineState = nullptr);
                primitiveType = nonIdxMesh->primitiveType();
                pipelineState = this->prepareDrawState(pipeline,
                                                       primProc,
                                                       primitiveType,
                                                       *renderPass);
                if (!pipelineState) {
                    return;
                }
            }
            SkASSERT(pipelineState);
            this->bindGeometry(primProc, *nonIdxMesh);

            if (nonIdxMesh->isIndexed()) {
                fCommandBuffer->drawIndexed(fGpu,
                                            nonIdxMesh->indexCount(),
                                            1,
                                            nonIdxMesh->startIndex(),
                                            nonIdxMesh->startVertex(),
                                            0);
            } else {
                fCommandBuffer->draw(fGpu,
                                     nonIdxMesh->vertexCount(),
                                     1,
                                     nonIdxMesh->startVertex(),
                                     0);
            }
            fIsEmpty = false;

            fGpu->stats()->incNumDraws();
        } while ((nonIdxMesh = iter.next()));
    }

    // Technically we don't have to call this here (since there is a safety check in
    // pipelineState:setData but this will allow for quicker freeing of resources if the
    // pipelineState sits in a cache for a while.
    pipelineState->freeTempResources(fGpu);
}
예제 #3
0
bool GrVkCopyManager::copySurfaceAsDraw(GrVkGpu* gpu,
                                        GrSurface* dst, GrSurfaceOrigin dstOrigin,
                                        GrSurface* src, GrSurfaceOrigin srcOrigin,
                                        const SkIRect& srcRect, const SkIPoint& dstPoint,
                                        bool canDiscardOutsideDstRect) {
    // None of our copy methods can handle a swizzle. TODO: Make copySurfaceAsDraw handle the
    // swizzle.
    if (gpu->caps()->shaderCaps()->configOutputSwizzle(src->config()) !=
        gpu->caps()->shaderCaps()->configOutputSwizzle(dst->config())) {
        return false;
    }

    GrVkRenderTarget* rt = static_cast<GrVkRenderTarget*>(dst->asRenderTarget());
    if (!rt) {
        return false;
    }

    GrVkTexture* srcTex = static_cast<GrVkTexture*>(src->asTexture());
    if (!srcTex) {
        return false;
    }

    if (VK_NULL_HANDLE == fVertShaderModule) {
        SkASSERT(VK_NULL_HANDLE == fFragShaderModule &&
                 nullptr == fPipelineLayout &&
                 nullptr == fVertexBuffer.get() &&
                 nullptr == fUniformBuffer.get());
        if (!this->createCopyProgram(gpu)) {
            SkDebugf("Failed to create copy program.\n");
            return false;
        }
    }
    SkASSERT(fPipelineLayout);

    GrVkResourceProvider& resourceProv = gpu->resourceProvider();

    GrVkCopyPipeline* pipeline = resourceProv.findOrCreateCopyPipeline(rt,
                                                                       fShaderStageInfo,
                                                                       fPipelineLayout->layout());
    if (!pipeline) {
        return false;
    }

    // UPDATE UNIFORM DESCRIPTOR SET
    int w = srcRect.width();
    int h = srcRect.height();

    // dst rect edges in NDC (-1 to 1)
    int dw = dst->width();
    int dh = dst->height();
    float dx0 = 2.f * dstPoint.fX / dw - 1.f;
    float dx1 = 2.f * (dstPoint.fX + w) / dw - 1.f;
    float dy0 = 2.f * dstPoint.fY / dh - 1.f;
    float dy1 = 2.f * (dstPoint.fY + h) / dh - 1.f;
    if (kBottomLeft_GrSurfaceOrigin == dstOrigin) {
        dy0 = -dy0;
        dy1 = -dy1;
    }


    float sx0 = (float)srcRect.fLeft;
    float sx1 = (float)(srcRect.fLeft + w);
    float sy0 = (float)srcRect.fTop;
    float sy1 = (float)(srcRect.fTop + h);
    int sh = src->height();
    if (kBottomLeft_GrSurfaceOrigin == srcOrigin) {
        sy0 = sh - sy0;
        sy1 = sh - sy1;
    }
    // src rect edges in normalized texture space (0 to 1).
    int sw = src->width();
    sx0 /= sw;
    sx1 /= sw;
    sy0 /= sh;
    sy1 /= sh;

    float uniData[] = { dx1 - dx0, dy1 - dy0, dx0, dy0,    // posXform
                        sx1 - sx0, sy1 - sy0, sx0, sy0 };  // texCoordXform

    fUniformBuffer->updateData(gpu, uniData, sizeof(uniData), nullptr);

    const GrVkDescriptorSet* uniformDS = resourceProv.getUniformDescriptorSet();
    SkASSERT(uniformDS);

