/// ParseInitializerWithPotentialDesignator - Parse the 'initializer' production /// checking to see if the token stream starts with a designator. /// /// designation: /// designator-list '=' /// [GNU] array-designator /// [GNU] identifier ':' /// /// designator-list: /// designator /// designator-list designator /// /// designator: /// array-designator /// '.' identifier /// /// array-designator: /// '[' constant-expression ']' /// [GNU] '[' constant-expression '...' constant-expression ']' /// /// NOTE: [OBC] allows '[ objc-receiver objc-message-args ]' as an /// initializer (because it is an expression). We need to consider this case /// when parsing array designators. /// ExprResult Parser::ParseInitializerWithPotentialDesignator() { // If this is the old-style GNU extension: // designation ::= identifier ':' // Handle it as a field designator. Otherwise, this must be the start of a // normal expression. if (Tok.is(tok::identifier)) { const IdentifierInfo *FieldName = Tok.getIdentifierInfo(); SmallString<256> NewSyntax; llvm::raw_svector_ostream(NewSyntax) << '.' << FieldName->getName() << " = "; SourceLocation NameLoc = ConsumeToken(); // Eat the identifier. assert(Tok.is(tok::colon) && "MayBeDesignationStart not working properly!"); SourceLocation ColonLoc = ConsumeToken(); Diag(NameLoc, diag::ext_gnu_old_style_field_designator) << FixItHint::CreateReplacement(SourceRange(NameLoc, ColonLoc), NewSyntax); Designation D; D.AddDesignator(Designator::getField(FieldName, SourceLocation(), NameLoc)); return Actions.ActOnDesignatedInitializer(D, ColonLoc, true, ParseInitializer()); } // Desig - This is initialized when we see our first designator. We may have // an objc message send with no designator, so we don't want to create this // eagerly. Designation Desig; // Parse each designator in the designator list until we find an initializer. while (Tok.is(tok::period) || Tok.is(tok::l_square)) { if (Tok.is(tok::period)) { // designator: '.' identifier SourceLocation DotLoc = ConsumeToken(); if (Tok.isNot(tok::identifier)) { Diag(Tok.getLocation(), diag::err_expected_field_designator); return ExprError(); } Desig.AddDesignator(Designator::getField(Tok.getIdentifierInfo(), DotLoc, Tok.getLocation())); ConsumeToken(); // Eat the identifier. continue; } // We must have either an array designator now or an objc message send. assert(Tok.is(tok::l_square) && "Unexpected token!"); // Handle the two forms of array designator: // array-designator: '[' constant-expression ']' // array-designator: '[' constant-expression '...' constant-expression ']' // // Also, we have to handle the case where the expression after the // designator an an objc message send: '[' objc-message-expr ']'. // Interesting cases are: // [foo bar] -> objc message send // [foo] -> array designator // [foo ... bar] -> array designator // [4][foo bar] -> obsolete GNU designation with objc message send. // // We do not need to check for an expression starting with [[ here. If it // contains an Objective-C message send, then it is not an ill-formed // attribute. If it is a lambda-expression within an array-designator, then // it will be rejected because a constant-expression cannot begin with a // lambda-expression. InMessageExpressionRAIIObject InMessage(*this, true); BalancedDelimiterTracker T(*this, tok::l_square); T.consumeOpen(); SourceLocation StartLoc = T.getOpenLocation(); ExprResult Idx; // If Objective-C is enabled and this is a typename (class message // send) or send to 'super', parse this as a message send // expression. We handle C++ and C separately, since C++ requires // much more complicated parsing. if (getLangOpts().ObjC && getLangOpts().CPlusPlus) { // Send to 'super'. if (Tok.is(tok::identifier) && Tok.getIdentifierInfo() == Ident_super && NextToken().isNot(tok::period) && getCurScope()->isInObjcMethodScope()) { CheckArrayDesignatorSyntax(*this, StartLoc, Desig); return