void SanitizerArgs::addArgs(const llvm::opt::ArgList &Args, llvm::opt::ArgStringList &CmdArgs) const { if (!Kind) return; SmallString<256> SanitizeOpt("-fsanitize="); #define SANITIZER(NAME, ID) \ if (Kind & ID) \ SanitizeOpt += NAME ","; #include "clang/Basic/Sanitizers.def" SanitizeOpt.pop_back(); CmdArgs.push_back(Args.MakeArgString(SanitizeOpt)); if (!BlacklistFile.empty()) { SmallString<64> BlacklistOpt("-fsanitize-blacklist="); BlacklistOpt += BlacklistFile; CmdArgs.push_back(Args.MakeArgString(BlacklistOpt)); } if (MsanTrackOrigins) CmdArgs.push_back(Args.MakeArgString("-fsanitize-memory-track-origins=" + llvm::utostr(MsanTrackOrigins))); // Workaround for PR16386. if (needsMsanRt()) CmdArgs.push_back(Args.MakeArgString("-fno-assume-sane-operator-new")); }
void HIPToolChain::addClangTargetOptions( const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args, Action::OffloadKind DeviceOffloadingKind) const { HostTC.addClangTargetOptions(DriverArgs, CC1Args, DeviceOffloadingKind); StringRef GpuArch = DriverArgs.getLastArgValue(options::OPT_march_EQ); assert(!GpuArch.empty() && "Must have an explicit GPU arch."); (void) GpuArch; assert(DeviceOffloadingKind == Action::OFK_HIP && "Only HIP offloading kinds are supported for GPUs."); CC1Args.push_back("-fcuda-is-device"); if (DriverArgs.hasFlag(options::OPT_fcuda_flush_denormals_to_zero, options::OPT_fno_cuda_flush_denormals_to_zero, false)) CC1Args.push_back("-fcuda-flush-denormals-to-zero"); if (DriverArgs.hasFlag(options::OPT_fcuda_approx_transcendentals, options::OPT_fno_cuda_approx_transcendentals, false)) CC1Args.push_back("-fcuda-approx-transcendentals"); if (DriverArgs.hasFlag(options::OPT_fcuda_rdc, options::OPT_fno_cuda_rdc, false)) CC1Args.push_back("-fcuda-rdc"); }
void Cheerp::AddClangCXXStdlibIncludeArgs(const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args) const { if (DriverArgs.hasArg(options::OPT_nostdlibinc) || DriverArgs.hasArg(options::OPT_nostdincxx)) return; // Use the cheerp provided libc++ addSystemInclude(DriverArgs, CC1Args, LLVM_PREFIX "/include/c++/v1"); }
void Linux::addProfileRTLibs(const llvm::opt::ArgList &Args, llvm::opt::ArgStringList &CmdArgs) const { if (!needsProfileRT(Args)) return; // Add linker option -u__llvm_runtime_variable to cause runtime // initialization module to be linked in. if (!Args.hasArg(options::OPT_coverage)) CmdArgs.push_back(Args.MakeArgString( Twine("-u", llvm::getInstrProfRuntimeHookVarName()))); ToolChain::addProfileRTLibs(Args, CmdArgs); }
std::string SanitizerArgs::lastArgumentForKind(const Driver &D, const llvm::opt::ArgList &Args, unsigned Kind) { for (llvm::opt::ArgList::const_reverse_iterator I = Args.rbegin(), E = Args.rend(); I != E; ++I) { unsigned Add, Remove; if (parse(D, Args, *I, Add, Remove, false) && (expandGroups(Add) & Kind)) return describeSanitizeArg(Args, *I, Kind); Kind &= ~Remove; } llvm_unreachable("arg list didn't provide expected value"); }
void CrossWindowsToolChain:: AddClangSystemIncludeArgs(const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args) const { const Driver &D = getDriver(); const std::string &SysRoot = D.SysRoot; if (DriverArgs.hasArg(options::OPT_nostdlibinc)) return; addSystemInclude(DriverArgs, CC1Args, SysRoot + "/usr/local/include"); if (!DriverArgs.hasArg(options::OPT_nobuiltininc)) { SmallString<128> ResourceDir(D.ResourceDir); llvm::sys::path::append(ResourceDir, "include"); addSystemInclude(DriverArgs, CC1Args, ResourceDir); } addExternCSystemInclude(DriverArgs, CC1Args, SysRoot + "/usr/include"); }
Cheerp::Cheerp(const Driver &D, const llvm::Triple& Triple, const llvm::opt::ArgList &Args) : ToolChain(D, Triple, Args) { getProgramPaths().push_back(LLVM_PREFIX "/bin"); path_list& filePaths = getFilePaths(); // Add default path filePaths.push_back(LLVM_PREFIX "/lib"); // Add paths passed from the command line for (arg_iterator it = Args.filtered_begin(options::OPT_L), ie = Args.filtered_end(); it != ie; ++it) { (*it)->claim(); filePaths.push_back((*it)->getValue()); } }
void CudaToolChain::addClangTargetOptions( const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args, Action::OffloadKind DeviceOffloadingKind) const { HostTC.addClangTargetOptions(DriverArgs, CC1Args, DeviceOffloadingKind); StringRef GpuArch = DriverArgs.getLastArgValue(options::OPT_march_EQ); assert(!GpuArch.empty() && "Must have an explicit GPU arch."); assert((DeviceOffloadingKind == Action::OFK_OpenMP || DeviceOffloadingKind == Action::OFK_Cuda) && "Only OpenMP or CUDA offloading kinds are supported for NVIDIA GPUs."); if (DeviceOffloadingKind == Action::OFK_Cuda) { CC1Args.push_back("-fcuda-is-device"); if (DriverArgs.hasFlag(options::OPT_fcuda_flush_denormals_to_zero, options::OPT_fno_cuda_flush_denormals_to_zero, false)) CC1Args.push_back("-fcuda-flush-denormals-to-zero"); if (DriverArgs.hasFlag(options::OPT_fcuda_approx_transcendentals, options::OPT_fno_cuda_approx_transcendentals, false)) CC1Args.push_back("-fcuda-approx-transcendentals"); if (DriverArgs.hasArg(options::OPT_nocudalib)) return; } std::string LibDeviceFile = CudaInstallation.getLibDeviceFile(GpuArch); if (LibDeviceFile.empty()) { getDriver().Diag(diag::err_drv_no_cuda_libdevice) << GpuArch; return; } CC1Args.push_back("-mlink-cuda-bitcode"); CC1Args.push_back(DriverArgs.MakeArgString(LibDeviceFile)); // Libdevice in CUDA-7.0 requires PTX version that's more recent // than LLVM defaults to. Use PTX4.2 which is the PTX version that // came with CUDA-7.0. CC1Args.push_back("-target-feature"); CC1Args.push_back("+ptx42"); }
std::string lastArgumentForMask(const Driver &D, const llvm::opt::ArgList &Args, SanitizerMask Mask) { for (llvm::opt::ArgList::const_reverse_iterator I = Args.rbegin(), E = Args.rend(); I != E; ++I) { const auto *Arg = *I; if (Arg->getOption().matches(options::OPT_fsanitize_EQ)) { SanitizerMask AddKinds = expandSanitizerGroups(parseArgValues(D, Arg, false)); if (AddKinds & Mask) return describeSanitizeArg(Arg, Mask); } else if (Arg->getOption().matches(options::OPT_fno_sanitize_EQ)) { SanitizerMask RemoveKinds = expandSanitizerGroups(parseArgValues(D, Arg, false)); Mask &= ~RemoveKinds; } } llvm_unreachable("arg list didn't provide expected value"); }
void Cheerp::AddClangSystemIncludeArgs(const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args) const { if (DriverArgs.hasArg(options::OPT_nostdinc)) return; if (!DriverArgs.hasArg(options::OPT_nobuiltininc)) { SmallString<128> P(getDriver().ResourceDir); llvm::sys::path::append(P, "include"); addSystemInclude(DriverArgs, CC1Args, P.str()); } if (DriverArgs.hasArg(options::OPT_nostdlibinc)) return; addExternCSystemInclude(DriverArgs, CC1Args, LLVM_PREFIX "/include"); addExternCSystemInclude(DriverArgs, CC1Args, LLVM_PREFIX "/include/client"); }
static SanitizerMask parseSanitizeTrapArgs(const Driver &D, const llvm::opt::ArgList &Args) { SanitizerMask TrapRemove = 0; // During the loop below, the accumulated set of // sanitizers disabled by the current sanitizer // argument or any argument after it. SanitizerMask TrappingKinds = 0; SanitizerMask TrappingSupportedWithGroups = setGroupBits(TrappingSupported); for (ArgList::const_reverse_iterator I = Args.rbegin(), E = Args.rend(); I != E; ++I) { const auto *Arg = *I; if (Arg->getOption().matches(options::OPT_fsanitize_trap_EQ)) { Arg->claim(); SanitizerMask Add = parseArgValues(D, Arg, true); Add &= ~TrapRemove; if (SanitizerMask InvalidValues = Add & ~TrappingSupportedWithGroups) { SanitizerSet S; S.Mask = InvalidValues; D.Diag(diag::err_drv_unsupported_option_argument) << "-fsanitize-trap" << toString(S); } TrappingKinds |= expandSanitizerGroups(Add) & ~TrapRemove; } else if (Arg->getOption().matches(options::OPT_fno_sanitize_trap_EQ)) { Arg->claim(); TrapRemove |= expandSanitizerGroups(parseArgValues(D, Arg, true)); } else if (Arg->getOption().matches( options::OPT_fsanitize_undefined_trap_on_error)) { Arg->claim(); TrappingKinds |= expandSanitizerGroups(UndefinedGroup & ~TrapRemove) & ~TrapRemove; } else if (Arg->getOption().matches( options::OPT_fno_sanitize_undefined_trap_on_error)) { Arg->claim(); TrapRemove |= expandSanitizerGroups(UndefinedGroup); } } // Apply default trapping behavior. TrappingKinds |= TrappingDefault & ~TrapRemove; return TrappingKinds; }
