Exemplo n.º 1
0
/******************************************************************************
 * @fn      aesDmaInit
 *
 * @brief   Initilize DMA for AES engine
 *
 * input parameters
 *
 * @param   None
 *
 * @return  None
 */
void aesDmaInit( void )
{
  halDMADesc_t *ch;

  /* Fill in DMA channel 1 descriptor and define it as input */
  ch = HAL_DMA_GET_DESC1234( HAL_DMA_AES_IN );
  HAL_DMA_SET_DEST( ch, HAL_AES_IN_ADDR );              /* Input of the AES module */
  HAL_DMA_SET_VLEN( ch, HAL_DMA_VLEN_USE_LEN );         /* Using the length field */
  HAL_DMA_SET_WORD_SIZE( ch, HAL_DMA_WORDSIZE_BYTE );   /* One byte is transferred each time */
  HAL_DMA_SET_TRIG_MODE( ch, HAL_DMA_TMODE_SINGLE );    /* A single byte is transferred each time */
  HAL_DMA_SET_TRIG_SRC( ch, HAL_DMA_TRIG_ENC_DW );      /* Setting the AES module to generate the DMA trigger */
  HAL_DMA_SET_SRC_INC( ch, HAL_DMA_SRCINC_1 );          /* The address for data fetch is incremented by 1 byte */
  HAL_DMA_SET_DST_INC( ch, HAL_DMA_DSTINC_0 );          /* The destination address is constant */
  HAL_DMA_SET_IRQ( ch, HAL_DMA_IRQMASK_DISABLE );       /* The DMA complete interrupt flag is not set at completion */
  HAL_DMA_SET_M8( ch, HAL_DMA_M8_USE_8_BITS );          /* Transferring all 8 bits in each byte */
  HAL_DMA_SET_PRIORITY( ch, HAL_DMA_PRI_HIGH );         /* DMA has priority */

  /* Fill in DMA channel 2 descriptor and define it as output */
  ch = HAL_DMA_GET_DESC1234( HAL_DMA_AES_OUT );
  HAL_DMA_SET_SOURCE( ch, HAL_AES_OUT_ADDR );           /* Start address of the segment */
  HAL_DMA_SET_VLEN( ch, HAL_DMA_VLEN_USE_LEN );         /* Using the length field */
  HAL_DMA_SET_WORD_SIZE( ch, HAL_DMA_WORDSIZE_BYTE );   /* One byte is transferred each time */
  HAL_DMA_SET_TRIG_MODE( ch, HAL_DMA_TMODE_SINGLE );    /* A single byte is transferred each time */
  HAL_DMA_SET_TRIG_SRC( ch, HAL_DMA_TRIG_ENC_UP );      /* Setting the AES module to generate the DMA trigger */
  HAL_DMA_SET_SRC_INC( ch, HAL_DMA_SRCINC_0 );          /* The address for data fetch is constant */
  HAL_DMA_SET_DST_INC( ch, HAL_DMA_DSTINC_1 );          /* The destination address is incremented by 1 byte */
  HAL_DMA_SET_IRQ( ch, HAL_DMA_IRQMASK_DISABLE );       /* The DMA complete interrupt flag is not set at completion */
  HAL_DMA_SET_M8( ch, HAL_DMA_M8_USE_8_BITS );          /* Transferring all 8 bits in each byte */
  HAL_DMA_SET_PRIORITY( ch, HAL_DMA_PRI_HIGH );         /* DMA has priority */
}
Exemplo n.º 2
0
/******************************************************************************
 * @fn      AesDmaSetup
 *
 * @brief   Sets up DMA of 16 byte block using CC2540 HW aes encryption engine
 *
 * input parameters
 *
 * @param   Cstate  - Pointer to output data.
 * @param   msg_out_len - message out length
 * @param   msg_in  - pointer to input data.
 * @param   msg_in_len - message in length
 *
 * output parameters
 *
 * @param   Cstate  - Pointer to encrypted data.
 *
 * @return  None
 *
 */
void AesDmaSetup( uint8 *Cstate, uint16 msg_out_len, uint8 *msg_in, uint16 msg_in_len )
{
  halDMADesc_t *ch;

