void CardTableRS::verify_space(Space* s, HeapWord* gen_boundary) { // We don't need to do young-gen spaces. if (s->end() <= gen_boundary) return; MemRegion used = s->used_region(); bool had_error = false; jbyte* cur_entry = byte_for(used.start()); jbyte* limit = byte_after(used.last()); while (cur_entry < limit) { if (*cur_entry == CardTableModRefBS::clean_card) { jbyte* first_dirty = cur_entry+1; while (first_dirty < limit && *first_dirty == CardTableModRefBS::clean_card) { first_dirty++; } // If the first object is a regular object, and it has a // young-to-old field, that would mark the previous card. HeapWord* boundary = addr_for(cur_entry); HeapWord* end = (first_dirty >= limit) ? used.end() : addr_for(first_dirty); HeapWord* boundary_block = s->block_start(boundary); HeapWord* begin = boundary; // Until proven otherwise. HeapWord* start_block = boundary_block; // Until proven otherwise. if (boundary_block < boundary) { if (s->block_is_obj(boundary_block) && s->obj_is_alive(boundary_block)) { oop boundary_obj = oop(boundary_block); if (!boundary_obj->is_objArray() && !boundary_obj->is_typeArray()) { guarantee(cur_entry > byte_for(used.start()), "else boundary would be boundary_block"); if (*byte_for(boundary_block) != CardTableModRefBS::clean_card) { begin = boundary_block + s->block_size(boundary_block); start_block = begin; } } } } // Now traverse objects until end. if (begin < end) { MemRegion mr(begin, end); VerifyCleanCardClosure verify_blk(gen_boundary, begin, end); for (HeapWord* cur = start_block; cur < end; cur += s->block_size(cur)) { if (s->block_is_obj(cur) && s->obj_is_alive(cur)) { oop(cur)->oop_iterate_no_header(&verify_blk, mr); had_error |= verify_blk.had_error; if (verify_blk.had_error) { verify_blk.had_error = false; #ifndef PRODUCT oop(cur)->print(); #endif } } } } cur_entry = first_dirty; } else { // We'd normally expect that cur_youngergen_and_prev_nonclean_card // is a transient value, that cannot be in the card table // except during GC, and thus assert that: // guarantee(*cur_entry != cur_youngergen_and_prev_nonclean_card, // "Illegal CT value"); // That however, need not hold, as will become clear in the // following... // We'd normally expect that if we are in the parallel case, // we can't have left a prev value (which would be different // from the current value) in the card table, and so we'd like to // assert that: // guarantee(cur_youngergen_card_val() == youngergen_card // || !is_prev_youngergen_card_val(*cur_entry), // "Illegal CT value"); // That, however, may not hold occasionally, because of // CMS or MSC in the old gen. To wit, consider the // following two simple illustrative scenarios: // (a) CMS: Consider the case where a large object L // spanning several cards is allocated in the old // gen, and has a young gen reference stored in it, dirtying // some interior cards. A young collection scans the card, // finds a young ref and installs a youngergenP_n value. // L then goes dead. Now a CMS collection starts, // finds L dead and sweeps it up. Assume that L is // abutting _unallocated_blk, so _unallocated_blk is // adjusted down to (below) L. Assume further that // no young collection intervenes during this CMS cycle. // The next young gen cycle will not get to look at this // youngergenP_n card since it lies in the unoccupied // part of the space. // Some young collections later the blocks on this // card can be re-allocated either due to direct allocation // or due to absorbing promotions. At this time, the // before-gc verification will fail the above assert. // (b) MSC: In this case, an object L with a young reference // is on a card that (therefore) holds a youngergen_n value. // Suppose also that L lies towards the end of the used // the used space before GC. An MSC collection // occurs that compacts to such an extent that this // card is no longer in the occupied part of the space. // Since current code in MSC does not always clear cards // in the unused part of old gen, this stale youngergen_n // value is left behind and can later be covered by // an object when promotion or direct allocation // re-allocates that part of the heap. // // Fortunately, the presence of