Exemplo n.º 1
0
CosineTree::CosineTree(CosineTree& parentNode,
                       const std::vector<size_t>& subIndices) :
    dataset(parentNode.GetDataset()),
    parent(&parentNode),
    left(NULL),
    right(NULL),
    numColumns(subIndices.size())
{
  // Initialize sizes of column indices and l2 norms.
  indices.resize(numColumns);
  l2NormsSquared.zeros(numColumns);

  // Set indices and squared norms of the columns.
  for (size_t i = 0; i < numColumns; i++)
  {
    indices[i] = parentNode.indices[subIndices[i]];
    l2NormsSquared(i) = parentNode.l2NormsSquared(subIndices[i]);
  }

  // Frobenius norm of columns in the node.
  frobNormSquared = arma::accu(l2NormsSquared);

  // Calculate centroid of columns in the node.
  CalculateCentroid();

  splitPointIndex = ColumnSampleLS();
}
Exemplo n.º 2
0
CosineTree::CosineTree(const arma::mat& dataset) :
    dataset(dataset),
    parent(NULL),
    left(NULL),
    right(NULL),
    numColumns(dataset.n_cols)
{
  // Initialize sizes of column indices and l2 norms.
  indices.resize(numColumns);
  l2NormsSquared.zeros(numColumns);

  // Set indices and calculate squared norms of the columns.
  for (size_t i = 0; i < numColumns; i++)
  {
    indices[i] = i;
    double l2Norm = arma::norm(dataset.col(i), 2);
    l2NormsSquared(i) = l2Norm * l2Norm;
  }

  // Frobenius norm of columns in the node.
  frobNormSquared = arma::accu(l2NormsSquared);

  // Calculate centroid of columns in the node.
  CalculateCentroid();

  splitPointIndex = ColumnSampleLS();
}
void CosineTreeBuilder::CTNode(arma::mat A, CosineTree& root)
{
  A = A.t();
  Log::Info<<"CTNode"<<std::endl;
  //Calculating Centroid
  arma::rowvec centroid = CalculateCentroid(A);
  //Calculating sampling probabilities
  arma::vec probabilities = arma::zeros<arma::vec>(A.n_rows,1);
  LSSampling(A,probabilities);
  //Setting Values
  root.Probabilities(probabilities);
  root.Data(A);
  root.Centroid(centroid);
}
Exemplo n.º 4
0
void Polygon::CreateConvexPolygon(std::vector<sf::Vector2f> points, sf::Color color)
{
	//Get number of points
	m_shape.setPointCount(points.size());

	//Set points to SFML shape
	for (int i = 0; i < points.size(); ++i)
		m_shape.setPoint(i, points[i]);

	//Set the fill color
	m_shape.setFillColor(color);

	//Set centroid to origin
	CalculateCentroid();
}
Exemplo n.º 5
0
Centroid* ClusterDist_SRMSD::NewCentroid( Cframes const& cframesIn ) {
  // TODO: Incorporate mass?
  Centroid_Coord* cent = new Centroid_Coord( mask_.Nselected() );
  CalculateCentroid( cent, cframesIn );
  return cent;
}
Exemplo n.º 6
0
Centroid* ClusterDist_Euclid::NewCentroid(Cframes const& cframesIn) {
  Centroid_Multi* cent = new Centroid_Multi();
  CalculateCentroid(cent, cframesIn);
  return cent;
}
Exemplo n.º 7
0
/** \return A new centroid of the given frames. */
Centroid* ClusterDist_Num::NewCentroid( Cframes const& cframesIn ) {
  Centroid_Num* cent = new Centroid_Num();
  CalculateCentroid( cent, cframesIn );
  return cent;
}
Exemplo n.º 8
0
inline void MeanShift<UseKernel, KernelType, MatType>::Cluster(
    const MatType& data,
    arma::Col<size_t>& assignments,
    arma::mat& centroids,
    bool useSeeds)
{
  if (radius <= 0)
  {
    // An invalid radius is given; an estimation is needed.
    Radius(EstimateRadius(data));
  }

  MatType seeds;
  const MatType* pSeeds = &data;
  if (useSeeds)
  {
    GenSeeds(data, radius, 1, seeds);
    pSeeds = &seeds;
  }

  // Holds all centroids before removing duplicate ones.
  arma::mat allCentroids(pSeeds->n_rows, pSeeds->n_cols);

  assignments.set_size(data.n_cols);

  range::RangeSearch<> rangeSearcher(data);
  math::Range validRadius(0, radius);
  std::vector<std::vector<size_t> > neighbors;
  std::vector<std::vector<double> > distances;

  // For each seed, perform mean shift algorithm.
  for (size_t i = 0; i < pSeeds->n_cols; ++i)
  {
    // Initial centroid is the seed itself.
    allCentroids.col(i) = pSeeds->unsafe_col(i);
    for (size_t completedIterations = 0; completedIterations < maxIterations;
         completedIterations++)
    {
      // Store new centroid in this.
      arma::colvec newCentroid = arma::zeros<arma::colvec>(pSeeds->n_rows);

      rangeSearcher.Search(allCentroids.unsafe_col(i), validRadius,
          neighbors, distances);
      if (neighbors[0].size() <= 1)
        break;

      // Calculate new centroid.
      if (!CalculateCentroid(data, neighbors[0], distances[0], newCentroid))
        newCentroid = allCentroids.unsafe_col(i);

      // If the mean shift vector is small enough, it has converged.
      if (metric::EuclideanDistance::Evaluate(newCentroid,
          allCentroids.unsafe_col(i)) < 1e-3 * radius)
      {
        // Determine if the new centroid is duplicate with old ones.
        bool isDuplicated = false;
        for (size_t k = 0; k < centroids.n_cols; ++k)
        {
          const double distance = metric::EuclideanDistance::Evaluate(
              allCentroids.unsafe_col(i), centroids.unsafe_col(k));
          if (distance < radius)
          {
            isDuplicated = true;
            break;
          }
        }

        if (!isDuplicated)
          centroids.insert_cols(centroids.n_cols, allCentroids.unsafe_col(i));

        // Get out of the loop.
        break;
      }

      // Update the centroid.
      allCentroids.col(i) = newCentroid;
    }
  }

  // Assign centroids to each point.
  neighbor::KNN neighborSearcher(centroids);
  arma::mat neighborDistances;
  arma::Mat<size_t> resultingNeighbors;
  neighborSearcher.Search(data, 1, resultingNeighbors, neighborDistances);
  assignments = resultingNeighbors.t();
}