  /* Modify descriptors for channel 1 */
  ch = HAL_DMA_GET_DESC1234( HAL_DMA_AES_IN );
  HAL_DMA_SET_SOURCE( ch, msg_in );
  HAL_DMA_SET_LEN( ch, msg_in_len );

  /* Modify descriptors for channel 2 */
  ch = HAL_DMA_GET_DESC1234( HAL_DMA_AES_OUT );
  HAL_DMA_SET_DEST( ch, Cstate );
  HAL_DMA_SET_LEN( ch, msg_out_len );

  /* Arm DMA channels 1 and 2 */
  HAL_DMA_CLEAR_IRQ( HAL_DMA_AES_IN );
  HAL_DMA_ARM_CH( HAL_DMA_AES_IN );
  do {
    asm("NOP");
  } while (!HAL_DMA_CH_ARMED(HAL_DMA_AES_IN));
  HAL_DMA_CLEAR_IRQ( HAL_DMA_AES_OUT );
  HAL_DMA_ARM_CH( HAL_DMA_AES_OUT );
  do {
    asm("NOP");
  } while (!HAL_DMA_CH_ARMED(HAL_DMA_AES_OUT));
}
Exemplo n.º 3
0
/******************************************************************************
 * @fn      AesLoadKey
 *
 * @brief   Writes the key into the CC2540
 *
 * input parameters
 *
 * @param   AesKey  - Pointer to AES Key.
 *
 * @return  None
 */
void AesLoadKey( uint8 *AesKey )
{
#if (defined HAL_AES_DMA) && (HAL_AES_DMA == TRUE)
  halDMADesc_t *ch = HAL_DMA_GET_DESC1234( HAL_DMA_AES_IN );

  /* Modify descriptors for channel 1 */
  HAL_DMA_SET_SOURCE( ch, AesKey );
  HAL_DMA_SET_LEN( ch, KEY_BLENGTH );

  /* Arm DMA channel 1 */
  HAL_DMA_CLEAR_IRQ( HAL_DMA_AES_IN );
  HAL_DMA_ARM_CH( HAL_DMA_AES_IN );
  do {
    asm("NOP");
  } while (!HAL_DMA_CH_ARMED(HAL_DMA_AES_IN));

  /* Set AES mode */
  AES_SET_ENCR_DECR_KEY_IV( AES_LOAD_KEY );

  /* Kick it off, block until AES is ready */
  AES_START();
  while( !(ENCCS & 0x08) );
#else
  /* Set AES mode */
  AES_SET_ENCR_DECR_KEY_IV( AES_LOAD_KEY );

  /* Load the block */
  AesLoadBlock( AesKey );
#endif
}
Exemplo n.º 4
0
/******************************************************************************
 * @fn      HalUARTArmTxDMA
 *
 * @brief   Arm the Tx DMA channel.
 *
 * @param   None
 *
 * @return  None
 *****************************************************************************/
static void HalUARTArmTxDMA(void)
{
  halDMADesc_t *ch = HAL_DMA_GET_DESC1234(HAL_DMA_CH_TX);
  HAL_DMA_SET_SOURCE(ch, dmaCfg.txBuf[dmaCfg.txSel]);
  HAL_DMA_SET_LEN(ch, dmaCfg.txIdx[dmaCfg.txSel]);

  dmaCfg.txSel ^= 1;
  dmaCfg.txTrig = 1;
  HAL_DMA_ARM_CH(HAL_DMA_CH_TX);

  HalUARTPollTxTrigDMA();

  if (DMA_PM)
  {
    HAL_UART_DMA_SET_RDY_OUT();
  }
}
Exemplo n.º 5
0
/******************************************************************************
 * @fn      HalUARTArmTxDMA
 *
 * @brief   Arm the Tx DMA channel.
 *
 * @param   None
 *
 * @return  None
 *****************************************************************************/
static void HalUARTArmTxDMA(void)
{
  halDMADesc_t *ch = HAL_DMA_GET_DESC1234(HAL_DMA_CH_TX);
  HAL_DMA_SET_SOURCE(ch, dmaCfg.txBuf[dmaCfg.txSel]);
  HAL_DMA_SET_LEN(ch, dmaCfg.txIdx[dmaCfg.txSel]);

  dmaCfg.txSel ^= 1;
  dmaCfg.txTrig = 1;
  HAL_DMA_ARM_CH(HAL_DMA_CH_TX);
 