VersionTuple ToolChain::computeMSVCVersion(const Driver *D, const llvm::opt::ArgList &Args) const { const Arg *MSCVersion = Args.getLastArg(options::OPT_fmsc_version); const Arg *MSCompatibilityVersion = Args.getLastArg(options::OPT_fms_compatibility_version); if (MSCVersion && MSCompatibilityVersion) { if (D) D->Diag(diag::err_drv_argument_not_allowed_with) << MSCVersion->getAsString(Args) << MSCompatibilityVersion->getAsString(Args); return VersionTuple(); } if (MSCompatibilityVersion) { VersionTuple MSVT; if (MSVT.tryParse(MSCompatibilityVersion->getValue())) { if (D) D->Diag(diag::err_drv_invalid_value) << MSCompatibilityVersion->getAsString(Args) << MSCompatibilityVersion->getValue(); } else { return MSVT; } } if (MSCVersion) { unsigned Version = 0; if (StringRef(MSCVersion->getValue()).getAsInteger(10, Version)) { if (D) D->Diag(diag::err_drv_invalid_value) << MSCVersion->getAsString(Args) << MSCVersion->getValue(); } else { return separateMSVCFullVersion(Version); } } return VersionTuple(); }
static void addIncludeLinkerOption(const ToolChain &TC, const llvm::opt::ArgList &Args, llvm::opt::ArgStringList &CmdArgs, StringRef SymbolName) { SmallString<64> LinkerOptionFlag; LinkerOptionFlag = "--linker-option=/include:"; if (TC.getTriple().getArch() == llvm::Triple::x86) { // Win32 mangles C function names with a '_' prefix. LinkerOptionFlag += '_'; } LinkerOptionFlag += SymbolName; CmdArgs.push_back(Args.MakeArgString(LinkerOptionFlag)); }
void CrossWindowsToolChain:: AddClangCXXStdlibIncludeArgs(const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args) const { const llvm::Triple &Triple = getTriple(); const std::string &SysRoot = getDriver().SysRoot; if (DriverArgs.hasArg(options::OPT_nostdlibinc) || DriverArgs.hasArg(options::OPT_nostdincxx)) return; switch (GetCXXStdlibType(DriverArgs)) { case ToolChain::CST_Libcxx: addSystemInclude(DriverArgs, CC1Args, SysRoot + "/usr/include/c++/v1"); break; case ToolChain::CST_Libstdcxx: addSystemInclude(DriverArgs, CC1Args, SysRoot + "/usr/include/c++"); addSystemInclude(DriverArgs, CC1Args, SysRoot + "/usr/include/c++/" + Triple.str()); addSystemInclude(DriverArgs, CC1Args, SysRoot + "/usr/include/c++/backwards"); } }
void SanitizerArgs::addArgs(const ToolChain &TC, const llvm::opt::ArgList &Args, llvm::opt::ArgStringList &CmdArgs) const { if (!Kind) return; const Driver &D = TC.getDriver(); SmallString<256> SanitizeOpt("-fsanitize="); #define SANITIZER(NAME, ID) \ if (Kind & ID) \ SanitizeOpt += NAME ","; #include "clang/Basic/Sanitizers.def" SanitizeOpt.pop_back(); CmdArgs.push_back(Args.MakeArgString(SanitizeOpt)); if (!BlacklistFile.empty()) { SmallString<64> BlacklistOpt("-fsanitize-blacklist="); BlacklistOpt += BlacklistFile; CmdArgs.push_back(Args.MakeArgString(BlacklistOpt)); } if (MsanTrackOrigins) CmdArgs.push_back(Args.MakeArgString("-fsanitize-memory-track-origins")); if (needsAsanRt()) { if (hasAsanZeroBaseShadow(TC)) { CmdArgs.push_back( Args.MakeArgString("-fsanitize-address-zero-base-shadow")); } else if (TC.getTriple().getEnvironment() == llvm::Triple::Android) { // Zero-base shadow is a requirement on Android. D.Diag(diag::err_drv_argument_not_allowed_with) << "-fno-sanitize-address-zero-base-shadow" << lastArgumentForKind(D, Args, Address); } } // Workaround for PR16386. if (needsMsanRt()) CmdArgs.push_back(Args.MakeArgString("-fno-assume-sane-operator-new")); }
void AMDGCN::Linker::constructLldCommand(Compilation &C, const JobAction &JA, const InputInfoList &Inputs, const InputInfo &Output, const llvm::opt::ArgList &Args, const char *InputFileName) const { // Construct lld command. // The output from ld.lld is an HSA code object file. ArgStringList LldArgs{"-flavor", "gnu", "--no-undefined", "-shared", "-o", Output.getFilename(), InputFileName}; SmallString<128> LldPath(C.getDriver().Dir); llvm::sys::path::append(LldPath, "lld"); const char *Lld = Args.MakeArgString(LldPath); C.addCommand(llvm::make_unique<Command>(JA, *this, Lld, LldArgs, Inputs)); }
/// Get the runtime library link path, which is platform-specific and found /// relative to the compiler. static void getRuntimeLibraryPath(SmallVectorImpl<char> &runtimeLibPath, const llvm::opt::ArgList &args, const ToolChain &TC) { // FIXME: Duplicated from CompilerInvocation, but in theory the runtime // library link path and the standard library module import path don't // need to be the same. if (const Arg *A = args.getLastArg(options::OPT_resource_dir)) { StringRef value = A->getValue(); runtimeLibPath.append(value.begin(), value.end()); } else { auto programPath = TC.getDriver().getSwiftProgramPath(); runtimeLibPath.append(programPath.begin(), programPath.end()); llvm::sys::path::remove_filename(runtimeLibPath); // remove /swift llvm::sys::path::remove_filename(runtimeLibPath); // remove /bin llvm::sys::path::append(runtimeLibPath, "lib", "swift"); } llvm::sys::path::append(runtimeLibPath, getPlatformNameForTriple(TC.getTriple())); }
Optional<OutputFilesComputer> OutputFilesComputer::create(const llvm::opt::ArgList &args, DiagnosticEngine &diags, const FrontendInputsAndOutputs &inputsAndOutputs) { Optional<std::vector<std::string>> outputArguments = getOutputFilenamesFromCommandLineOrFilelist(args, diags); if (!outputArguments) return None; const StringRef outputDirectoryArgument = outputArguments->size() == 1 && llvm::sys::fs::is_directory(outputArguments->front()) ? StringRef(outputArguments->front()) : StringRef(); ArrayRef<std::string> outputFileArguments = outputDirectoryArgument.empty() ? ArrayRef<std::string>(*outputArguments) : ArrayRef<std::string>(); const StringRef firstInput = inputsAndOutputs.hasSingleInput() ? StringRef(inputsAndOutputs.getFilenameOfFirstInput()) : StringRef(); const FrontendOptions::ActionType requestedAction = ArgsToFrontendOptionsConverter::determineRequestedAction(args); if (!outputFileArguments.empty() && outputFileArguments.size() != inputsAndOutputs.countOfInputsProducingMainOutputs()) { diags.diagnose( SourceLoc(), diag::error_if_any_output_files_are_specified_they_all_must_be); return None; } const file_types::ID outputType = FrontendOptions::formatForPrincipalOutputFileForAction(requestedAction); return OutputFilesComputer( diags, inputsAndOutputs, std::move(outputFileArguments), outputDirectoryArgument, firstInput, requestedAction, args.getLastArg(options::OPT_module_name), file_types::getExtension(outputType), FrontendOptions::doesActionProduceTextualOutput(requestedAction)); }
unsigned HexagonToolChain::getOptimizationLevel( const llvm::opt::ArgList &DriverArgs) const { // Copied in large part from lib/Frontend/CompilerInvocation.cpp. Arg *A = DriverArgs.getLastArg(options::OPT_O_Group); if (!A) return 0; if (A->getOption().matches(options::OPT_O0)) return 0; if (A->getOption().matches(options::OPT_Ofast) || A->getOption().matches(options::OPT_O4)) return 3; assert(A->getNumValues() != 0); StringRef S(A->getValue()); if (S == "s" || S == "z" || S.empty()) return 2; if (S == "g") return 1; unsigned OptLevel; if (S.getAsInteger(10, OptLevel)) return 0; return OptLevel; }
void SanitizerArgs::addArgs(const ToolChain &TC, const llvm::opt::ArgList &Args, llvm::opt::ArgStringList &CmdArgs, types::ID InputType) const { if (Sanitizers.empty()) return; CmdArgs.push_back(Args.MakeArgString("-fsanitize=" + toString(Sanitizers))); if (!RecoverableSanitizers.empty()) CmdArgs.push_back(Args.MakeArgString("-fsanitize-recover=" + toString(RecoverableSanitizers))); if (!TrapSanitizers.empty()) CmdArgs.push_back( Args.MakeArgString("-fsanitize-trap=" + toString(TrapSanitizers))); for (const auto &BLPath : BlacklistFiles) { SmallString<64> BlacklistOpt("-fsanitize-blacklist="); BlacklistOpt += BLPath; CmdArgs.push_back(Args.MakeArgString(BlacklistOpt)); } for (const auto &Dep : ExtraDeps) { SmallString<64> ExtraDepOpt("-fdepfile-entry="); ExtraDepOpt += Dep; CmdArgs.push_back(Args.MakeArgString(ExtraDepOpt)); } if (MsanTrackOrigins) CmdArgs.push_back(Args.MakeArgString("-fsanitize-memory-track-origins=" + llvm::utostr(MsanTrackOrigins))); if (MsanUseAfterDtor) CmdArgs.push_back(Args.MakeArgString("-fsanitize-memory-use-after-dtor")); if (AsanFieldPadding) CmdArgs.push_back(Args.MakeArgString("-fsanitize-address-field-padding=" + llvm::utostr(AsanFieldPadding))); // Translate available CoverageFeatures to corresponding clang-cc1 flags. std::pair<int, const char *> CoverageFlags[] = { std::make_pair(CoverageFunc, "-fsanitize-coverage-type=1"), std::make_pair(CoverageBB, "-fsanitize-coverage-type=2"), std::make_pair(CoverageEdge, "-fsanitize-coverage-type=3"), std::make_pair(CoverageIndirCall, "-fsanitize-coverage-indirect-calls"), std::make_pair(CoverageTraceBB, "-fsanitize-coverage-trace-bb"), std::make_pair(CoverageTraceCmp, "-fsanitize-coverage-trace-cmp"), std::make_pair(Coverage8bitCounters, "-fsanitize-coverage-8bit-counters")}; for (auto F : CoverageFlags) { if (CoverageFeatures & F.first) CmdArgs.push_back(Args.MakeArgString(F.second)); } // MSan: Workaround for PR16386. // ASan: This is mainly to help LSan with cases such as // https://code.google.com/p/address-sanitizer/issues/detail?id=373 // We can't make this conditional on -fsanitize=leak, as that flag shouldn't // affect compilation. if (Sanitizers.has(Memory) || Sanitizers.has(Address)) CmdArgs.push_back(Args.MakeArgString("-fno-assume-sane-operator-new")); if (TC.getTriple().isOSWindows() && needsUbsanRt()) { // Instruct the code generator to embed linker directives in the object file // that cause the required runtime libraries to be linked. CmdArgs.push_back(Args.MakeArgString( "--dependent-lib=" + TC.getCompilerRT(Args, "ubsan_standalone"))); if (types::isCXX(InputType)) CmdArgs.push_back(Args.MakeArgString( "--dependent-lib=" + TC.getCompilerRT(Args, "ubsan_standalone_cxx"))); } }