such stale card values is // "only" a minor annoyance in that subsequent young collections // might needlessly scan such cards, but would still never corrupt // the heap as a result. However, it's likely not to be a significant // performance inhibitor in practice. For instance, // some recent measurements with unoccupied cards eagerly cleared // out to maintain this invariant, showed next to no // change in young collection times; of course one can construct // degenerate examples where the cost can be significant.) // Note, in particular, that if the "stale" card is modified // after re-allocation, it would be dirty, not "stale". Thus, // we can never have a younger ref in such a card and it is // safe not to scan that card in any collection. [As we see // below, we do some unnecessary scanning // in some cases in the current parallel scanning algorithm.] // // The main point below is that the parallel card scanning code // deals correctly with these stale card values. There are two main // cases to consider where we have a stale "younger gen" value and a // "derivative" case to consider, where we have a stale // "cur_younger_gen_and_prev_non_clean" value, as will become // apparent in the case analysis below. // o Case 1. If the stale value corresponds to a younger_gen_n // value other than the cur_younger_gen value then the code // treats this as being tantamount to a prev_younger_gen // card. This means that the card may be unnecessarily scanned. // There are two sub-cases to consider: // o Case 1a. Let us say that the card is in the occupied part // of the generation at the time the collection begins. In // that case the card will be either cleared when it is scanned // for young pointers, or will be set to cur_younger_gen as a // result of promotion. (We have elided the normal case where // the scanning thread and the promoting thread interleave // possibly resulting in a transient // cur_younger_gen_and_prev_non_clean value before settling // to cur_younger_gen. [End Case 1a.] // o Case 1b. Consider now the case when the card is in the unoccupied // part of the space which becomes occupied because of promotions // into it during the current young GC. In this case the card // will never be scanned for young references. The current // code will set the card value to either // cur_younger_gen_and_prev_non_clean or leave // it with its stale value -- because the promotions didn't // result in any younger refs on that card. Of these two // cases, the latter will be covered in Case 1a during // a subsequent scan. To deal with the former case, we need // to further consider how we deal with a stale value of // cur_younger_gen_and_prev_non_clean in our case analysis // below. This we do in Case 3 below. [End Case 1b] // [End Case 1] // o Case 2. If the stale value corresponds to cur_younger_gen being // a value not necessarily written by a current promotion, the // card will not be scanned by the younger refs scanning code. // (This is OK since as we argued above such cards cannot contain // any younger refs.) The result is that this value will be // treated as a prev_younger_gen value in a subsequent collection, // which is addressed in Case 1 above. [End Case 2] // o Case 3. We here consider the "derivative" case from Case 1b. above // because of which we may find a stale // cur_younger_gen_and_prev_non_clean card value in the table. // Once again, as in Case 1, we consider two subcases, depending // on whether the card lies in the occupied or unoccupied part // of the space at the start of the young collection. // o Case 3a. Let us say the card is in the occupied part of // the old gen at the start of the young collection. In that // case, the card will be scanned by the younger refs scanning // code which will set it to cur_younger_gen. In a subsequent // scan, the card will be considered again and get its final // correct value. [End Case 3a] // o Case 3b. Now consider the case where the card is in the // unoccupied part of the old gen, and is occupied as a result // of promotions during thus young gc. In that case, // the card will not be scanned for younger refs. The presence // of newly promoted objects on the