  /* Time to arm each DMA channel is 9 cycles as per the user's guide */
  asm("nop"); asm("nop"); asm("nop"); asm("nop"); asm("nop");
  asm("nop"); asm("nop"); asm("nop"); asm("nop"); 

  HalUARTPollTxTrigDMA();

  if (DMA_PM)
  {
    HAL_UART_DMA_SET_RDY_OUT();
  }
}
Exemplo n.º 6
0
/**************************************************************************************************
 * @fn          npSpiTxIsr
 *
 * @brief       This function handles the DMA Tx complete interrupt.
 *
 * input parameters
 *
 * None.
 *
 * output parameters
 *
 * None.
 *
 * @return      None.
 **************************************************************************************************
 */
void HalSpiTxIsr(void)
{
  halDMADesc_t *ch = HAL_DMA_GET_DESC1234(HAL_DMA_CH_TX);
  uint16 src;

  HAL_SPI_DBG_LOG(0x20);
  NP_SPI_ASSERT(halSpiState == NP_SPI_WAIT_TX);

  HAL_DMA_GET_SOURCE( ch, src );

  if ((uint8 *)src != halSpiBuf)
  {
    osal_msg_deallocate((uint8 *)src);
  }

  halSpiState = NP_SPI_IDLE;

  // Callback is required so that client can schedule to call npSpiMonitor
  // function.
  npSpiTxCompleteCallback();
}
Exemplo n.º 7
0
/**************************************************************************************************
 * @fn          HalUARTWriteSPI
 *
 * @brief       Transmit data bytes as a SPI packet.
 *
 * input parameters
 *
 * @param       buf - pointer to the memory of the data bytes to send.
 * @param       len - the length of the data bytes to send.
 *
 * output parameters
 *
 * None.
 *
 * @return      Zero for any error; otherwise, 'len'.
 */
static spiLen_t HalUARTWriteSPI(uint8 *buf, spiLen_t len)
{  
  // Already in Tx or Rx transaction
#ifdef RBA_UART_TO_SPI
  // The RBA Bridge is not written to handle re-writes so we must 
  // just let it write
  if (spiTxLen != 0)
#else //!RBA_UART_TO_SPI
  if (spiTxLen != 0 || SPI_RDY_OUT())
#endif
  {
    return 0;
  }
  
  if (len > SPI_MAX_DAT_LEN)
  {
    len = SPI_MAX_DAT_LEN;
  }
        
  spiTxLen = len;
  writeActive = 1;

#if defined HAL_SPI_MASTER
  
  spiTxPkt[SPI_LEN_IDX] = len;
  (void)memcpy(spiTxPkt + SPI_DAT_IDX, buf, len);
  
  spiCalcFcs(spiTxPkt);
  spiTxPkt[SPI_SOF_IDX] = SPI_SOF;
  
  halDMADesc_t *ch = HAL_DMA_GET_DESC1234(HAL_SPI_CH_TX);
  HAL_DMA_SET_LEN(ch, SPI_PKT_LEN(spiTxPkt)); /* DMA TX might need padding */
 
  /* Abort any pending DMA operations */
  HAL_DMA_ABORT_CH( HAL_SPI_CH_RX );
  spiRxIdx = 0;
  (void)memset(spiRxBuf, (DMA_PAD ^ 0xFF), SPI_MAX_PKT_LEN * sizeof(uint16));

  HAL_DMA_ARM_CH(HAL_SPI_CH_RX);
  
  asm("NOP"); asm("NOP"); asm("NOP"); asm("NOP"); asm("NOP");
  asm("NOP"); asm("NOP"); asm("NOP"); asm("NOP");

  /* Abort any pending DMA operations */
  HAL_DMA_ABORT_CH( HAL_SPI_CH_TX );
  HAL_DMA_ARM_CH(HAL_SPI_CH_TX);

  asm("NOP"); asm("NOP"); asm("NOP"); asm("NOP"); asm("NOP");
  asm("NOP"); asm("NOP"); asm("NOP"); asm("NOP");

  SPI_SET_CSn_OUT();

  while((!SPI_RDY_IN()) && (!spiRdyIsr) );

