Exemplo n.º 1
0
bool AreImagesEqual(
    const ImageData& image1,
    const ImageData& image2,
    const double diff_tolerance) {

  const int num_channels = image1.GetNumChannels();
  if (num_channels != image2.GetNumChannels()) {
    std::cout << "Images do not have the same number of channels: "
              << num_channels << " vs. "
              << image2.GetNumChannels() << std::endl;
    return false;
  }

  // If the given diff_tolerance is zero, use "epsilon" to account for possible
  // double precision numerical errors.
  double applied_diff_tolerance = diff_tolerance;
  if (diff_tolerance < std::numeric_limits<double>::epsilon()) {
    applied_diff_tolerance = std::numeric_limits<double>::epsilon();
  }

  for (int channel_index = 0; channel_index < num_channels; ++channel_index) {
    if (!AreMatricesEqual(
          image1.GetChannelImage(channel_index),
          image2.GetChannelImage(channel_index),
          applied_diff_tolerance)) {
      return false;
    }
  }

  return true;
}
Exemplo n.º 2
0
int
MatrixTest::DoesCreateValidEigenSystem( MATRIX* matrix )
{
    const float TOLERANCE = 2e-5;

    int eigenSystemState = EIGENSYSTEM_INVALID;

    int size = matrix->rows;
    int cols = matrix->cols;

    float *eigenValues = new float[ size ];
    MATRIX *eigenVectors = MatrixAlloc( size, cols, MATRIX_REAL );

    MATRIX *eigenSystem = MatrixEigenSystem( matrix, eigenValues, eigenVectors );
    if (eigenSystem == NULL)
    {
        return EIGENSYSTEM_INVALID;
    }

    bool isInDecendingOrder = true;
    for ( int i=1; i<size; i++ )
    {
        if ( fabs( eigenValues[ i-1 ] ) < fabs( eigenValues[i] ) )
        {
            isInDecendingOrder = false;
            std::cerr << "DoesCreateValidEigenSystem::not in descending order: (" <<
                      eigenValues[ i-1 ] << ", " << eigenValues[i] << ")\n";
        }
    }

    if ( !isInDecendingOrder )
    {
        eigenSystemState = EIGENSYSTEM_NOT_DESCENDING;
    }

    MATRIX* eigenValuesMatrix = MatrixAlloc( size, size, MATRIX_REAL );

    for ( int i=0; i<size; i++ )
    {
        // index of the diagonal
        int index = i + i * size;
        eigenValuesMatrix->data[index] = eigenValues[i];
    }

    MATRIX* xv = MatrixMultiply( matrix, eigenVectors, NULL );
    MATRIX* vd = MatrixMultiply( eigenVectors, eigenValuesMatrix, NULL );

    if ( isInDecendingOrder && AreMatricesEqual( xv, vd, TOLERANCE ) )
    {
        eigenSystemState = EIGENSYSTEM_VALID;
    }

    delete []eigenValues;
    DeleteMatrix( eigenVectors );
    DeleteMatrix( eigenValuesMatrix );

    return eigenSystemState;
}
Exemplo n.º 3
0
void
MatrixTest::TestMatrixSVDPseudoInverse()
{
    float tolerance = 1e-5;

    std::cout << "\rMatrixTest::TestMatrixSVDPseudoInverse()\n";

    // check the low-level routine first
    MATRIX *Ux = MatrixRead( (char*) ( SVD_U_MATRIX.c_str() ) );
    MATRIX *Vx = MatrixRead( (char*) ( SVD_V_MATRIX.c_str() ) );
    VECTOR *Sx = MatrixRead( (char*) ( SVD_S_VECTOR.c_str() ) );
    CPPUNIT_ASSERT (Ux != NULL);
    CPPUNIT_ASSERT (Vx != NULL);
    CPPUNIT_ASSERT (Sx != NULL);

    MATRIX *U=MatrixCopy(mSquareMatrix,NULL);
    MATRIX *V=MatrixAlloc(U->cols, U->cols, MATRIX_REAL) ;
    VECTOR *S=VectorAlloc(U->cols, MATRIX_REAL) ;
    OpenSvdcmp( U, S, V ) ;
    CPPUNIT_ASSERT (U != NULL);
    CPPUNIT_ASSERT (V != NULL);
    CPPUNIT_ASSERT (S != NULL);
    CPPUNIT_ASSERT ( AreMatricesEqual( U, Ux, tolerance ) );
    CPPUNIT_ASSERT ( AreMatricesEqual( V, Vx, tolerance ) );
    CPPUNIT_ASSERT ( AreMatricesEqual( S, Sx, tolerance ) );

    // now check MatrixSVDPseudoInverse, which uses sc_linalg_SV_decomp

    tolerance = 1e-5;

    MATRIX *actualInverse = MatrixSVDPseudoInverse( mNonSquareMatrix, NULL );
    MATRIX *expectedInverse =
        MatrixRead( (char*) ( NON_SQUARE_MATRIX_PSEUDO_INVERSE.c_str() ) );
    CPPUNIT_ASSERT( AreMatricesEqual( actualInverse, expectedInverse ) );

    actualInverse = MatrixSVDPseudoInverse( mSquareMatrix, NULL );
    expectedInverse =
        MatrixRead( (char*) ( SQUARE_MATRIX_PSEUDO_INVERSE.c_str() ) );
    CPPUNIT_ASSERT
    ( AreMatricesEqual( actualInverse, expectedInverse, tolerance ) );
}
Exemplo n.º 4
0
bool AreMatricesEqualCroppedBorder(
    const cv::Mat& mat1,
    const cv::Mat& mat2,
    const int crop_border_size,
    const double diff_tolerance) {

  CHECK_GE(crop_border_size, 0);

  const cv::Size size = mat1.size();
  const cv::Rect region_of_interest(
      crop_border_size,                     // Left index of crop.
      crop_border_size,                     // Top index of crop.
      size.width - crop_border_size * 2,    // Width of crop.
      size.height - crop_border_size * 2);  // Height of crop.

  const cv::Mat cropped_mat1 = mat1(region_of_interest);
  const cv::Mat cropped_mat2 = mat2(region_of_interest);

  return AreMatricesEqual(cropped_mat1, cropped_mat2, diff_tolerance);
}
Exemplo n.º 5
0
bool
MatrixTest::AreInversesEqual( MATRIX *matrix, const std::string inverseFile )
{

    // NJS: had to change the tolerance for the test case to pass with VXL
    float tolerance = 0.0022;

    MATRIX *expectedInverse = MatrixRead((char*)( inverseFile.c_str() ));
    MATRIX *actualInverse = MatrixInverse(matrix, NULL);

    CPPUNIT_ASSERT( expectedInverse != NULL );
    CPPUNIT_ASSERT( actualInverse != NULL );

    bool areEqual=AreMatricesEqual( expectedInverse, actualInverse, tolerance );

    DeleteMatrix(expectedInverse);
    DeleteMatrix(actualInverse);

    return areEqual;
}