card will then result in // its keeping the value cur_younger_gen_and_prev_non_clean // value, which we have dealt with in Case 3 here. [End Case 3b] // [End Case 3] // // (Please refer to the code in the helper class // ClearNonCleanCardWrapper and in CardTableModRefBS for details.) // // The informal arguments above can be tightened into a formal // correctness proof and it behooves us to write up such a proof, // or to use model checking to prove that there are no lingering // concerns. // // Clearly because of Case 3b one cannot bound the time for // which a card will retain what we have called a "stale" value. // However, one can obtain a Loose upper bound on the redundant // work as a result of such stale values. Note first that any // time a stale card lies in the occupied part of the space at // the start of the collection, it is scanned by younger refs // code and we can define a rank function on card values that // declines when this is so. Note also that when a card does not // lie in the occupied part of the space at the beginning of a // young collection, its rank can either decline or stay unchanged. // In this case, no extra work is done in terms of redundant // younger refs scanning of that card. // Then, the case analysis above reveals that, in the worst case, // any such stale card will be scanned unnecessarily at most twice. // // It is nonethelss advisable to try and get rid of some of this // redundant work in a subsequent (low priority) re-design of // the card-scanning code, if only to simplify the underlying // state machine analysis/proof. ysr 1/28/2002. XXX cur_entry++; } } guarantee(!had_error, "Card table errors found"); }
// In the numa case eden is not mangled so a survivor space // moving into a region previously occupied by a survivor // may find an unmangled region. Also in the PS case eden // to-space and from-space may not touch (i.e., there may be // gaps between them due to movement while resizing the // spaces). Those gaps must be mangled. void PSYoungGen::mangle_survivors(MutableSpace* s1, MemRegion s1MR, MutableSpace* s2, MemRegion s2MR) { // Check eden and gap between eden and from-space, in deciding // what to mangle in from-space. Check the gap between from-space // and to-space when deciding what to mangle. // // +--------+ +----+ +---+ // | eden | |s1 | |s2 | // +--------+ +----+ +---+ // +-------+ +-----+ // |s1MR | |s2MR | // +-------+ +-----+ // All of survivor-space is properly mangled so find the // upper bound on the mangling for any portion above current s1. HeapWord* delta_end = MIN2(s1->bottom(), s1MR.end()); MemRegion delta1_left; if (s1MR.start() < delta_end) { delta1_left = MemRegion(s1MR.start(), delta_end); s1->mangle_region(delta1_left); } // Find any portion to the right of the current s1. HeapWord* delta_start = MAX2(s1->end(), s1MR.start()); MemRegion delta1_right; if (delta_start < s1MR.end()) { delta1_right = MemRegion(delta_start, s1MR.end()); s1->mangle_region(delta1_right); } // Similarly for the second survivor space except that // any of the new region that overlaps with the current // region of the first survivor space has already been // mangled. delta_end = MIN2(s2->bottom(), s2MR.end()); delta_start = MAX2(s2MR.start(), s1->end()); MemRegion delta2_left; if (s2MR.start() < delta_end) { delta2_left = MemRegion(s2MR.start(), delta_end); s2->mangle_region(delta2_left); } delta_start = MAX2(s2->end(), s2MR.start()); MemRegion delta2_right; if (delta_start < s2MR.end()) { s2->mangle_region(delta2_right); } if (TraceZapUnusedHeapArea) { // s1 gclog_or_tty->print_cr("Current region: [" PTR_FORMAT ", " PTR_FORMAT ") " "New region: [" PTR_FORMAT ", " PTR_FORMAT ")", s1->bottom(), s1->end(), s1MR.start(), s1MR.end()); gclog_or_tty->print_cr(" Mangle before: [" PTR_FORMAT ", " PTR_FORMAT ") Mangle after: [" PTR_FORMAT ", " PTR_FORMAT ")", delta1_left.start(), delta1_left.end(), delta1_right.start(), delta1_right.end()); // s2 gclog_or_tty->print_cr("Current region: [" PTR_FORMAT ", " PTR_FORMAT ") " "New region: [" PTR_FORMAT ", " PTR_FORMAT ")", s2->bottom(), s2->end(), s2MR.start(), s2MR.end()); gclog_or_tty->print_cr(" Mangle before: [" PTR_FORMAT ", " PTR_FORMAT ") Mangle after: [" PTR_FORMAT ", " PTR_FORMAT ")", delta2_left.start(), delta2_left.end(), delta2_right.start(), delta2_right.end()); } }