ParseAssignmentExprWithObjCMessageExprStart( StartLoc, ConsumeToken(), nullptr, nullptr); } // Parse the receiver, which is either a type or an expression. bool IsExpr; void *TypeOrExpr; if (ParseObjCXXMessageReceiver(IsExpr, TypeOrExpr)) { SkipUntil(tok::r_square, StopAtSemi); return ExprError(); } // If the receiver was a type, we have a class message; parse // the rest of it. if (!IsExpr) { CheckArrayDesignatorSyntax(*this, StartLoc, Desig); return ParseAssignmentExprWithObjCMessageExprStart(StartLoc, SourceLocation(), ParsedType::getFromOpaquePtr(TypeOrExpr), nullptr); } // If the receiver was an expression, we still don't know // whether we have a message send or an array designator; just // adopt the expression for further analysis below. // FIXME: potentially-potentially evaluated expression above? Idx = ExprResult(static_cast<Expr*>(TypeOrExpr)); } else if (getLangOpts().ObjC && Tok.is(tok::identifier)) { IdentifierInfo *II = Tok.getIdentifierInfo(); SourceLocation IILoc = Tok.getLocation(); ParsedType ReceiverType; // Three cases. This is a message send to a type: [type foo] // This is a message send to super: [super foo] // This is a message sent to an expr: [super.bar foo] switch (Actions.getObjCMessageKind( getCurScope(), II, IILoc, II == Ident_super, NextToken().is(tok::period), ReceiverType)) { case Sema::ObjCSuperMessage: CheckArrayDesignatorSyntax(*this, StartLoc, Desig); return ParseAssignmentExprWithObjCMessageExprStart( StartLoc, ConsumeToken(), nullptr, nullptr); case Sema::ObjCClassMessage: CheckArrayDesignatorSyntax(*this, StartLoc, Desig); ConsumeToken(); // the identifier if (!ReceiverType) { SkipUntil(tok::r_square, StopAtSemi); return ExprError(); } // Parse type arguments and protocol qualifiers. if (Tok.is(tok::less)) { SourceLocation NewEndLoc; TypeResult NewReceiverType = parseObjCTypeArgsAndProtocolQualifiers(IILoc, ReceiverType, /*consumeLastToken=*/true, NewEndLoc); if (!NewReceiverType.isUsable()) { SkipUntil(tok::r_square, StopAtSemi); return ExprError(); } ReceiverType = NewReceiverType.get(); } return ParseAssignmentExprWithObjCMessageExprStart(StartLoc, SourceLocation(), ReceiverType, nullptr); case Sema::ObjCInstanceMessage: // Fall through; we'll just parse the expression and // (possibly) treat this like an Objective-C message send // later. break; } } // Parse the index expression, if we haven't already gotten one // above (which can only happen in Objective-C++). // Note that we parse this as an assignment expression, not a constant // expression (allowing *=, =, etc) to handle the objc case. Sema needs // to validate that the expression is a constant. // FIXME: We also need to tell Sema that we're in a // potentially-potentially evaluated context. if (!Idx.get()) { Idx = ParseAssignmentExpression(); if (Idx.isInvalid()) { SkipUntil(tok::r_square, StopAtSemi); return Idx; } } // Given an expression, we could either have a designator (if the next // tokens are '...' or ']' or an objc message send. If this is an objc // message send, handle it now. An objc-message send is the start of // an assignment-expression production. if (getLangOpts().ObjC && Tok.isNot(tok::ellipsis) && Tok.isNot(tok::r_square)) { CheckArrayDesignatorSyntax(*this, Tok.getLocation(), Desig); return ParseAssignmentExprWithObjCMessageExprStart( StartLoc, SourceLocation(), nullptr, Idx.get()); } // If this is a normal array designator, remember it. if (Tok.isNot(tok::ellipsis)) { Desig.AddDesignator(Designator::getArray(Idx.get(), StartLoc)); } else { // Handle the gnu array range extension. Diag(Tok, diag::ext_gnu_array_range); SourceLocation EllipsisLoc = ConsumeToken(); ExprResult RHS(ParseConstantExpression()); if (RHS.isInvalid()) { SkipUntil(tok::r_square, StopAtSemi); return RHS; } Desig.AddDesignator(Designator::getArrayRange(Idx.get(), RHS.get(), StartLoc, EllipsisLoc)); } T.consumeClose(); Desig.getDesignator(Desig.getNumDesignators() - 