SanitizerArgs::SanitizerArgs(const ToolChain &TC, const llvm::opt::ArgList &Args) { SanitizerMask AllRemove = 0; // During the loop below, the accumulated set of // sanitizers disabled by the current sanitizer // argument or any argument after it. SanitizerMask AllAddedKinds = 0; // Mask of all sanitizers ever enabled by // -fsanitize= flags (directly or via group // expansion), some of which may be disabled // later. Used to carefully prune // unused-argument diagnostics. SanitizerMask DiagnosedKinds = 0; // All Kinds we have diagnosed up to now. // Used to deduplicate diagnostics. SanitizerMask Kinds = 0; const SanitizerMask Supported = setGroupBits(TC.getSupportedSanitizers()); ToolChain::RTTIMode RTTIMode = TC.getRTTIMode(); const Driver &D = TC.getDriver(); SanitizerMask TrappingKinds = parseSanitizeTrapArgs(D, Args); SanitizerMask InvalidTrappingKinds = TrappingKinds & NotAllowedWithTrap; MinimalRuntime = Args.hasFlag(options::OPT_fsanitize_minimal_runtime, options::OPT_fno_sanitize_minimal_runtime, MinimalRuntime); // The object size sanitizer should not be enabled at -O0. Arg *OptLevel = Args.getLastArg(options::OPT_O_Group); bool RemoveObjectSizeAtO0 = !OptLevel || OptLevel->getOption().matches(options::OPT_O0); for (ArgList::const_reverse_iterator I = Args.rbegin(), E = Args.rend(); I != E; ++I) { const auto *Arg = *I; if (Arg->getOption().matches(options::OPT_fsanitize_EQ)) { Arg->claim(); SanitizerMask Add = parseArgValues(D, Arg, /*AllowGroups=*/true); if (RemoveObjectSizeAtO0) { AllRemove |= SanitizerKind::ObjectSize; // The user explicitly enabled the object size sanitizer. Warn that // that this does nothing at -O0. if (Add & SanitizerKind::ObjectSize) D.Diag(diag::warn_drv_object_size_disabled_O0) << Arg->getAsString(Args); } AllAddedKinds |= expandSanitizerGroups(Add); // Avoid diagnosing any sanitizer which is disabled later. Add &= ~AllRemove; // At this point we have not expanded groups, so any unsupported // sanitizers in Add are those which have been explicitly enabled. // Diagnose them. if (SanitizerMask KindsToDiagnose = Add & InvalidTrappingKinds & ~DiagnosedKinds) { std::string Desc = describeSanitizeArg(*I, KindsToDiagnose); D.Diag(diag::err_drv_argument_not_allowed_with) << Desc << "-fsanitize-trap=undefined"; DiagnosedKinds |= KindsToDiagnose; } Add &= ~InvalidTrappingKinds; if (MinimalRuntime) { if (SanitizerMask KindsToDiagnose = Add & NotAllowedWithMinimalRuntime & ~DiagnosedKinds) { std::string Desc = describeSanitizeArg(*I, KindsToDiagnose); D.Diag(diag::err_drv_argument_not_allowed_with) << Desc << "-fsanitize-minimal-runtime"; DiagnosedKinds |= KindsToDiagnose; } Add &= ~NotAllowedWithMinimalRuntime; } if (SanitizerMask KindsToDiagnose = Add & ~Supported & ~DiagnosedKinds) { std::string Desc = describeSanitizeArg(*I, KindsToDiagnose); D.Diag(diag::err_drv_unsupported_opt_for_target) << Desc << TC.getTriple().str(); DiagnosedKinds |= KindsToDiagnose; } Add &= Supported; // Test for -fno-rtti + explicit -fsanitizer=vptr before expanding groups // so we don't error out if -fno-rtti and -fsanitize=undefined were // passed. if (Add & Vptr && (RTTIMode == ToolChain::RM_DisabledImplicitly || RTTIMode == ToolChain::RM_DisabledExplicitly)) { if (RTTIMode == ToolChain::RM_DisabledImplicitly) // Warn about not having rtti enabled if the vptr sanitizer is // explicitly enabled D.Diag(diag::warn_drv_disabling_vptr_no_rtti_default); else { const llvm::opt::Arg *NoRTTIArg = TC.getRTTIArg(); assert(NoRTTIArg && "RTTI disabled explicitly but we have no argument!"); D.Diag(diag::err_drv_argument_not_allowed_with) << "-fsanitize=vptr" << NoRTTIArg->getAsString(Args); } // Take out the Vptr sanitizer from the enabled sanitizers AllRemove |= Vptr; } Add = expandSanitizerGroups(Add); // Group expansion may have enabled a sanitizer which is disabled later. Add &= ~AllRemove; // Silently discard any unsupported sanitizers implicitly enabled through // group expansion. Add &= ~InvalidTrappingKinds; if (MinimalRuntime) { Add &= ~NotAllowedWithMinimalRuntime; } Add &= Supported; if (Add & Fuzzer) Add |= FuzzerNoLink; // Enable coverage if the fuzzing flag is set. if (Add & FuzzerNoLink) { CoverageFeatures |= CoverageInline8bitCounters | CoverageIndirCall | CoverageTraceCmp | CoveragePCTable; // Due to TLS differences, stack depth tracking is only enabled on Linux if (TC.getTriple().isOSLinux()) CoverageFeatures |= CoverageStackDepth; } Kinds |= Add; } else if (Arg->getOption().matches(options::OPT_fno_sanitize_EQ)) { Arg->claim(); SanitizerMask Remove = parseArgValues(D, Arg, true); AllRemove |= expandSanitizerGroups(Remove); } } // Enable toolchain specific default sanitizers if not explicitly disabled. Kinds |= TC.getDefaultSanitizers() & ~AllRemove; // We disable the vptr sanitizer if it was enabled by group expansion but RTTI // is disabled. if ((Kinds & Vptr) && (RTTIMode == ToolChain::RM_DisabledImplicitly || RTTIMode == ToolChain::RM_DisabledExplicitly)) { Kinds &= ~Vptr; } // Check that LTO is enabled if we need it. if ((Kinds & NeedsLTO) && !D.isUsingLTO()) { D.Diag(diag::err_drv_argument_only_allowed_with) << lastArgumentForMask(D, Args, Kinds & NeedsLTO) << "-flto"; } // Report error if there are non-trapping sanitizers that require // c++abi-specific parts of UBSan runtime, and they are not provided by the // toolchain. We don't have a good way to check the latter, so we just // check if the toolchan supports vptr. if (~Supported & Vptr) { SanitizerMask KindsToDiagnose = Kinds & ~TrappingKinds & NeedsUbsanCxxRt; // The runtime library supports the Microsoft C++ ABI, but only well enough // for CFI. FIXME: Remove this once we support vptr on Windows. if (TC.getTriple().isOSWindows()) KindsToDiagnose &= ~CFI; if (KindsToDiagnose) { SanitizerSet S; S.Mask = KindsToDiagnose; D.Diag(diag::err_drv_unsupported_opt_for_target) << ("-fno-sanitize-trap=" + toString(S)) << TC.getTriple().str(); Kinds &= ~KindsToDiagnose; } } // Warn about incompatible groups of sanitizers. std::pair<SanitizerMask, SanitizerMask> IncompatibleGroups[] = { std::make_pair(Address, Thread), std::make_pair(Address, Memory), std::make_pair(Thread, Memory), std::make_pair(Leak, Thread), std::make_pair(Leak, Memory), std::make_pair(KernelAddress, Address), std::make_pair(KernelAddress, Leak), std::make_pair(KernelAddress, Thread), std::make_pair(KernelAddress, Memory), std::make_pair(Efficiency, Address), std::make_pair(Efficiency, Leak), std::make_pair(Efficiency, Thread), std::make_pair(Efficiency, Memory), std::make_pair(Efficiency, KernelAddress)}; for (auto G : IncompatibleGroups) { SanitizerMask Group = G.first; if (Kinds & Group) { if (SanitizerMask Incompatible = Kinds & G.second) { D.Diag(clang::diag::err_drv_argument_not_allowed_with) << lastArgumentForMask(D, Args, Group) << lastArgumentForMask(D, Args, Incompatible); Kinds &= ~Incompatible; } } } // FIXME: Currently -fsanitize=leak is silently ignored in the presence of // -fsanitize=address. Perhaps it should print an error, or perhaps // -f(-no)sanitize=leak should change whether leak detection is enabled by // default in ASan? // Parse -f(no-)?sanitize-recover flags. SanitizerMask RecoverableKinds = RecoverableByDefault; SanitizerMask DiagnosedUnrecoverableKinds = 0; for (const auto *Arg : Args) { const char *DeprecatedReplacement = nullptr; if (Arg->getOption().matches(options::OPT_fsanitize_recover)) { DeprecatedReplacement = "-fsanitize-recover=undefined,integer' or '-fsanitize-recover=all"; RecoverableKinds |= expandSanitizerGroups(LegacyFsanitizeRecoverMask); Arg->claim(); } else