inline void CMSBitMap::mark_large_range(MemRegion mr) { NOT_PRODUCT(region_invariant(mr)); // Range size must be greater than 32 bytes. _bm.set_range(heapWordToOffset(mr.start()), heapWordToOffset(mr.end()), BitMap::large_range); }
// We get called with "mr" representing the dirty region // that we want to process. Because of imprecise marking, // we may need to extend the incoming "mr" to the right, // and scan more. However, because we may already have // scanned some of that extended region, we may need to // trim its right-end back some so we do not scan what // we (or another worker thread) may already have scanned // or planning to scan. void DirtyCardToOopClosure::do_MemRegion(MemRegion mr) { // Some collectors need to do special things whenever their dirty // cards are processed. For instance, CMS must remember mutator updates // (i.e. dirty cards) so as to re-scan mutated objects. // Such work can be piggy-backed here on dirty card scanning, so as to make // it slightly more efficient than doing a complete non-destructive pre-scan // of the card table. MemRegionClosure* pCl = _sp->preconsumptionDirtyCardClosure(); if (pCl != NULL) { pCl->do_MemRegion(mr); } HeapWord* bottom = mr.start(); HeapWord* last = mr.last(); HeapWord* top = mr.end(); HeapWord* bottom_obj; HeapWord* top_obj; assert(_precision == CardTableModRefBS::ObjHeadPreciseArray || _precision == CardTableModRefBS::Precise, "Only ones we deal with for now."); assert(_precision != CardTableModRefBS::ObjHeadPreciseArray || _cl->idempotent() || _last_bottom == NULL || top <= _last_bottom, "Not decreasing"); NOT_PRODUCT(_last_bottom = mr.start()); bottom_obj = _sp->block_start(bottom); top_obj = _sp->block_start(last); assert(bottom_obj <= bottom, "just checking"); assert(top_obj <= top, "just checking"); // Given what we think is the top of the memory region and // the start of the object at the top, get the actual // value of the top. top = get_actual_top(top, top_obj); // If the previous call did some part of this region, don't redo. if (_precision == CardTableModRefBS::ObjHeadPreciseArray && _min_done != NULL && _min_done < top) { top = _min_done; } // Top may have been reset, and in fact may be below bottom, // e.g. the dirty card region is entirely in a now free object // -- something that could happen with a concurrent sweeper. bottom = MIN2(bottom, top); MemRegion extended_mr = MemRegion(bottom, top); assert(bottom <= top && (_precision != CardTableModRefBS::ObjHeadPreciseArray || _min_done == NULL || top <= _min_done), "overlap!"); // Walk the region if it is not empty; otherwise there is nothing to do. if (!extended_mr.is_empty()) { walk_mem_region(extended_mr, bottom_obj, top); } // An idempotent closure might be applied in any order, so we don't // record a _min_done for it. if (!_cl->idempotent()) { _min_done = bottom; } else { assert(_min_done == _last_explicit_min_done, "Don't update _min_done for idempotent cl"); } }
inline void CMSBitMap::par_clear_range(MemRegion mr) { NOT_PRODUCT(region_invariant(mr)); // Range size is usually just 1 bit. _bm.par_clear_range(heapWordToOffset(mr.start()), heapWordToOffset(mr.end()), BitMap::small_range); }
void CardTableModRefBS:: process_chunk_boundaries(Space* sp, DirtyCardToOopClosure* dcto_cl, MemRegion chunk_mr, MemRegion used, jbyte** lowest_non_clean, uintptr_t lowest_non_clean_base_chunk_index, size_t lowest_non_clean_chunk_size) { // We must worry about the chunk boundaries. // First, set our max_to_do: HeapWord* max_to_do = NULL; uintptr_t cur_chunk_index = addr_to_chunk_index(chunk_mr.start()); cur_chunk_index = cur_chunk_index - lowest_non_clean_base_chunk_index; if (chunk_mr.end() < used.end()) { // This is not the last chunk in the used region. What is the last // object? HeapWord* last_block = sp->block_start(chunk_mr.end()); assert(last_block <= chunk_mr.end(), "In case this property changes."); if (last_block == chunk_mr.end() || !sp->block_is_obj(last_block)) { max_to_do = chunk_mr.end(); } else { // It is an object and starts before