1).setRBracketLoc( T.getCloseLocation()); } // Okay, we're done with the designator sequence. We know that there must be // at least one designator, because the only case we can get into this method // without a designator is when we have an objc message send. That case is // handled and returned from above. assert(!Desig.empty() && "Designator is empty?"); // Handle a normal designator sequence end, which is an equal. if (Tok.is(tok::equal)) { SourceLocation EqualLoc = ConsumeToken(); return Actions.ActOnDesignatedInitializer(Desig, EqualLoc, false, ParseInitializer()); } // We read some number of designators and found something that isn't an = or // an initializer. If we have exactly one array designator, this // is the GNU 'designation: array-designator' extension. Otherwise, it is a // parse error. if (Desig.getNumDesignators() == 1 && (Desig.getDesignator(0).isArrayDesignator() || Desig.getDesignator(0).isArrayRangeDesignator())) { Diag(Tok, diag::ext_gnu_missing_equal_designator) << FixItHint::CreateInsertion(Tok.getLocation(), "= "); return Actions.ActOnDesignatedInitializer(Desig, Tok.getLocation(), true, ParseInitializer()); } Diag(Tok, diag::err_expected_equal_designator); return ExprError(); }
/// DeclaratorChunk::getFunction - Return a DeclaratorChunk for a function. /// "TheDeclarator" is the declarator that this will be added to. DeclaratorChunk DeclaratorChunk::getFunction(bool hasProto, bool isAmbiguous, SourceLocation LParenLoc, ParamInfo *Params, unsigned NumParams, SourceLocation EllipsisLoc, SourceLocation RParenLoc, unsigned TypeQuals, bool RefQualifierIsLvalueRef, SourceLocation RefQualifierLoc, SourceLocation ConstQualifierLoc, SourceLocation VolatileQualifierLoc, SourceLocation RestrictQualifierLoc, SourceLocation MutableLoc, ExceptionSpecificationType ESpecType, SourceLocation ESpecLoc, ParsedType *Exceptions, SourceRange *ExceptionRanges, unsigned NumExceptions, Expr *NoexceptExpr, CachedTokens *ExceptionSpecTokens, SourceLocation LocalRangeBegin, SourceLocation LocalRangeEnd, Declarator &TheDeclarator, TypeResult TrailingReturnType) { assert(!(TypeQuals & DeclSpec::TQ_atomic) && "function cannot have _Atomic qualifier"); DeclaratorChunk I; I.Kind = Function; I.Loc = LocalRangeBegin; I.EndLoc = LocalRangeEnd; I.Fun.AttrList = nullptr; I.Fun.hasPrototype = hasProto; I.Fun.isVariadic = EllipsisLoc.isValid(); I.Fun.isAmbiguous = isAmbiguous; I.Fun.LParenLoc = LParenLoc.getRawEncoding(); I.Fun.EllipsisLoc = EllipsisLoc.getRawEncoding(); I.Fun.RParenLoc = RParenLoc.getRawEncoding(); I.Fun.DeleteParams = false; I.Fun.TypeQuals = TypeQuals; I.Fun.NumParams = NumParams; I.Fun.Params = nullptr; I.Fun.RefQualifierIsLValueRef = RefQualifierIsLvalueRef; I.Fun.RefQualifierLoc = RefQualifierLoc.getRawEncoding(); I.Fun.ConstQualifierLoc = ConstQualifierLoc.getRawEncoding(); I.Fun.VolatileQualifierLoc = VolatileQualifierLoc.getRawEncoding(); I.Fun.RestrictQualifierLoc = RestrictQualifierLoc.getRawEncoding(); I.Fun.MutableLoc = MutableLoc.getRawEncoding(); I.Fun.ExceptionSpecType = ESpecType; I.Fun.ExceptionSpecLoc = ESpecLoc.getRawEncoding(); I.Fun.NumExceptions = 0; I.Fun.Exceptions = nullptr; I.Fun.NoexceptExpr = nullptr; I.Fun.HasTrailingReturnType = TrailingReturnType.isUsable() || TrailingReturnType.isInvalid(); I.Fun.TrailingReturnType = TrailingReturnType.get(); assert(I.Fun.TypeQuals == TypeQuals && "bitfield overflow"); assert(I.Fun.ExceptionSpecType == ESpecType && "bitfield overflow"); // new[] a parameter array if needed. if (NumParams) { // If the 'InlineParams' in Declarator is unused and big enough, put our // parameter list there (in an effort to avoid new/delete traffic). If it // is already used (consider a function returning a function pointer) or too // small (function with too many parameters), go to the heap. if (!TheDeclarator.InlineParamsUsed && NumParams <= llvm::array_lengthof(TheDeclarator.InlineParams)) { I.Fun.Params = TheDeclarator.InlineParams; I.Fun.DeleteParams = false; TheDeclarator.InlineParamsUsed = true; } else { I.Fun.Params = new DeclaratorChunk::ParamInfo[NumParams]; I.Fun.DeleteParams = true; } memcpy(I.Fun.Params, Params, sizeof(Params[0]) * NumParams); } // Check what exception specification information we should actually store. switch (ESpecType) { default: break; // By default, save nothing. case EST_Dynamic: // new[] an exception array if needed if (NumExceptions) { I.Fun.NumExceptions = NumExceptions; I.Fun.Exceptions = new DeclaratorChunk::TypeAndRange[NumExceptions]; for (unsigned i = 0; i != NumExceptions; ++i) { I.Fun.Exceptions[i].Ty = Exceptions[i]; I.Fun.Exceptions[i].Range = ExceptionRanges[i]; } } break; case EST_ComputedNoexcept: I.Fun.NoexceptExpr = NoexceptExpr; break; case EST_Unparsed: I.Fun.ExceptionSpecTokens = ExceptionSpecTokens; break; } return I; }
/// DeclaratorChunk::getFunction - Return a DeclaratorChunk for a function. /// "TheDeclarator" is the declarator that this will be added to. DeclaratorChunk DeclaratorChunk::getFunction(bool hasProto, bool isVariadic, SourceLocation EllipsisLoc, ParamInfo *ArgInfo, unsigned NumArgs, unsigned TypeQuals, bool RefQualifierIsLvalueRef, SourceLocation RefQualifierLoc, SourceLocation ConstQualifierLoc, SourceLocation VolatileQualifierLoc, SourceLocation MutableLoc, ExceptionSpecificationType ESpecType, SourceLocation ESpecLoc, ParsedType *Exceptions, SourceRange *ExceptionRanges, unsigned NumExceptions, Expr *NoexceptExpr, SourceLocation LocalRangeBegin, SourceLocation LocalRangeEnd, Declarator &TheDeclarator, TypeResult TrailingReturnType) { DeclaratorChunk I; I.Kind = Function; I.Loc = LocalRangeBegin; I.EndLoc = LocalRangeEnd; I.Fun.AttrList = 0; I.Fun.hasPrototype = hasProto; I.Fun.isVariadic = isVariadic; I.Fun.EllipsisLoc = EllipsisLoc.getRawEncoding(); I.Fun.DeleteArgInfo = false; I.Fun.TypeQuals = TypeQuals; I.Fun.NumArgs = NumArgs; I.Fun.ArgInfo = 0; I.Fun.RefQualifierIsLValueRef = RefQualifierIsLvalueRef; I.Fun.RefQualifierLoc = RefQualifierLoc.getRawEncoding(); I.Fun.ConstQualifierLoc = ConstQualifierLoc.getRawEncoding(); I.Fun.VolatileQualifierLoc = VolatileQualifierLoc.getRawEncoding(); I.Fun.MutableLoc = MutableLoc.getRawEncoding(); I.Fun.ExceptionSpecType = ESpecType; I.Fun.ExceptionSpecLoc = ESpecLoc.getRawEncoding(); I.Fun.NumExceptions = 0; I.Fun.Exceptions = 0; I.Fun.NoexceptExpr = 0; I.Fun.HasTrailingReturnType = TrailingReturnType.isUsable() || TrailingReturnType.isInvalid(); I.Fun.TrailingReturnType = TrailingReturnType.get(); // new[] an argument array if needed. if (NumArgs) { // If the 'InlineParams' in Declarator is unused and big enough, put our // parameter list there (in an effort to avoid new/delete traffic). If it // is already used (consider a function returning a function pointer) or too // small (function taking too many arguments), go to the heap. if (!TheDeclarator.InlineParamsUsed && NumArgs <= llvm::array_lengthof(TheDeclarator.InlineParams)) { I.Fun.ArgInfo = TheDeclarator.InlineParams; I.Fun.DeleteArgInfo = false; TheDeclarator.InlineParamsUsed = true; } else { I.Fun.ArgInfo = new DeclaratorChunk::ParamInfo[NumArgs]; I.Fun.DeleteArgInfo = true; } memcpy(I.Fun.ArgInfo, ArgInfo, sizeof(ArgInfo[0])*NumArgs); } // Check what exception specification information we should actually store. switch (ESpecType) { default: break; // By default, save nothing. case EST_Dynamic: // new[] an exception array if needed if (NumExceptions) { I.Fun.NumExceptions = NumExceptions; I.Fun.Exceptions = new DeclaratorChunk::TypeAndRange[NumExceptions]; for (unsigned i = 0; i != NumExceptions; ++i) { I.Fun.Exceptions[i].Ty = Exceptions[i]; I.Fun.Exceptions[i].Range = ExceptionRanges[i]; } } break; case EST_ComputedNoexcept: I.Fun.NoexceptExpr = NoexceptExpr; break; } return I; }