if (Arg->getOption().matches(options::OPT_fno_sanitize_recover)) { DeprecatedReplacement = "-fno-sanitize-recover=undefined,integer' or " "'-fno-sanitize-recover=all"; RecoverableKinds &= ~expandSanitizerGroups(LegacyFsanitizeRecoverMask); Arg->claim(); } else if (Arg->getOption().matches(options::OPT_fsanitize_recover_EQ)) { SanitizerMask Add = parseArgValues(D, Arg, true); // Report error if user explicitly tries to recover from unrecoverable // sanitizer. if (SanitizerMask KindsToDiagnose = Add & Unrecoverable & ~DiagnosedUnrecoverableKinds) { SanitizerSet SetToDiagnose; SetToDiagnose.Mask |= KindsToDiagnose; D.Diag(diag::err_drv_unsupported_option_argument) << Arg->getOption().getName() << toString(SetToDiagnose); DiagnosedUnrecoverableKinds |= KindsToDiagnose; } RecoverableKinds |= expandSanitizerGroups(Add); Arg->claim(); } else if (Arg->getOption().matches(options::OPT_fno_sanitize_recover_EQ)) { RecoverableKinds &= ~expandSanitizerGroups(parseArgValues(D, Arg, true)); Arg->claim(); } if (DeprecatedReplacement) { D.Diag(diag::warn_drv_deprecated_arg) << Arg->getAsString(Args) << DeprecatedReplacement; } } RecoverableKinds &= Kinds; RecoverableKinds &= ~Unrecoverable; TrappingKinds &= Kinds; // Setup blacklist files. // Add default blacklist from resource directory. { std::string BLPath; if (getDefaultBlacklist(D, Kinds, BLPath) && llvm::sys::fs::exists(BLPath)) BlacklistFiles.push_back(BLPath); } // Parse -f(no-)sanitize-blacklist options. for (const auto *Arg : Args) { if (Arg->getOption().matches(options::OPT_fsanitize_blacklist)) { Arg->claim(); std::string BLPath = Arg->getValue(); if (llvm::sys::fs::exists(BLPath)) { BlacklistFiles.push_back(BLPath); ExtraDeps.push_back(BLPath); } else D.Diag(clang::diag::err_drv_no_such_file) << BLPath; } else if (Arg->getOption().matches(options::OPT_fno_sanitize_blacklist)) { Arg->claim(); BlacklistFiles.clear(); ExtraDeps.clear(); } } // Validate blacklists format. { std::string BLError; std::unique_ptr<llvm::SpecialCaseList> SCL( llvm::SpecialCaseList::create(BlacklistFiles, BLError)); if (!SCL.get()) D.Diag(clang::diag::err_drv_malformed_sanitizer_blacklist) << BLError; } // Parse -f[no-]sanitize-memory-track-origins[=level] options. if (AllAddedKinds & Memory) { if (Arg *A = Args.getLastArg(options::OPT_fsanitize_memory_track_origins_EQ, options::OPT_fsanitize_memory_track_origins, options::OPT_fno_sanitize_memory_track_origins)) { if (A->getOption().matches(options::OPT_fsanitize_memory_track_origins)) { MsanTrackOrigins = 2; } else if (A->getOption().matches( options::OPT_fno_sanitize_memory_track_origins)) { MsanTrackOrigins = 0; } else { StringRef S = A->getValue(); if (S.getAsInteger(0, MsanTrackOrigins) || MsanTrackOrigins < 0 || MsanTrackOrigins > 2) { D.Diag(clang::diag::err_drv_invalid_value) << A->getAsString(Args) << S; } } } MsanUseAfterDtor = Args.hasFlag(options::OPT_fsanitize_memory_use_after_dtor, options::OPT_fno_sanitize_memory_use_after_dtor, MsanUseAfterDtor); NeedPIE |= !(TC.getTriple().isOSLinux() && TC.getTriple().getArch() == llvm::Triple::x86_64); } else { MsanUseAfterDtor = false; } if (AllAddedKinds & Thread) { TsanMemoryAccess = Args.hasFlag(options::OPT_fsanitize_thread_memory_access, options::OPT_fno_sanitize_thread_memory_access, TsanMemoryAccess); TsanFuncEntryExit = Args.hasFlag(options::OPT_fsanitize_thread_func_entry_exit, options::OPT_fno_sanitize_thread_func_entry_exit, TsanFuncEntryExit); TsanAtomics = Args.hasFlag(options::OPT_fsanitize_thread_atomics, options::OPT_fno_sanitize_thread_atomics, TsanAtomics); } if (AllAddedKinds & CFI) { CfiCrossDso = Args.hasFlag(options::OPT_fsanitize_cfi_cross_dso, options::OPT_fno_sanitize_cfi_cross_dso, false); // Without PIE, external function address may resolve to a PLT record, which // can not be verified by the target module. NeedPIE |= CfiCrossDso; } Stats = Args.hasFlag(options::OPT_fsanitize_stats, options::OPT_fno_sanitize_stats, false); if (MinimalRuntime) { SanitizerMask IncompatibleMask = Kinds & ~setGroupBits(CompatibleWithMinimalRuntime); if (IncompatibleMask) D.Diag(clang::diag::err_drv_argument_not_allowed_with) << "-fsanitize-minimal-runtime" << lastArgumentForMask(D, Args, IncompatibleMask); SanitizerMask NonTrappingCfi = Kinds & CFI & ~TrappingKinds; if (NonTrappingCfi) D.Diag(clang::diag::err_drv_argument_only_allowed_with) << "fsanitize-minimal-runtime" << "fsanitize-trap=cfi"; } // Parse -f(no-)?sanitize-coverage flags if coverage is supported by the // enabled sanitizers. for (const auto *Arg : Args) { if (Arg->getOption().matches(options::OPT_fsanitize_coverage)) { int LegacySanitizeCoverage; if (Arg->getNumValues() == 1 && !StringRef(Arg->getValue(0)) .getAsInteger(0, LegacySanitizeCoverage)) { CoverageFeatures = 0; Arg->claim(); if (LegacySanitizeCoverage != 0) { D.Diag(diag::warn_drv_deprecated_arg) << Arg->getAsString(Args) << "-fsanitize-coverage=trace-pc-guard"; } continue; } CoverageFeatures |= parseCoverageFeatures(D, Arg); // Disable coverage and not claim the flags if there is at least one // non-supporting sanitizer. if (!(AllAddedKinds & ~AllRemove & ~setGroupBits(SupportsCoverage))) { Arg->claim(); } else { CoverageFeatures = 0; } } else if (Arg->getOption().matches(options::OPT_fno_sanitize_coverage)) { Arg->claim(); CoverageFeatures &= ~parseCoverageFeatures(D, Arg); } } // Choose at most one coverage type: function, bb, or edge. if ((CoverageFeatures & CoverageFunc) && (CoverageFeatures & CoverageBB)) D.Diag(clang::diag::err_drv_argument_not_allowed_with) << "-fsanitize-coverage=func" << "-fsanitize-coverage=bb"; if ((CoverageFeatures & CoverageFunc) && (CoverageFeatures & CoverageEdge)) D.Diag(clang::diag::err_drv_argument_not_allowed_with) << "-fsanitize-coverage=func" << "-fsanitize-coverage=edge"; if ((CoverageFeatures & CoverageBB) && (CoverageFeatures & CoverageEdge)) D.Diag(clang::diag::err_drv_argument_not_allowed_with) << "-fsanitize-coverage=bb" << "-fsanitize-coverage=edge"; // Basic block tracing and 8-bit counters require some type of coverage // enabled. if (CoverageFeatures & CoverageTraceBB) D.Diag(clang::diag::warn_drv_deprecated_arg) << "-fsanitize-coverage=trace-bb" << "-fsanitize-coverage=trace-pc-guard"; if (CoverageFeatures & Coverage8bitCounters) D.Diag(clang::diag::warn_drv_deprecated_arg) << "-fsanitize-coverage=8bit-counters" << "-fsanitize-coverage=trace-pc-guard"; int InsertionPointTypes = CoverageFunc | CoverageBB | CoverageEdge; int InstrumentationTypes = CoverageTracePC | CoverageTracePCGuard | CoverageInline8bitCounters; if ((CoverageFeatures & InsertionPointTypes) && !(CoverageFeatures & InstrumentationTypes)) { D.Diag(clang::diag::warn_drv_deprecated_arg) << "-fsanitize-coverage=[func|bb|edge]" << "-fsanitize-coverage=[func|bb|edge],[trace-pc-guard|trace-pc]"; } // trace-pc w/o func/bb/edge implies edge. if (!(CoverageFeatures & InsertionPointTypes)) { if (CoverageFeatures & (CoverageTracePC | CoverageTracePCGuard | CoverageInline8bitCounters)) CoverageFeatures |= CoverageEdge; if (CoverageFeatures & CoverageStackDepth) CoverageFeatures |= CoverageFunc; } if (AllAddedKinds & Address) { AsanSharedRuntime = Args.hasArg(options::OPT_shared_libasan) || TC.getTriple().isAndroid() || TC.getTriple().isOSFuchsia(); NeedPIE |= TC.getTriple().isAndroid() || TC.getTriple().isOSFuchsia(); if (Arg *A = Args.getLastArg(options::OPT_fsanitize_address_field_padding)) { StringRef S = A->getValue(); // Legal values are 0 and 1, 2, but in future we may add more levels. if (S.getAsInteger(0, AsanFieldPadding) || AsanFieldPadding < 0 || AsanFieldPadding > 2) { D.Diag(clang::diag::err_drv_invalid_value) << A->getAsString(Args) << S; } } if (Arg *WindowsDebugRTArg = Args.getLastArg(options::OPT__SLASH_MTd, options::OPT__SLASH_MT, options::OPT__SLASH_MDd, options::OPT__SLASH_MD, options::OPT__SLASH_LDd, options::OPT__SLASH_LD)) { switch (WindowsDebugRTArg->getOption().getID()) { case options::OPT__SLASH_MTd: case options::OPT__SLASH_MDd: case options::OPT__SLASH_LDd: D.Diag(clang::diag::err_drv_argument_not_allowed_with) << WindowsDebugRTArg->getAsString(Args) << lastArgumentForMask(D, Args, Address); D.Diag(clang::diag::note_drv_address_sanitizer_debug_runtime); } } AsanUseAfterScope = Args.hasFlag( options::OPT_fsanitize_address_use_after_scope, options::OPT_fno_sanitize_address_use_after_scope, AsanUseAfterScope); // As a workaround for a bug in gold 2.26 and earlier, dead stripping of // globals in ASan is disabled by default on ELF targets. // See https://sourceware.org/bugzilla/show_bug.cgi?id=19002 AsanGlobalsDeadStripping = !TC.getTriple().isOSBinFormatELF() || TC.getTriple().isOSFuchsia() || Args.hasArg(options::OPT_fsanitize_address_globals_dead_stripping); } else { AsanUseAfterScope = false; } if (AllAddedKinds & SafeStack) { // SafeStack runtime is built into the system on Fuchsia. SafeStackRuntime = !TC.getTriple().isOSFuchsia(); } // Parse -link-cxx-sanitizer flag. LinkCXXRuntimes = Args.hasArg(options::OPT_fsanitize_link_cxx_runtime) || D.CCCIsCXX(); // Finally, initialize the set of available and recoverable sanitizers. Sanitizers.Mask |= Kinds; RecoverableSanitizers.Mask |= RecoverableKinds; TrapSanitizers.Mask |= TrappingKinds; }