  HAL_DMA_MAN_TRIGGER(HAL_SPI_CH_TX);

#elif !defined HAL_SPI_MASTER

#ifdef POWER_SAVING
  /* Disable POWER SAVING when transmission is initiated */
  CLEAR_SLEEP_MODE();
#endif

  HAL_DMA_ARM_CH(HAL_SPI_CH_RX);

  asm("NOP"); asm("NOP"); asm("NOP"); asm("NOP"); asm("NOP");
  asm("NOP"); asm("NOP"); asm("NOP"); asm("NOP");
  
  spiTxPkt[SPI_LEN_IDX] = len;
  (void)memcpy(spiTxPkt + SPI_DAT_IDX, buf, len);

  spiCalcFcs(spiTxPkt);
  spiTxPkt[SPI_SOF_IDX] = SPI_SOF;

  halDMADesc_t *ch = HAL_DMA_GET_DESC1234(HAL_SPI_CH_TX);
  HAL_DMA_SET_LEN(ch, SPI_PKT_LEN(spiTxPkt) + 1); /* slave DMA TX might drop the last byte */
  HAL_DMA_ARM_CH(HAL_SPI_CH_TX);
  
  asm("NOP"); asm("NOP"); asm("NOP"); asm("NOP"); asm("NOP");
  asm("NOP"); asm("NOP"); asm("NOP"); asm("NOP");

  SPI_SET_RDY_OUT();

#endif
  return len;
}
Exemplo n.º 8
0
/**************************************************************************************************
 * @fn          HalUARTInitSPI
 *
 * @brief       Initialize the SPI UART Transport.
 *
 * input parameters
 *
 * None.
 *
 * output parameters
 *
 * None.
 *
 * @return      None.
 */
static void HalUARTInitSPI(void)
{
#if (HAL_UART_SPI == 1)
  PERCFG &= ~HAL_UART_PERCFG_BIT;    /* Set UART0 I/O to Alt. 1 location on P0 */
#else
  PERCFG |= HAL_UART_PERCFG_BIT;     /* Set UART1 I/O to Alt. 2 location on P1 */
#endif
#if defined HAL_SPI_MASTER
  PxSEL |= HAL_UART_Px_SEL_M;        /* SPI-Master peripheral select */
  UxCSR = 0;                         /* Mode is SPI-Master Mode */
  UxGCR =  15;                       /* Cfg for the max Rx/Tx baud of 2-MHz */
  UxBAUD = 255;
#elif !defined HAL_SPI_MASTER
  PxSEL |= HAL_UART_Px_SEL_S;        /* SPI-Slave peripheral select */
  UxCSR = CSR_SLAVE;                 /* Mode is SPI-Slave Mode */
#endif
  UxUCR = UCR_FLUSH;                 /* Flush it */
  UxGCR |= BV(5);                    /* Set bit order to MSB */

  P2DIR &= ~P2DIR_PRIPO;
  P2DIR |= HAL_UART_PRIPO;

  /* Setup GPIO for interrupts by falling edge on SPI_RDY_IN */
  PxIEN |= SPI_RDYIn_BIT;
  PICTL |= PICTL_BIT;

  SPI_CLR_RDY_OUT();
  PxDIR |= SPI_RDYOut_BIT;

  /* Setup Tx by DMA */
  halDMADesc_t *ch = HAL_DMA_GET_DESC1234( HAL_SPI_CH_TX );
  
  /* Abort any pending DMA operations (in case of a soft reset) */
  HAL_DMA_ABORT_CH( HAL_SPI_CH_TX );

  /* The start address of the destination */
  HAL_DMA_SET_DEST( ch, DMA_UxDBUF );

  /* Using the length field to determine how many bytes to transfer */
  HAL_DMA_SET_VLEN( ch, HAL_DMA_VLEN_USE_LEN );

  /* One byte is transferred each time */
  HAL_DMA_SET_WORD_SIZE( ch, HAL_DMA_WORDSIZE_BYTE );

  /* The bytes are transferred 1-by-1 on Tx Complete trigger */
  HAL_DMA_SET_TRIG_MODE( ch, HAL_DMA_TMODE_SINGLE );
  HAL_DMA_SET_TRIG_SRC( ch, DMATRIG_TX );