the end of the current chunk. // last_obj_card is the card corresponding to the start of the last object // in the chunk. Note that the last object may not start in // the chunk. jbyte* last_obj_card = byte_for(last_block); if (!card_may_have_been_dirty(*last_obj_card)) { // The card containing the head is not dirty. Any marks in // subsequent cards still in this chunk must have been made // precisely; we can cap processing at the end. max_to_do = chunk_mr.end(); } else { // The last object must be considered dirty, and extends onto the // following chunk. Look for a dirty card in that chunk that will // bound our processing. jbyte* limit_card = NULL; size_t last_block_size = sp->block_size(last_block); jbyte* last_card_of_last_obj = byte_for(last_block + last_block_size - 1); jbyte* first_card_of_next_chunk = byte_for(chunk_mr.end()); // This search potentially goes a long distance looking // for the next card that will be scanned. For example, // an object that is an array of primitives will not // have any cards covering regions interior to the array // that will need to be scanned. The scan can be terminated // at the last card of the next chunk. That would leave // limit_card as NULL and would result in "max_to_do" // being set with the LNC value or with the end // of the last block. jbyte* last_card_of_next_chunk = first_card_of_next_chunk + CardsPerStrideChunk; assert(byte_for(chunk_mr.end()) - byte_for(chunk_mr.start()) == CardsPerStrideChunk, "last card of next chunk may be wrong"); jbyte* last_card_to_check = (jbyte*) MIN2(last_card_of_last_obj, last_card_of_next_chunk); for (jbyte* cur = first_card_of_next_chunk; cur <= last_card_to_check; cur++) { if (card_will_be_scanned(*cur)) { limit_card = cur; break; } } assert(0 <= cur_chunk_index+1 && cur_chunk_index+1 < lowest_non_clean_chunk_size, "Bounds error."); // LNC for the next chunk jbyte* lnc_card = lowest_non_clean[cur_chunk_index+1]; if (limit_card == NULL) { limit_card = lnc_card; } if (limit_card != NULL) { if (lnc_card != NULL) { limit_card = (jbyte*)MIN2((intptr_t)limit_card, (intptr_t)lnc_card); } max_to_do = addr_for(limit_card); } else { max_to_do = last_block + last_block_size; } } } assert(max_to_do != NULL, "OOPS!"); } else { max_to_do = used.end(); } // Now we can set the closure we're using so it doesn't to beyond // max_to_do. dcto_cl->set_min_done(max_to_do); #ifndef PRODUCT dcto_cl->set_last_bottom(max_to_do); #endif // Now we set *our" lowest_non_clean entry. // Find the object that spans our boundary, if one exists. // Nothing to do on the first chunk. if (chunk_mr.start() > used.start()) { // first_block is the block possibly spanning the chunk start HeapWord* first_block = sp->block_start(chunk_mr.start()); // Does the block span the start of the chunk and is it // an object? if (first_block < chunk_mr.start() && sp->block_is_obj(first_block)) { jbyte* first_dirty_card = NULL; jbyte* last_card_of_first_obj = byte_for(first_block + sp->block_size(first_block) - 1); jbyte* first_card_of_cur_chunk = byte_for(chunk_mr.start()); jbyte* last_card_of_cur_chunk = byte_for(chunk_mr.last()); jbyte* last_card_to_check = (jbyte*) MIN2((intptr_t) last_card_of_cur_chunk, (intptr_t) last_card_of_first_obj); for (jbyte* cur = first_card_of_cur_chunk; cur <= last_card_to_check; cur++) { if (card_will_be_scanned(*cur)) { first_dirty_card = cur; break; } } if (first_dirty_card != NULL) { assert(0 <= cur_chunk_index && cur_chunk_index < lowest_non_clean_chunk_size, "Bounds error."); lowest_non_clean[cur_chunk_index] = first_dirty_card; } } } }