bool HexagonToolChain::isAutoHVXEnabled(const llvm::opt::ArgList &Args) { if (Arg *A = Args.getLastArg(options::OPT_fvectorize, options::OPT_fno_vectorize)) return A->getOption().matches(options::OPT_fvectorize); return false; }
SanitizerArgs::SanitizerArgs(const ToolChain &TC, const llvm::opt::ArgList &Args) { clear(); SanitizerMask AllRemove = 0; // During the loop below, the accumulated set of // sanitizers disabled by the current sanitizer // argument or any argument after it. SanitizerMask AllAddedKinds = 0; // Mask of all sanitizers ever enabled by // -fsanitize= flags (directly or via group // expansion), some of which may be disabled // later. Used to carefully prune // unused-argument diagnostics. SanitizerMask DiagnosedKinds = 0; // All Kinds we have diagnosed up to now. // Used to deduplicate diagnostics. SanitizerMask Kinds = 0; const SanitizerMask Supported = setGroupBits(TC.getSupportedSanitizers()); ToolChain::RTTIMode RTTIMode = TC.getRTTIMode(); const Driver &D = TC.getDriver(); SanitizerMask TrappingKinds = parseSanitizeTrapArgs(D, Args); SanitizerMask InvalidTrappingKinds = TrappingKinds & NotAllowedWithTrap; for (ArgList::const_reverse_iterator I = Args.rbegin(), E = Args.rend(); I != E; ++I) { const auto *Arg = *I; if (Arg->getOption().matches(options::OPT_fsanitize_EQ)) { Arg->claim(); SanitizerMask Add = parseArgValues(D, Arg, true); AllAddedKinds |= expandSanitizerGroups(Add); // Avoid diagnosing any sanitizer which is disabled later. Add &= ~AllRemove; // At this point we have not expanded groups, so any unsupported // sanitizers in Add are those which have been explicitly enabled. // Diagnose them. if (SanitizerMask KindsToDiagnose = Add & InvalidTrappingKinds & ~DiagnosedKinds) { std::string Desc = describeSanitizeArg(*I, KindsToDiagnose); D.Diag(diag::err_drv_argument_not_allowed_with) << Desc << "-fsanitize-trap=undefined"; DiagnosedKinds |= KindsToDiagnose; } Add &= ~InvalidTrappingKinds; if (SanitizerMask KindsToDiagnose = Add & ~Supported & ~DiagnosedKinds) { std::string Desc = describeSanitizeArg(*I, KindsToDiagnose); D.Diag(diag::err_drv_unsupported_opt_for_target) << Desc << TC.getTriple().str(); DiagnosedKinds |= KindsToDiagnose; } Add &= Supported; // Test for -fno-rtti + explicit -fsanitizer=vptr before expanding groups // so we don't error out if -fno-rtti and -fsanitize=undefined were // passed. if (Add & Vptr && (RTTIMode == ToolChain::RM_DisabledImplicitly || RTTIMode == ToolChain::RM_DisabledExplicitly)) { if (RTTIMode == ToolChain::RM_DisabledImplicitly) // Warn about not having rtti enabled if the vptr sanitizer is // explicitly enabled D.Diag(diag::warn_drv_disabling_vptr_no_rtti_default); else { const llvm::opt::Arg *NoRTTIArg = TC.getRTTIArg(); assert(NoRTTIArg && "RTTI disabled explicitly but we have no argument!"); D.Diag(diag::err_drv_argument_not_allowed_with) << "-fsanitize=vptr" << NoRTTIArg->getAsString(Args); } // Take out the Vptr sanitizer from the enabled sanitizers AllRemove |= Vptr; } Add = expandSanitizerGroups(Add); // Group expansion may have enabled a sanitizer which is disabled later. Add &= ~AllRemove; // Silently discard any unsupported sanitizers implicitly enabled through // group expansion. Add &= ~InvalidTrappingKinds; Add &= Supported; Kinds |= Add; } else if (Arg->getOption().matches(options::OPT_fno_sanitize_EQ)) { Arg->claim(); SanitizerMask Remove = parseArgValues(D, Arg, true); AllRemove |= expandSanitizerGroups(Remove); } } // We disable the vptr sanitizer if it was enabled by group expansion but RTTI // is disabled. if ((Kinds & Vptr) && (RTTIMode == ToolChain::RM_DisabledImplicitly || RTTIMode == ToolChain::RM_DisabledExplicitly)) { Kinds &= ~Vptr; } // Check that LTO is enabled if we need it. if ((Kinds & NeedsLTO) && !D.isUsingLTO()) { D.Diag(diag::err_drv_argument_only_allowed_with) << lastArgumentForMask(D, Args, Kinds & NeedsLTO) << "-flto"; } // Report error if there are non-trapping sanitizers that require // c++abi-specific parts of UBSan runtime, and they are not provided by the // toolchain. We don't have a good way to check the latter, so we just // check if the toolchan supports vptr. if (~Supported & Vptr) { SanitizerMask KindsToDiagnose = Kinds & ~TrappingKinds & NeedsUbsanCxxRt; // The runtime library supports the Microsoft C++ ABI, but only well enough // for CFI. FIXME: Remove this once we support vptr on Windows. if (TC.getTriple().isOSWindows()) KindsToDiagnose &= ~CFI; if (KindsToDiagnose) { SanitizerSet S; S.Mask = KindsToDiagnose; D.Diag(diag::err_drv_unsupported_opt_for_target) << ("-fno-sanitize-trap=" + toString(S)) << TC.getTriple().str(); Kinds &= ~KindsToDiagnose; } } // Warn about incompatible groups of sanitizers. std::pair<SanitizerMask, SanitizerMask> IncompatibleGroups[] = { std::make_pair(Address, Thread), std::make_pair(Address, Memory), std::make_pair(Thread, Memory), std::make_pair(Leak, Thread), std::make_pair(Leak, Memory), std::make_pair(KernelAddress, Address), std::make_pair(KernelAddress, Leak), std::make_pair(KernelAddress, Thread), std::make_pair(KernelAddress, Memory)}; for (auto G : IncompatibleGroups) { SanitizerMask Group = G.first; if (Kinds & Group) { if (SanitizerMask Incompatible = Kinds & G.second) { D.Diag(clang::diag::err_drv_argument_not_allowed_with) << lastArgumentForMask(D, Args, Group) << lastArgumentForMask(D, Args, Incompatible); Kinds &= ~Incompatible; } } } // FIXME: Currently -fsanitize=leak is silently ignored in the presence of // -fsanitize=address. Perhaps it should print an error, or perhaps // -f(-no)sanitize=leak should change whether leak detection is enabled by // default in ASan? // Parse -f(no-)?sanitize-recover flags. SanitizerMask RecoverableKinds = RecoverableByDefault; SanitizerMask DiagnosedUnrecoverableKinds = 0; for (const auto *Arg : Args) { const char *DeprecatedReplacement = nullptr; if (Arg->getOption().matches(options::OPT_fsanitize_recover)) { DeprecatedReplacement = "-fsanitize-recover=undefined,integer"; RecoverableKinds |= expandSanitizerGroups(LegacyFsanitizeRecoverMask); Arg->claim(); } else if (Arg->getOption().matches(options::OPT_fno_sanitize_recover)) { DeprecatedReplacement = "-fno-sanitize-recover=undefined,integer"; RecoverableKinds &= ~expandSanitizerGroups(LegacyFsanitizeRecoverMask); Arg->claim(); } else if (Arg->getOption().matches(options::OPT_fsanitize_recover_EQ)) { SanitizerMask Add = parseArgValues(D, Arg, true); // Report error if user explicitly tries to recover from unrecoverable // sanitizer. if (SanitizerMask KindsToDiagnose = Add & Unrecoverable & ~DiagnosedUnrecoverableKinds) { SanitizerSet SetToDiagnose; SetToDiagnose.Mask |= KindsToDiagnose; D.Diag(diag::err_drv_unsupported_option_argument) << Arg->getOption().getName() << toString(SetToDiagnose); DiagnosedUnrecoverableKinds |= KindsToDiagnose; } RecoverableKinds |= expandSanitizerGroups(Add); Arg->claim(); } else if (Arg->getOption().matches(options::OPT_fno_sanitize_recover_EQ)) { RecoverableKinds &= ~expandSanitizerGroups(parseArgValues(D, Arg, true)); Arg->claim(); } if (DeprecatedReplacement) { D.Diag(diag::warn_drv_deprecated_arg) << Arg->getAsString(Args) << DeprecatedReplacement; } } RecoverableKinds &= Kinds; RecoverableKinds &= ~Unrecoverable; TrappingKinds &= Kinds; // Setup blacklist files. // Add default blacklist from resource directory. { std::string BLPath; if (getDefaultBlacklist(D, Kinds, BLPath) && llvm::sys::fs::exists(BLPath)) BlacklistFiles.push_back(BLPath); } // Parse -f(no-)sanitize-blacklist options. for (const auto *Arg : Args) { if (Arg->getOption().matches(options::OPT_fsanitize_blacklist)) { Arg->claim(); std::string BLPath = Arg->getValue(); if (llvm::sys::fs::exists(BLPath)) { BlacklistFiles.push_back(BLPath); ExtraDeps.push_back(BLPath); } else D.Diag(clang::diag::err_drv_no_such_file) << BLPath; } else if (Arg->getOption().matches(options::OPT_fno_sanitize_blacklist)) { Arg->claim(); BlacklistFiles.clear(); ExtraDeps.clear(); } } // Validate blacklists format. { std::string BLError; std::unique_ptr<llvm::SpecialCaseList> SCL( llvm::SpecialCaseList::create(BlacklistFiles, BLError)); if (!SCL.get()) D.Diag(clang::diag::err_drv_malformed_sanitizer_blacklist) << BLError; } // Parse -f[no-]sanitize-memory-track-origins[=level] options. if (AllAddedKinds & Memory) { if (Arg *A = Args.getLastArg(options::OPT_fsanitize_memory_track_origins_EQ, options::OPT_fsanitize_memory_track_origins, options::OPT_fno_sanitize_memory_track_origins)) { if (A->getOption().matches(options::OPT_fsanitize_memory_track_origins)) { MsanTrackOrigins = 2; } else if (A->getOption().matches( options::OPT_fno_sanitize_memory_track_origins)) { MsanTrackOrigins = 0; } else { StringRef S = A->getValue(); if (S.getAsInteger(0, MsanTrackOrigins) || MsanTrackOrigins < 0 || MsanTrackOrigins > 2) { D.Diag(clang::diag::err_drv_invalid_value) << A->getAsString(Args) << S; } } } MsanUseAfterDtor = Args.hasArg(options::OPT_fsanitize_memory_use_after_dtor); NeedPIE |= !