  /* The source address is incremented by 1 byte after each transfer */
  HAL_DMA_SET_SRC_INC( ch, HAL_DMA_SRCINC_1 );
  HAL_DMA_SET_SOURCE( ch, spiTxPkt );

  /* The destination address is constant - the Tx Data Buffer */
  HAL_DMA_SET_DST_INC( ch, HAL_DMA_DSTINC_0 );

  /* The DMA Tx done is serviced by ISR */
  HAL_DMA_SET_IRQ( ch, HAL_DMA_IRQMASK_ENABLE );

  /* Xfer all 8 bits of a byte xfer */
  HAL_DMA_SET_M8( ch, HAL_DMA_M8_USE_8_BITS );

  /* DMA has highest priority for memory access */
  HAL_DMA_SET_PRIORITY( ch, HAL_DMA_PRI_HIGH );

  /* Setup Rx by DMA */
  ch = HAL_DMA_GET_DESC1234( HAL_SPI_CH_RX );
  
  /* Abort any pending DMA operations (in case of a soft reset) */
  HAL_DMA_ABORT_CH( HAL_SPI_CH_RX );

  /* The start address of the source */
  HAL_DMA_SET_SOURCE( ch, DMA_UxDBUF );

  /* Using the length field to determine how many bytes to transfer */
  HAL_DMA_SET_VLEN( ch, HAL_DMA_VLEN_USE_LEN );

  /* The trick is to cfg DMA to xfer 2 bytes for every 1 byte of Rx.
   * The byte after the Rx Data Buffer is the Baud Cfg Register,
   * which always has a known value. So init Rx buffer to inverse of that
   * known value. DMA word xfer will flip the bytes, so every valid Rx byte
   * in the Rx buffer will be preceded by a DMA_PAD char equal to the
   * Baud Cfg Register value.
   */
  HAL_DMA_SET_WORD_SIZE( ch, HAL_DMA_WORDSIZE_WORD );

  /* The bytes are transferred 1-by-1 on Rx Complete trigger */
  HAL_DMA_SET_TRIG_MODE( ch, HAL_DMA_TMODE_SINGLE_REPEATED );
  HAL_DMA_SET_TRIG_SRC( ch, DMATRIG_RX );

  /* The source address is constant - the Rx Data Buffer */
  HAL_DMA_SET_SRC_INC( ch, HAL_DMA_SRCINC_0 );

  /* The destination address is incremented by 1 word after each transfer */
  HAL_DMA_SET_DST_INC( ch, HAL_DMA_DSTINC_1 );
  HAL_DMA_SET_DEST( ch, spiRxBuf );
  HAL_DMA_SET_LEN( ch, SPI_MAX_PKT_LEN );

  /* The DMA is to be polled and shall not issue an IRQ upon completion */
  HAL_DMA_SET_IRQ( ch, HAL_DMA_IRQMASK_DISABLE );

  /* Xfer all 8 bits of a byte xfer */
  HAL_DMA_SET_M8( ch, HAL_DMA_M8_USE_8_BITS );

  /* DMA has highest priority for memory access */
  HAL_DMA_SET_PRIORITY( ch, HAL_DMA_PRI_HIGH );

  volatile uint8 dummy = *(volatile uint8 *)DMA_UxDBUF;  /* Clear the DMA Rx trigger */
  HAL_DMA_CLEAR_IRQ(HAL_SPI_CH_RX);
  HAL_DMA_ARM_CH(HAL_SPI_CH_RX);
  (void)memset(spiRxBuf, (DMA_PAD ^ 0xFF), SPI_MAX_PKT_LEN * sizeof(uint16));
}
Exemplo n.º 9
0
/******************************************************************************
 * @fn      HalUARTInitDMA
 *
 * @brief   Initialize the UART
 *
 * @param   none
 *
 * @return  none
 *****************************************************************************/
static void HalUARTInitDMA(void)
{
  halDMADesc_t *ch;
#if (HAL_UART_DMA == 1)
  PERCFG &= ~HAL_UART_PERCFG_BIT;    // Set UART0 I/O to Alt. 1 location on P0.
#else
  PERCFG |= HAL_UART_PERCFG_BIT;     // Set UART1 I/O to Alt. 2 location on P1.
#endif
  PxSEL  |= HAL_UART_Px_SEL;         // Enable Peripheral control of Rx/Tx on Px.     p0.2 P0.3 set peripheral   //i0 setting
  UxCSR = CSR_MODE;                  // Mode is UART Mode.
  UxUCR = UCR_FLUSH;                 // Flush it.