    VkDescriptorBufferInfo uniBufferInfo;
    uniBufferInfo.buffer = fUniformBuffer->buffer();
    uniBufferInfo.offset = fUniformBuffer->offset();
    uniBufferInfo.range = fUniformBuffer->size();

    VkWriteDescriptorSet descriptorWrites;
    descriptorWrites.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
    descriptorWrites.pNext = nullptr;
    descriptorWrites.dstSet = uniformDS->descriptorSet();
    descriptorWrites.dstBinding = GrVkUniformHandler::kGeometryBinding;
    descriptorWrites.dstArrayElement = 0;
    descriptorWrites.descriptorCount = 1;
    descriptorWrites.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
    descriptorWrites.pImageInfo = nullptr;
    descriptorWrites.pBufferInfo = &uniBufferInfo;
    descriptorWrites.pTexelBufferView = nullptr;

    GR_VK_CALL(gpu->vkInterface(), UpdateDescriptorSets(gpu->device(),
                                                        1,
                                                        &descriptorWrites,
                                                        0, nullptr));

    // UPDATE SAMPLER DESCRIPTOR SET
    const GrVkDescriptorSet* samplerDS =
        gpu->resourceProvider().getSamplerDescriptorSet(fSamplerDSHandle);

    GrSamplerState samplerState = GrSamplerState::ClampNearest();

    GrVkSampler* sampler = resourceProv.findOrCreateCompatibleSampler(
            samplerState, GrVkYcbcrConversionInfo());

    VkDescriptorImageInfo imageInfo;
    memset(&imageInfo, 0, sizeof(VkDescriptorImageInfo));
    imageInfo.sampler = sampler->sampler();
    imageInfo.imageView = srcTex->textureView()->imageView();
    imageInfo.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;

    VkWriteDescriptorSet writeInfo;
    memset(&writeInfo, 0, sizeof(VkWriteDescriptorSet));
    writeInfo.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
    writeInfo.pNext = nullptr;
    writeInfo.dstSet = samplerDS->descriptorSet();
    writeInfo.dstBinding = 0;
    writeInfo.dstArrayElement = 0;
    writeInfo.descriptorCount = 1;
    writeInfo.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
    writeInfo.pImageInfo = &imageInfo;
    writeInfo.pBufferInfo = nullptr;
    writeInfo.pTexelBufferView = nullptr;

    GR_VK_CALL(gpu->vkInterface(), UpdateDescriptorSets(gpu->device(),
                                                        1,
                                                        &writeInfo,
                                                        0, nullptr));

    VkDescriptorSet vkDescSets[] = { uniformDS->descriptorSet(), samplerDS->descriptorSet() };

    GrVkRenderTarget* texRT = static_cast<GrVkRenderTarget*>(srcTex->asRenderTarget());
    if (texRT) {
        gpu->resolveRenderTargetNoFlush(texRT);
    }

    // TODO: Make tighter bounds and then adjust bounds for origin and granularity if we see
    //       any perf issues with using the whole bounds
    SkIRect bounds = SkIRect::MakeWH(rt->width(), rt->height());

    // Change layouts of rt and texture. We aren't blending so we don't need color attachment read
    // access for blending.
    GrVkImage* targetImage = rt->msaaImage() ? rt->msaaImage() : rt;
    VkAccessFlags dstAccessFlags = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
    if (!canDiscardOutsideDstRect) {
        // We need to load the color attachment so need to be able to read it.
        dstAccessFlags |= VK_ACCESS_COLOR_ATTACHMENT_READ_BIT;
    }
    targetImage->setImageLayout(gpu,
                                VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
                                dstAccessFlags,
                                VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
                                false);

    srcTex->setImageLayout(gpu,
                           VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
                           VK_ACCESS_SHADER_READ_BIT,
                           VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
                           false);