(TC.getTriple().isOSLinux() && TC.getTriple().getArch() == llvm::Triple::x86_64); } // Parse -f(no-)?sanitize-coverage flags if coverage is supported by the // enabled sanitizers. if (AllAddedKinds & SupportsCoverage) { for (const auto *Arg : Args) { if (Arg->getOption().matches(options::OPT_fsanitize_coverage)) { Arg->claim(); int LegacySanitizeCoverage; if (Arg->getNumValues() == 1 && !StringRef(Arg->getValue(0)) .getAsInteger(0, LegacySanitizeCoverage) && LegacySanitizeCoverage >= 0 && LegacySanitizeCoverage <= 4) { // TODO: Add deprecation notice for this form. switch (LegacySanitizeCoverage) { case 0: CoverageFeatures = 0; break; case 1: CoverageFeatures = CoverageFunc; break; case 2: CoverageFeatures = CoverageBB; break; case 3: CoverageFeatures = CoverageEdge; break; case 4: CoverageFeatures = CoverageEdge | CoverageIndirCall; break; } continue; } CoverageFeatures |= parseCoverageFeatures(D, Arg); } else if (Arg->getOption().matches(options::OPT_fno_sanitize_coverage)) { Arg->claim(); CoverageFeatures &= ~parseCoverageFeatures(D, Arg); } } } // Choose at most one coverage type: function, bb, or edge. if ((CoverageFeatures & CoverageFunc) && (CoverageFeatures & CoverageBB)) D.Diag(clang::diag::err_drv_argument_not_allowed_with) << "-fsanitize-coverage=func" << "-fsanitize-coverage=bb"; if ((CoverageFeatures & CoverageFunc) && (CoverageFeatures & CoverageEdge)) D.Diag(clang::diag::err_drv_argument_not_allowed_with) << "-fsanitize-coverage=func" << "-fsanitize-coverage=edge"; if ((CoverageFeatures & CoverageBB) && (CoverageFeatures & CoverageEdge)) D.Diag(clang::diag::err_drv_argument_not_allowed_with) << "-fsanitize-coverage=bb" << "-fsanitize-coverage=edge"; // Basic block tracing and 8-bit counters require some type of coverage // enabled. int CoverageTypes = CoverageFunc | CoverageBB | CoverageEdge; if ((CoverageFeatures & CoverageTraceBB) && !(CoverageFeatures & CoverageTypes)) D.Diag(clang::diag::err_drv_argument_only_allowed_with) << "-fsanitize-coverage=trace-bb" << "-fsanitize-coverage=(func|bb|edge)"; if ((CoverageFeatures & Coverage8bitCounters) && !(CoverageFeatures & CoverageTypes)) D.Diag(clang::diag::err_drv_argument_only_allowed_with) << "-fsanitize-coverage=8bit-counters" << "-fsanitize-coverage=(func|bb|edge)"; if (AllAddedKinds & Address) { AsanSharedRuntime = Args.hasArg(options::OPT_shared_libasan) || TC.getTriple().isAndroid(); NeedPIE |= TC.getTriple().isAndroid(); if (Arg *A = Args.getLastArg(options::OPT_fsanitize_address_field_padding)) { StringRef S = A->getValue(); // Legal values are 0 and 1, 2, but in future we may add more levels. if (S.getAsInteger(0, AsanFieldPadding) || AsanFieldPadding < 0 || AsanFieldPadding > 2) { D.Diag(clang::diag::err_drv_invalid_value) << A->getAsString(Args) << S; } } if (Arg *WindowsDebugRTArg = Args.getLastArg(options::OPT__SLASH_MTd, options::OPT__SLASH_MT, options::OPT__SLASH_MDd, options::OPT__SLASH_MD, options::OPT__SLASH_LDd, options::OPT__SLASH_LD)) { switch (WindowsDebugRTArg->getOption().getID()) { case options::OPT__SLASH_MTd: case options::OPT__SLASH_MDd: case options::OPT__SLASH_LDd: D.Diag(clang::diag::err_drv_argument_not_allowed_with) << WindowsDebugRTArg->getAsString(Args) << lastArgumentForMask(D, Args, Address); D.Diag(clang::diag::note_drv_address_sanitizer_debug_runtime); } } } // Parse -link-cxx-sanitizer flag. LinkCXXRuntimes = Args.hasArg(options::OPT_fsanitize_link_cxx_runtime) || D.CCCIsCXX(); // Finally, initialize the set of available and recoverable sanitizers. Sanitizers.Mask |= Kinds; RecoverableSanitizers.Mask |= RecoverableKinds; TrapSanitizers.Mask |= TrappingKinds; }
CudaInstallationDetector::CudaInstallationDetector( const Driver &D, const llvm::Triple &HostTriple, const llvm::opt::ArgList &Args) : D(D) { struct Candidate { std::string Path; bool StrictChecking; Candidate(std::string Path, bool StrictChecking = false) : Path(Path), StrictChecking(StrictChecking) {} }; SmallVector<Candidate, 4> Candidates; // In decreasing order so we prefer newer versions to older versions. std::initializer_list<const char *> Versions = {"8.0", "7.5", "7.0"}; if (Args.hasArg(clang::driver::options::OPT_cuda_path_EQ)) { Candidates.emplace_back( Args.getLastArgValue(clang::driver::options::OPT_cuda_path_EQ).str()); } else if (HostTriple.isOSWindows()) { for (const char *Ver : Versions) Candidates.emplace_back( D.SysRoot + "/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v" + Ver); } else { if (!Args.hasArg(clang::driver::options::OPT_cuda_path_ignore_env)) { // Try to find ptxas binary. If the executable is located in a directory // called 'bin/', its parent directory might be a good guess for a valid // CUDA installation. // However, some distributions might installs 'ptxas' to /usr/bin. In that // case the candidate would be '/usr' which passes the following checks // because '/usr/include' exists as well. To avoid this case, we always // check for the directory potentially containing files for libdevice, // even if the user passes -nocudalib. if (llvm::ErrorOr<std::string> ptxas = llvm::sys::findProgramByName("ptxas")) { SmallString<256> ptxasAbsolutePath; llvm::sys::fs::real_path(*ptxas, ptxasAbsolutePath); StringRef ptxasDir = llvm::sys::path::parent_path(ptxasAbsolutePath); if (llvm::sys::path::filename(ptxasDir) == "bin") Candidates.emplace_back(llvm::sys::path::parent_path(ptxasDir), /*StrictChecking=*/true); } } Candidates.emplace_back(D.SysRoot + "/usr/local/cuda"); for (const char *Ver : Versions) Candidates.emplace_back(D.SysRoot + "/usr/local/cuda-" + Ver); if (Distro(D.getVFS()).IsDebian()) // Special case for Debian to have nvidia-cuda-toolkit work // out of the box. More info on http://bugs.debian.org/882505 Candidates.emplace_back(D.SysRoot + "/usr/lib/cuda"); } bool NoCudaLib = Args.hasArg(options::OPT_nocudalib); for (const auto &Candidate : Candidates) { InstallPath = Candidate.Path; if (InstallPath.empty() || !D.getVFS().exists(InstallPath)) continue; BinPath = InstallPath + "/bin"; IncludePath = InstallPath + "/include"; LibDevicePath = InstallPath + "/nvvm/libdevice"; auto &FS = D.getVFS(); if (!(FS.exists(IncludePath) && FS.exists(BinPath))) continue; bool CheckLibDevice = (!NoCudaLib || Candidate.StrictChecking); if (CheckLibDevice && !FS.exists(LibDevicePath)) continue; // On Linux, we have both lib and lib64 directories, and we need to choose // based on our triple. On MacOS, we have only a lib directory. // // It's sufficient for our purposes to be flexible: If both lib and lib64 // exist, we choose whichever one matches our triple. Otherwise, if only // lib exists, we use it. if (HostTriple.isArch64Bit() && FS.exists(InstallPath + "/lib64")) LibPath = InstallPath + "/lib64"; else if (FS.exists(InstallPath + "/lib")) LibPath = InstallPath + "/lib"; else continue; llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> VersionFile = FS.getBufferForFile(InstallPath + "/version.txt"); if (!VersionFile) { // CUDA 7.0 doesn't have a version.txt, so guess that's our version if // version.txt isn't present. Version = CudaVersion::CUDA_70; } else { Version = ParseCudaVersionFile((*VersionFile)->getBuffer()); } if (Version >= CudaVersion::CUDA_90) { // CUDA-9+ uses single libdevice file for all GPU variants. std::string FilePath = LibDevicePath + "/libdevice.10.bc"; if (FS.exists(FilePath)) { for (const char *GpuArchName : {"sm_20", "sm_30", "sm_32", "sm_35", "sm_50", "sm_52", "sm_53", "sm_60", "sm_61", "sm_62", "sm_70", "sm_72"}) { const CudaArch GpuArch = StringToCudaArch(GpuArchName); if (Version >= MinVersionForCudaArch(GpuArch) && Version <= MaxVersionForCudaArch(GpuArch)) LibDeviceMap[GpuArchName] = FilePath; } } } else { std::error_code EC; for (llvm::sys::fs::directory_iterator LI(LibDevicePath, EC), LE; !EC && LI != LE; LI = LI.increment(EC)) { StringRef FilePath = LI->path(); StringRef FileName = llvm::sys::path::filename(FilePath); // Process all bitcode filenames that look like // libdevice.compute_XX.YY.bc const StringRef LibDeviceName = "libdevice."; if (!