  P2DIR &= ~P2DIR_PRIPO;                                                                                        //ÓÅÏȼ¶
  P2DIR |= HAL_UART_PRIPO;

  if (DMA_PM)
  {
    // Setup GPIO for interrupts by falling edge on DMA_RDY_IN.
    PxIEN |= DMA_RDYIn_BIT;
    PICTL |= PICTL_BIT;

    HAL_UART_DMA_CLR_RDY_OUT();
    PxDIR |= DMA_RDYOut_BIT;
  }

#if !HAL_UART_TX_BY_ISR
  // Setup Tx by DMA.
  ch = HAL_DMA_GET_DESC1234( HAL_DMA_CH_TX );

  // Abort any pending DMA operations (in case of a soft reset).
  HAL_DMA_ABORT_CH( HAL_DMA_CH_TX );

  // The start address of the destination.
  HAL_DMA_SET_DEST( ch, DMA_UxDBUF );

  // Using the length field to determine how many bytes to transfer.
  HAL_DMA_SET_VLEN( ch, HAL_DMA_VLEN_USE_LEN );

  // One byte is transferred each time.
  HAL_DMA_SET_WORD_SIZE( ch, HAL_DMA_WORDSIZE_BYTE );

  // The bytes are transferred 1-by-1 on Tx Complete trigger.
  HAL_DMA_SET_TRIG_MODE( ch, HAL_DMA_TMODE_SINGLE );
  HAL_DMA_SET_TRIG_SRC( ch, DMATRIG_TX );

  // The source address is incremented by 1 byte after each transfer.
  HAL_DMA_SET_SRC_INC( ch, HAL_DMA_SRCINC_1 );

  // The destination address is constant - the Tx Data Buffer.
  HAL_DMA_SET_DST_INC( ch, HAL_DMA_DSTINC_0 );

  // The DMA Tx done is serviced by ISR in order to maintain full thruput.
  HAL_DMA_SET_IRQ( ch, HAL_DMA_IRQMASK_ENABLE );

  // Xfer all 8 bits of a byte xfer.
  HAL_DMA_SET_M8( ch, HAL_DMA_M8_USE_8_BITS );

  // DMA has highest priority for memory access.
  HAL_DMA_SET_PRIORITY( ch, HAL_DMA_PRI_HIGH);
#endif

  // Setup Rx by DMA.
  ch = HAL_DMA_GET_DESC1234( HAL_DMA_CH_RX );

  // Abort any pending DMA operations (in case of a soft reset).
  HAL_DMA_ABORT_CH( HAL_DMA_CH_RX );

  // The start address of the source.
  HAL_DMA_SET_SOURCE( ch, DMA_UxDBUF );

  // Using the length field to determine how many bytes to transfer.
  HAL_DMA_SET_VLEN( ch, HAL_DMA_VLEN_USE_LEN );

  /* The trick is to cfg DMA to xfer 2 bytes for every 1 byte of Rx.
   * The byte after the Rx Data Buffer is the Baud Cfg Register,
   * which always has a known value. So init Rx buffer to inverse of that
   * known value. DMA word xfer will flip the bytes, so every valid Rx byte
   * in the Rx buffer will be preceded by a DMA_PAD char equal to the
   * Baud Cfg Register value.
   */
  HAL_DMA_SET_WORD_SIZE( ch, HAL_DMA_WORDSIZE_WORD );

  // The bytes are transferred 1-by-1 on Rx Complete trigger.
  HAL_DMA_SET_TRIG_MODE( ch, HAL_DMA_TMODE_SINGLE_REPEATED );
  HAL_DMA_SET_TRIG_SRC( ch, DMATRIG_RX );

  // The source address is constant - the Rx Data Buffer.
  HAL_DMA_SET_SRC_INC( ch, HAL_DMA_SRCINC_0 );

  // The destination address is incremented by 1 word after each transfer.
  HAL_DMA_SET_DST_INC( ch, HAL_DMA_DSTINC_1 );
  HAL_DMA_SET_DEST( ch, dmaCfg.rxBuf );
  HAL_DMA_SET_LEN( ch, HAL_UART_DMA_RX_MAX );