    GrStencilAttachment* stencil = rt->renderTargetPriv().getStencilAttachment();
    if (stencil) {
        GrVkStencilAttachment* vkStencil = (GrVkStencilAttachment*)stencil;
        // We aren't actually using the stencil but we still load and store it so we need
        // appropriate barriers.
        // TODO: Once we refactor surface and how we conntect stencil to RTs, we should not even
        // have the stencil on this render pass if possible.
        vkStencil->setImageLayout(gpu,
                                  VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL,
                                  VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
                                  VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT,
                                  VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT,
                                  false);
    }

    VkAttachmentLoadOp loadOp = canDiscardOutsideDstRect ? VK_ATTACHMENT_LOAD_OP_DONT_CARE
                                                         : VK_ATTACHMENT_LOAD_OP_LOAD;
    GrVkRenderPass::LoadStoreOps vkColorOps(loadOp, VK_ATTACHMENT_STORE_OP_STORE);
    GrVkRenderPass::LoadStoreOps vkStencilOps(VK_ATTACHMENT_LOAD_OP_LOAD,
                                              VK_ATTACHMENT_STORE_OP_STORE);
    const GrVkRenderPass* renderPass;
    const GrVkResourceProvider::CompatibleRPHandle& rpHandle = rt->compatibleRenderPassHandle();
    if (rpHandle.isValid()) {
        renderPass = gpu->resourceProvider().findRenderPass(rpHandle,
                                                            vkColorOps,
                                                            vkStencilOps);
    } else {
        renderPass = gpu->resourceProvider().findRenderPass(*rt,
                                                            vkColorOps,
                                                            vkStencilOps);
    }

    SkASSERT(renderPass->isCompatible(*rt->simpleRenderPass()));

    GrVkPrimaryCommandBuffer* cmdBuffer = gpu->currentCommandBuffer();
    cmdBuffer->beginRenderPass(gpu, renderPass, nullptr, *rt, bounds, true);

    GrVkSecondaryCommandBuffer* secondary = gpu->cmdPool()->findOrCreateSecondaryCommandBuffer(gpu);
    if (!secondary) {
        return false;
    }
    secondary->begin(gpu, rt->framebuffer(), renderPass);

    secondary->bindPipeline(gpu, pipeline);

    // Uniform DescriptorSet, Sampler DescriptorSet, and vertex shader uniformBuffer
    SkSTArray<3, const GrVkRecycledResource*> descriptorRecycledResources;
    descriptorRecycledResources.push_back(uniformDS);
    descriptorRecycledResources.push_back(samplerDS);
    descriptorRecycledResources.push_back(fUniformBuffer->resource());

    // One sampler, texture view, and texture
    SkSTArray<3, const GrVkResource*> descriptorResources;
    descriptorResources.push_back(sampler);
    descriptorResources.push_back(srcTex->textureView());
    descriptorResources.push_back(srcTex->resource());

    secondary->bindDescriptorSets(gpu,
                                  descriptorRecycledResources,
                                  descriptorResources,
                                  fPipelineLayout,
                                  0,
                                  2,
                                  vkDescSets,
                                  0,
                                  nullptr);

    // Set Dynamic viewport and stencil
    // We always use one viewport the size of the RT
    VkViewport viewport;
    viewport.x = 0.0f;
    viewport.y = 0.0f;
    viewport.width = SkIntToScalar(rt->width());
    viewport.height = SkIntToScalar(rt->height());
    viewport.minDepth = 0.0f;
    viewport.maxDepth = 1.0f;
    secondary->setViewport(gpu, 0, 1, &viewport);

    // We assume the scissor is not enabled so just set it to the whole RT
    VkRect2D scissor;
    scissor.extent.width = rt->width();
    scissor.extent.height = rt->height();
    scissor.offset.x = 0;
    scissor.offset.y = 0;
    secondary->setScissor(gpu, 0, 1, &scissor);

    secondary->bindInputBuffer(gpu, 0, fVertexBuffer.get());
    secondary->draw(gpu, 4, 1, 0, 0);
    secondary->end(gpu);
    cmdBuffer->executeCommands(gpu, secondary);
    cmdBuffer->endRenderPass(gpu);
    secondary->unref(gpu);

    // Release all temp resources which should now be reffed by the cmd buffer
    pipeline->unref(gpu);
    uniformDS->unref(gpu);
    samplerDS->unref(gpu);
    sampler->unref(gpu);
    renderPass->unref(gpu);

    return true;
}