void MutableSpace::initialize(MemRegion mr, bool clear_space, bool mangle_space, bool setup_pages) { assert(Universe::on_page_boundary(mr.start()) && Universe::on_page_boundary(mr.end()), "invalid space boundaries"); if (setup_pages && (UseNUMA || AlwaysPreTouch)) { // The space may move left and right or expand/shrink. // We'd like to enforce the desired page placement. MemRegion head, tail; if (last_setup_region().is_empty()) { // If it's the first initialization don't limit the amount of work. head = mr; tail = MemRegion(mr.end(), mr.end()); } else { // Is there an intersection with the address space? MemRegion intersection = last_setup_region().intersection(mr); if (intersection.is_empty()) { intersection = MemRegion(mr.end(), mr.end()); } // All the sizes below are in words. size_t head_size = 0, tail_size = 0; if (mr.start() <= intersection.start()) { head_size = pointer_delta(intersection.start(), mr.start()); } if(intersection.end() <= mr.end()) { tail_size = pointer_delta(mr.end(), intersection.end()); } // Limit the amount of page manipulation if necessary. if (NUMASpaceResizeRate > 0 && !AlwaysPreTouch) { const size_t change_size = head_size + tail_size; const float setup_rate_words = NUMASpaceResizeRate >> LogBytesPerWord; head_size = MIN2((size_t)(setup_rate_words * head_size / change_size), head_size); tail_size = MIN2((size_t)(setup_rate_words * tail_size / change_size), tail_size); } head = MemRegion(intersection.start() - head_size, intersection.start()); tail = MemRegion(intersection.end(), intersection.end() + tail_size); } assert(mr.contains(head) && mr.contains(tail), "Sanity"); if (UseNUMA) { numa_setup_pages(head, clear_space); numa_setup_pages(tail, clear_space); } if (AlwaysPreTouch) { pretouch_pages(head); pretouch_pages(tail); } // Remember where we stopped so that we can continue later. set_last_setup_region(MemRegion(head.start(), tail.end())); }
void MutableSpace::pretouch_pages(MemRegion mr) { os::pretouch_memory((char*)mr.start(), (char*)mr.end()); }
void CardTableModRefBS:: process_stride(Space* sp, MemRegion used, jint stride, int n_strides, OopsInGenClosure* cl, CardTableRS* ct, jbyte** lowest_non_clean, uintptr_t lowest_non_clean_base_chunk_index, size_t lowest_non_clean_chunk_size) { // We go from higher to lower addresses here; it wouldn't help that much // because of the strided parallelism pattern used here. // Find the first card address of the first chunk in the stride that is // at least "bottom" of the used region. jbyte* start_card = byte_for(used.start()); jbyte* end_card = byte_after(used.last()); uintptr_t start_chunk = addr_to_chunk_index(used.start()); uintptr_t start_chunk_stride_num = start_chunk % n_strides; jbyte* chunk_card_start; if ((uintptr_t)stride >= start_chunk_stride_num) { chunk_card_start = (jbyte*)(start_card + (stride - start_chunk_stride_num) * ParGCCardsPerStrideChunk); } else { // Go ahead to the next chunk group boundary, then to the requested stride. chunk_card_start = (jbyte*)(start_card + (n_strides - start_chunk_stride_num + stride) * ParGCCardsPerStrideChunk); } while (chunk_card_start < end_card) { // Even though we go from lower to higher addresses below, the // strided parallelism can interleave the actual processing of the // dirty pages in various ways. For a specific chunk within this // stride, we take care to avoid double scanning or missing a card // by suitably initializing the "min_done" field in process_chunk_boundaries() // below, together with the dirty region extension accomplished in // DirtyCardToOopClosure::do_MemRegion(). jbyte* chunk_card_end = chunk_card_start + ParGCCardsPerStrideChunk; // Invariant: chunk_mr should be fully contained within the "used" region. MemRegion chunk_mr = MemRegion(addr_for(chunk_card_start), chunk_card_end >= end_card ? used.end() : addr_for(chunk_card_end)); assert(chunk_mr.word_size() > 0, "[chunk_card_start > used_end)"); assert(used.contains(chunk_mr), "chunk_mr should be subset of used"); DirtyCardToOopClosure* dcto_cl = sp->new_dcto_cl(cl, precision(), cl->gen_boundary()); ClearNoncleanCardWrapper clear_cl(dcto_cl, ct); // Process the chunk. process_chunk_boundaries(sp, dcto_cl, chunk_mr, used, lowest_non_clean, lowest_non_clean_base_chunk_index, lowest_non_clean_chunk_size); // We want the LNC array updates above in process_chunk_boundaries // to be visible before any of the card table value changes as a // result of the dirty card iteration below. OrderAccess::storestore(); // We do not call the non_clean_card_iterate_serial() version because // we want to clear the cards: clear_cl here does the work of finding // contiguous dirty ranges of cards to process and clear. clear_cl.do_MemRegion(chunk_mr); // Find the next chunk of the stride. chunk_card_start += ParGCCardsPerStrideChunk * n_strides; } }