  // The DMA is to be polled and shall not issue an IRQ upon completion.
  HAL_DMA_SET_IRQ( ch, HAL_DMA_IRQMASK_DISABLE );

  // Xfer all 8 bits of a byte xfer.
  HAL_DMA_SET_M8( ch, HAL_DMA_M8_USE_8_BITS );

  // DMA has highest priority for memory access.
  HAL_DMA_SET_PRIORITY( ch, HAL_DMA_PRI_HIGH);

  volatile uint8 dummy = *(volatile uint8 *)DMA_UxDBUF;  // Clear the DMA Rx trigger.
  HAL_DMA_CLEAR_IRQ(HAL_DMA_CH_RX);
  HAL_DMA_ARM_CH(HAL_DMA_CH_RX);
  (void)memset(dmaCfg.rxBuf, (DMA_PAD ^ 0xFF), HAL_UART_DMA_RX_MAX * sizeof(uint16));
}
Exemplo n.º 10
0
/**************************************************************************************************
 * @fn          HalUARTWriteSPI
 *
 * @brief       Transmit data bytes as a SPI packet.
 *
 * input parameters
 *
 * @param       buf - pointer to the memory of the data bytes to send.
 * @param       len - the length of the data bytes to send.
 *
 * output parameters
 *
 * None.
 *
 * @return      Zero for any error; otherwise, 'len'.
 */
static spiLen_t HalUARTWriteSPI(uint8 *buf, spiLen_t len)
{  
  if (spiTxLen != 0)
  {
    return 0;
  }
  
  if (len > SPI_MAX_DAT_LEN)
  {
    len = SPI_MAX_DAT_LEN;
  }

  spiTxLen = len;

#if defined HAL_SPI_MASTER

  spiRdyIsr = 0;
  spiTxPkt[SPI_LEN_IDX] = len;
  (void)memcpy(spiTxPkt + SPI_DAT_IDX, buf, len);
  
  spiCalcFcs(spiTxPkt);
  spiTxPkt[SPI_SOF_IDX] = SPI_SOF;
  
  halDMADesc_t *ch = HAL_DMA_GET_DESC1234(HAL_SPI_CH_TX);
  HAL_DMA_SET_LEN(ch, SPI_PKT_LEN(spiTxPkt)); /* DMA TX might need padding */
 
  /* Abort any pending DMA operations */
  HAL_DMA_ABORT_CH( HAL_SPI_CH_RX );
  spiRxIdx = 0;
  (void)memset(spiRxBuf, (DMA_PAD ^ 0xFF), SPI_MAX_PKT_LEN * sizeof(uint16));

  HAL_DMA_ARM_CH(HAL_SPI_CH_RX);
  
  asm("NOP"); asm("NOP"); asm("NOP"); asm("NOP"); asm("NOP");
  asm("NOP"); asm("NOP"); asm("NOP"); asm("NOP");

  /* Abort any pending DMA operations */
  HAL_DMA_ABORT_CH( HAL_SPI_CH_TX );
  HAL_DMA_ARM_CH(HAL_SPI_CH_TX);

  asm("NOP"); asm("NOP"); asm("NOP"); asm("NOP"); asm("NOP");
  asm("NOP"); asm("NOP"); asm("NOP"); asm("NOP");

  SPI_SET_CSn_OUT();

  while((!SPI_RDY_IN()) && (!spiRdyIsr) );

  HAL_DMA_MAN_TRIGGER(HAL_SPI_CH_TX);

#elif !defined HAL_SPI_MASTER

#ifdef POWER_SAVING
  /* Disable POWER SAVING when transmission is initiated */
  CLEAR_SLEEP_MODE();
#endif

  SPI_CLR_RDY_OUT();