(FileName.startswith(LibDeviceName) && FileName.endswith(".bc"))) continue; StringRef GpuArch = FileName.slice( LibDeviceName.size(), FileName.find('.', LibDeviceName.size())); LibDeviceMap[GpuArch] = FilePath.str(); // Insert map entries for specifc devices with this compute // capability. NVCC's choice of the libdevice library version is // rather peculiar and depends on the CUDA version. if (GpuArch == "compute_20") { LibDeviceMap["sm_20"] = FilePath; LibDeviceMap["sm_21"] = FilePath; LibDeviceMap["sm_32"] = FilePath; } else if (GpuArch == "compute_30") { LibDeviceMap["sm_30"] = FilePath; if (Version < CudaVersion::CUDA_80) { LibDeviceMap["sm_50"] = FilePath; LibDeviceMap["sm_52"] = FilePath; LibDeviceMap["sm_53"] = FilePath; } LibDeviceMap["sm_60"] = FilePath; LibDeviceMap["sm_61"] = FilePath; LibDeviceMap["sm_62"] = FilePath; } else if (GpuArch == "compute_35") { LibDeviceMap["sm_35"] = FilePath; LibDeviceMap["sm_37"] = FilePath; } else if (GpuArch == "compute_50") { if (Version >= CudaVersion::CUDA_80) { LibDeviceMap["sm_50"] = FilePath; LibDeviceMap["sm_52"] = FilePath; LibDeviceMap["sm_53"] = FilePath; } } } } // Check that we have found at least one libdevice that we can link in if // -nocudalib hasn't been specified. if (LibDeviceMap.empty() && !NoCudaLib) continue; IsValid = true; break; } }
llvm::opt::DerivedArgList * CudaToolChain::TranslateArgs(const llvm::opt::DerivedArgList &Args, StringRef BoundArch, Action::OffloadKind DeviceOffloadKind) const { DerivedArgList *DAL = HostTC.TranslateArgs(Args, BoundArch, DeviceOffloadKind); if (!DAL) DAL = new DerivedArgList(Args.getBaseArgs()); const OptTable &Opts = getDriver().getOpts(); // For OpenMP device offloading, append derived arguments. Make sure // flags are not duplicated. // Also append the compute capability. if (DeviceOffloadKind == Action::OFK_OpenMP) { for (Arg *A : Args) { bool IsDuplicate = false; for (Arg *DALArg : *DAL) { if (A == DALArg) { IsDuplicate = true; break; } } if (!IsDuplicate) DAL->append(A); } StringRef Arch = DAL->getLastArgValue(options::OPT_march_EQ); if (Arch.empty()) DAL->AddJoinedArg(nullptr, Opts.getOption(options::OPT_march_EQ), CLANG_OPENMP_NVPTX_DEFAULT_ARCH); return DAL; } for (Arg *A : Args) { if (A->getOption().matches(options::OPT_Xarch__)) { // Skip this argument unless the architecture matches BoundArch if (BoundArch.empty() || A->getValue(0) != BoundArch) continue; unsigned Index = Args.getBaseArgs().MakeIndex(A->getValue(1)); unsigned Prev = Index; std::unique_ptr<Arg> XarchArg(Opts.ParseOneArg(Args, Index)); // If the argument parsing failed or more than one argument was // consumed, the -Xarch_ argument's parameter tried to consume // extra arguments. Emit an error and ignore. // // We also want to disallow any options which would alter the // driver behavior; that isn't going to work in our model. We // use isDriverOption() as an approximation, although things // like -O4 are going to slip through. if (!XarchArg || Index > Prev + 1) { getDriver().Diag(diag::err_drv_invalid_Xarch_argument_with_args) << A->getAsString(Args); continue; } else if (XarchArg->getOption().hasFlag(options::DriverOption)) { getDriver().Diag(diag::err_drv_invalid_Xarch_argument_isdriver) << A->getAsString(Args); continue; } XarchArg->setBaseArg(A); A = XarchArg.release(); DAL->AddSynthesizedArg(A); } DAL->append(A); } if (!BoundArch.empty()) { DAL->eraseArg(options::OPT_march_EQ); DAL->AddJoinedArg(nullptr, Opts.getOption(options::OPT_march_EQ), BoundArch); } return DAL; }
CudaInstallationDetector::CudaInstallationDetector( const Driver &D, const llvm::Triple &HostTriple, const llvm::opt::ArgList &Args) : D(D) { SmallVector<std::string, 4> CudaPathCandidates; // In decreasing order so we prefer newer versions to older versions. std::initializer_list<const char *> Versions = {"8.0", "7.5", "7.0"}; if (Args.hasArg(clang::driver::options::OPT_cuda_path_EQ)) { CudaPathCandidates.push_back( Args.getLastArgValue(clang::driver::options::OPT_cuda_path_EQ)); } else if (HostTriple.isOSWindows()) { for (const char *Ver : Versions) CudaPathCandidates.push_back( D.SysRoot + "/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v" + Ver); } else { CudaPathCandidates.push_back(D.SysRoot + "/usr/local/cuda"); for (const char *Ver : Versions) CudaPathCandidates.push_back(D.SysRoot + "/usr/local/cuda-" + Ver); } for (const auto &CudaPath : CudaPathCandidates) { if (CudaPath.empty() || !D.getVFS().exists(CudaPath)) continue; InstallPath = CudaPath; BinPath = CudaPath + "/bin"; IncludePath = InstallPath + "/include"; LibDevicePath = InstallPath + "/nvvm/libdevice"; auto &FS = D.getVFS(); if (!(FS.exists(IncludePath) && FS.exists(BinPath) && FS.exists(LibDevicePath))) continue; // On Linux, we have both lib and lib64 directories, and we need to choose // based on our triple. On MacOS, we have only a lib directory. // // It's sufficient for our purposes to be flexible: If both lib and lib64 // exist, we choose whichever one matches our triple. Otherwise, if only // lib exists, we use it. if (HostTriple.isArch64Bit() && FS.exists(InstallPath + "/lib64")) LibPath = InstallPath + "/lib64"; else if (FS.exists(InstallPath + "/lib")) LibPath = InstallPath + "/lib"; else continue; llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> VersionFile = FS.getBufferForFile(InstallPath + "/version.txt"); if (!VersionFile) { // CUDA 7.0 doesn't have a version.txt, so guess that's our version if // version.txt isn't present. Version = CudaVersion::CUDA_70; } else { Version = ParseCudaVersionFile((*VersionFile)->getBuffer()); } std::error_code EC; for (llvm::sys::fs::directory_iterator LI(LibDevicePath, EC), LE; !EC && LI != LE; LI = LI.increment(EC)) { StringRef FilePath = LI->path(); StringRef FileName = llvm::sys::path::filename(FilePath); // Process all bitcode filenames that look like libdevice.compute_XX.YY.bc const StringRef LibDeviceName = "libdevice."; if (!(FileName.startswith(LibDeviceName) && FileName.endswith(".bc"))) continue; StringRef GpuArch = FileName.slice( LibDeviceName.size(), FileName.find('.', LibDeviceName.size())); LibDeviceMap[GpuArch] = FilePath.str(); // Insert map entries for specifc devices with this compute // capability. NVCC's choice of the libdevice library version is // rather peculiar and depends on the CUDA version. if (GpuArch == "compute_20") { LibDeviceMap["sm_20"] = FilePath; LibDeviceMap["sm_21"] = FilePath; LibDeviceMap["sm_32"] = FilePath; } else if (GpuArch == "compute_30") { LibDeviceMap["sm_30"] = FilePath; if (Version < CudaVersion::CUDA_80) { LibDeviceMap["sm_50"] = FilePath; LibDeviceMap["sm_52"] = FilePath; LibDeviceMap["sm_53"] = FilePath; } LibDeviceMap["sm_60"] = FilePath; LibDeviceMap["sm_61"] = FilePath; LibDeviceMap["sm_62"] = FilePath; } else if (GpuArch == "compute_35") { LibDeviceMap["sm_35"] = FilePath; LibDeviceMap["sm_37"] = FilePath; } else if (GpuArch == "compute_50") { if (Version >= CudaVersion::CUDA_80) { LibDeviceMap["sm_50"] = FilePath; LibDeviceMap["sm_52"] = FilePath; LibDeviceMap["sm_53"] = FilePath; } } } IsValid = true; break; } }
bool ToolChain::needsGCovInstrumentation(const llvm::opt::ArgList &Args) { return Args.hasFlag(options::OPT_fprofile_arcs, options::OPT_fno_profile_arcs, false) || Args.hasArg(options::OPT_coverage); }
bool ToolChain::ShouldLinkCXXStdlib(const llvm::opt::ArgList &Args) const { return getDriver().CCCIsCXX() && !Args.hasArg(options::OPT_nostdlib, options::OPT_nodefaultlibs, options::OPT_nostdlibxx); }
SanitizerArgs::SanitizerArgs(const ToolChain &TC, const llvm::opt::ArgList &Args) { clear(); unsigned AllAdd = 0; // All kinds of sanitizers that were turned on // at least once (possibly, disabled further). unsigned AllRemove = 0; // During the loop below, the accumulated set of // sanitizers disabled by the current sanitizer // argument or any argument after it. unsigned DiagnosedKinds = 0; // All Kinds we have diagnosed up to now. // Used to deduplicate diagnostics. const Driver &D = TC.getDriver(); for (ArgList::const_reverse_iterator I = Args.rbegin(), E = Args.rend(); I != E; ++I) { unsigned Add, Remove; if (!parse(D, Args, *I, Add, Remove, true)) continue; (*I)->claim(); AllAdd |= expandGroups(Add); AllRemove |= expandGroups(Remove); // Avoid diagnosing any sanitizer which is disabled later. Add &= ~AllRemove; // At this point we have not expanded groups, so any unsupported sanitizers // in Add are those which have been explicitly enabled. Diagnose them. Add = filterUnsupportedKinds(TC, Add, Args, *I, /*DiagnoseErrors=*/true, DiagnosedKinds); Add = expandGroups(Add); // Group expansion may have enabled a sanitizer which is disabled later. Add &= ~AllRemove; // Silently discard any unsupported sanitizers implicitly enabled through // group expansion. Add = filterUnsupportedKinds(TC, Add, Args, *I, /*DiagnoseErrors=*/false, DiagnosedKinds); Kind |= Add; } UbsanTrapOnError = Args.hasFlag(options::OPT_fsanitize_undefined_trap_on_error, options::OPT_fno_sanitize_undefined_trap_on_error, false); // Warn about undefined sanitizer options that require runtime support. if (UbsanTrapOnError && notAllowedWithTrap()) { D.Diag(diag::err_drv_argument_not_allowed_with) << lastArgumentForKind(D, Args, NotAllowedWithTrap) << "-fsanitize-undefined-trap-on-error"; } // Only one runtime library can be used at once. bool NeedsAsan = needsAsanRt(); bool NeedsTsan = needsTsanRt(); bool NeedsMsan = needsMsanRt(); bool NeedsLsan = needsLeakDetection(); if (NeedsAsan && NeedsTsan) D.Diag(diag::err_drv_argument_not_allowed_with) << lastArgumentForKind(D, Args, NeedsAsanRt) << lastArgumentForKind(D, Args, NeedsTsanRt); if (NeedsAsan && NeedsMsan) D.Diag(diag::err_drv_argument_not_allowed_with) << lastArgumentForKind(D, Args, NeedsAsanRt) << lastArgumentForKind(D, Args, NeedsMsanRt); if (NeedsTsan && NeedsMsan) D.Diag(diag::err_drv_argument_not_allowed_with) << lastArgumentForKind(D, Args, NeedsTsanRt) << lastArgumentForKind(D, Args, NeedsMsanRt); if (NeedsLsan && NeedsTsan) D.Diag(diag::err_drv_argument_not_allowed_with) << lastArgumentForKind(D, Args, NeedsLeakDetection) << lastArgumentForKind(D, Args, NeedsTsanRt); if (NeedsLsan && NeedsMsan) D.Diag(diag::err_drv_argument_not_allowed_with) << lastArgumentForKind(D, Args, NeedsLeakDetection) << lastArgumentForKind(D, Args, NeedsMsanRt); // FIXME: Currently -fsanitize=leak is silently ignored in the presence of // -fsanitize=address. Perhaps it should print an error, or perhaps // -f(-no)sanitize=leak should change whether leak detection is enabled by // default in ASan? // Parse -f(no-)sanitize-blacklist options. if (Arg *BLArg = Args.getLastArg(options::OPT_fsanitize_blacklist, options::OPT_fno_sanitize_blacklist)) { if (BLArg->getOption().matches(options::OPT_fsanitize_blacklist)) { std::string BLPath = BLArg->getValue(); if (llvm::sys::fs::exists(BLPath)) { // Validate the blacklist format. std::string BLError; std::unique_ptr<llvm::SpecialCaseList> SCL( llvm::SpecialCaseList::create(BLPath, BLError)); if (!SCL.get()) D.Diag(diag::err_drv_malformed_sanitizer_blacklist) << BLError; else BlacklistFile = BLPath; } else { D.Diag(diag::err_drv_no_such_file) << BLPath; } } } else { // If no -fsanitize-blacklist option is specified, try to look up for // blacklist in the resource directory. std::string BLPath; if (getDefaultBlacklistForKind(D, Kind, BLPath) && llvm::sys::fs::exists(BLPath)) BlacklistFile = BLPath; } // Parse -f[no-]sanitize-memory-track-origins[=level] options. if (NeedsMsan) { if (Arg *A = Args.getLastArg(options::OPT_fsanitize_memory_track_origins_EQ, options::OPT_fsanitize_memory_track_origins, options::OPT_fno_sanitize_memory_track_origins)) { if (A->getOption().matches(options::OPT_fsanitize_memory_track_origins)) { MsanTrackOrigins = 1; } else if (A->getOption().matches( options::OPT_fno_sanitize_memory_track_origins)) { MsanTrackOrigins = 0; } else { StringRef S = A->getValue(); if (S.getAsInteger(0, MsanTrackOrigins) || MsanTrackOrigins < 0 || MsanTrackOrigins > 2) { D.Diag(diag::err_drv_invalid_value) << A->getAsString(Args) << S; } } } } if (NeedsAsan) { AsanSharedRuntime = Args.hasArg(options::OPT_shared_libasan) || (TC.getTriple().getEnvironment() == llvm::Triple::Android); AsanZeroBaseShadow = (TC.getTriple().getEnvironment() == llvm::Triple::Android); } }
void SanitizerArgs::addArgs(const ToolChain &TC, const llvm::opt::ArgList &Args, llvm::opt::ArgStringList &CmdArgs, types::ID InputType) const { // Translate available CoverageFeatures to corresponding clang-cc1 flags. // Do it even if Sanitizers.empty() since some forms of coverage don't require // sanitizers. std::pair<int, const char *> CoverageFlags[] = { std::make_pair(CoverageFunc, "-fsanitize-coverage-type=1"), std::make_pair(CoverageBB, "-fsanitize-coverage-type=2"), std::make_pair(CoverageEdge, "-fsanitize-coverage-type=3"), std::make_pair(CoverageIndirCall, "-fsanitize-coverage-indirect-calls"), std::make_pair(CoverageTraceBB, "-fsanitize-coverage-trace-bb"), std::make_pair(CoverageTraceCmp, "-fsanitize-coverage-trace-cmp"), std::make_pair(CoverageTraceDiv, "-fsanitize-coverage-trace-div"), std::make_pair(CoverageTraceGep, "-fsanitize-coverage-trace-gep"), std::make_pair(Coverage8bitCounters, "-fsanitize-coverage-8bit-counters"), std::make_pair(CoverageTracePC, "-fsanitize-coverage-trace-pc")}; for (auto F : CoverageFlags) { if (CoverageFeatures & F.first) CmdArgs.push_back(Args.MakeArgString(F.second)); } if (TC.getTriple().isOSWindows() && needsUbsanRt()) { // Instruct the code generator to embed linker directives in the object file // that cause the required runtime libraries to be linked. CmdArgs.push_back(Args.MakeArgString( "--dependent-lib=" + TC.getCompilerRT(Args, "ubsan_standalone"))); if (types::isCXX(InputType)) CmdArgs.push_back(Args.MakeArgString( "--dependent-lib=" + TC.getCompilerRT(Args, "ubsan_standalone_cxx"))); } if (TC.getTriple().isOSWindows() && needsStatsRt()) { CmdArgs.push_back(Args.MakeArgString("--dependent-lib=" + TC.getCompilerRT(Args, "stats_client"))); // The main executable must export the stats runtime. // FIXME: Only exporting from the main executable (e.g. based on whether the // translation unit defines main()) would save a little space, but having // multiple copies of the runtime shouldn't hurt. CmdArgs.push_back(Args.MakeArgString("--dependent-lib=" + TC.getCompilerRT(Args, "stats"))); addIncludeLinkerOption(TC, Args, CmdArgs, "__sanitizer_stats_register"); } if (Sanitizers.empty()) return; CmdArgs.push_back(Args.MakeArgString("-fsanitize=" + toString(Sanitizers))); if (!RecoverableSanitizers.empty()) CmdArgs.push_back(Args.MakeArgString("-fsanitize-recover=" + toString(RecoverableSanitizers))); if (!TrapSanitizers.empty()) CmdArgs.push_back( Args.MakeArgString("-fsanitize-trap=" + toString(TrapSanitizers))); for (const auto &BLPath : BlacklistFiles) { SmallString<64> BlacklistOpt("-fsanitize-blacklist="); BlacklistOpt += BLPath; CmdArgs.push_back(Args.MakeArgString(BlacklistOpt)); } for (const auto &Dep : ExtraDeps) { SmallString<64> ExtraDepOpt("-fdepfile-entry="); ExtraDepOpt += Dep; CmdArgs.push_back(Args.MakeArgString(ExtraDepOpt)); } if (MsanTrackOrigins) CmdArgs.push_back(Args.MakeArgString("-fsanitize-memory-track-origins=" + llvm::utostr(MsanTrackOrigins))); if (MsanUseAfterDtor) CmdArgs.push_back(Args.MakeArgString("-fsanitize-memory-use-after-dtor")); if (CfiCrossDso) CmdArgs.push_back(Args.MakeArgString("-fsanitize-cfi-cross-dso")); if (Stats) CmdArgs.push_back(Args.MakeArgString("-fsanitize-stats")); if (AsanFieldPadding) CmdArgs.push_back(Args.MakeArgString("-fsanitize-address-field-padding=" + llvm::utostr(AsanFieldPadding))); if (AsanUseAfterScope) CmdArgs.push_back(Args.MakeArgString("-fsanitize-address-use-after-scope")); // MSan: Workaround for PR16386. // ASan: This is mainly to help LSan with cases such as // https://code.google.com/p/address-sanitizer/issues/detail?id=373 // We can't make this conditional on -fsanitize=leak, as that flag shouldn't // affect compilation. if (Sanitizers.has(Memory) || Sanitizers.has(Address)) CmdArgs.push_back(Args.MakeArgString("-fno-assume-sane-operator-new")); // Require -fvisibility= flag on non-Windows when compiling if vptr CFI is // enabled. if (Sanitizers.hasOneOf(CFIClasses) && !TC.getTriple().isOSWindows() && !Args.hasArg(options::OPT_fvisibility_EQ)) { TC.getDriver().Diag(clang::diag::err_drv_argument_only_allowed_with) << lastArgumentForMask(TC.getDriver(), Args, Sanitizers.Mask & CFIClasses) << "-fvisibility="; } }