  HAL_DMA_ARM_CH(HAL_SPI_CH_RX);

  asm("NOP"); asm("NOP"); asm("NOP"); asm("NOP"); asm("NOP");
  asm("NOP"); asm("NOP"); asm("NOP"); asm("NOP");

  if ( SPI_RDY_IN() )
  {
    SPI_SET_RDY_OUT();
  }
  
  spiTxPkt[SPI_LEN_IDX] = len;
  (void)memcpy(spiTxPkt + SPI_DAT_IDX, buf, len);

  spiCalcFcs(spiTxPkt);
  spiTxPkt[SPI_SOF_IDX] = SPI_SOF;

  halDMADesc_t *ch = HAL_DMA_GET_DESC1234(HAL_SPI_CH_TX);
  HAL_DMA_SET_LEN(ch, SPI_PKT_LEN(spiTxPkt) + 1); /* slave DMA TX might drop the last byte */
  HAL_DMA_ARM_CH(HAL_SPI_CH_TX);
  
  asm("NOP"); asm("NOP"); asm("NOP"); asm("NOP"); asm("NOP");
  asm("NOP"); asm("NOP"); asm("NOP"); asm("NOP");

  SPI_SET_RDY_OUT();

#endif
  return len;
}
Exemplo n.º 11
0
/**************************************************************************************************
 * @fn          HalSpiDmaInit
 *
 * @brief       This function initializes the DMA for the SPI driver.
 *
 * input parameters
 *
 * None.
 *
 * output parameters
 *
 * None.
 *
 * @return      None.
 **************************************************************************************************
 */
static void HalSpiDmaInit(void)
{
  halDMADesc_t *ch;

  // Setup Tx by DMA
  ch = HAL_DMA_GET_DESC1234(HAL_DMA_CH_TX);

  // The start address of the source and destination.
  HAL_DMA_SET_SOURCE(ch, halSpiBuf);
  HAL_DMA_SET_DEST(ch, DMA_UDBUF);

  // Transfer the first byte + the number of bytes indicated by the first byte + 2 more bytes.
  HAL_DMA_SET_VLEN(ch, HAL_DMA_VLEN_1_P_VALOFFIRST_P_2);
  HAL_DMA_SET_LEN(ch, HAL_SPI_BUF_LEN);

  // One byte is transferred each time.
  HAL_DMA_SET_WORD_SIZE(ch, HAL_DMA_WORDSIZE_BYTE);

  // The bytes are transferred 1-by-1 on Tx Complete trigger.
  HAL_DMA_SET_TRIG_MODE(ch, HAL_DMA_TMODE_SINGLE);
  HAL_DMA_SET_TRIG_SRC(ch, DMATRIG_TX);

  // The source address is incremented by 1 byte after each transfer.
  HAL_DMA_SET_SRC_INC(ch, HAL_DMA_SRCINC_1);

  // The destination address is constant - the Tx Data Buffer.
  HAL_DMA_SET_DST_INC(ch, HAL_DMA_DSTINC_0);

  // The DMA shall issue an IRQ upon completion.
  HAL_DMA_SET_IRQ(ch, HAL_DMA_IRQMASK_ENABLE);

  // Xfer all 8 bits of a byte xfer.
  HAL_DMA_SET_M8(ch, HAL_DMA_M8_USE_8_BITS);

  // DMA has highest priority for memory access.
  HAL_DMA_SET_PRIORITY(ch, HAL_DMA_PRI_HIGH);

  //////////////////////////////////////////////////////////////////////////////

  // Setup Rx by DMA.
  ch = HAL_DMA_GET_DESC1234(HAL_DMA_CH_RX);

  // The start address of the source and destination.
  HAL_DMA_SET_SOURCE(ch, DMA_UDBUF);
  HAL_DMA_SET_DEST(ch, halSpiBuf);

  // Transfer the first byte + the number of bytes indicated by the first byte + 2 more bytes.
  HAL_DMA_SET_VLEN(ch, HAL_DMA_VLEN_1_P_VALOFFIRST_P_2);
  HAL_DMA_SET_LEN(ch, HAL_SPI_BUF_LEN);

  HAL_DMA_SET_WORD_SIZE(ch, HAL_DMA_WORDSIZE_BYTE);

  // The bytes are transferred 1-by-1 on Rx Complete trigger.
  HAL_DMA_SET_TRIG_MODE(ch, HAL_DMA_TMODE_SINGLE);
  HAL_DMA_SET_TRIG_SRC(ch, DMATRIG_RX);

  // The source address is constant - the Rx Data Buffer.
  HAL_DMA_SET_SRC_INC(ch, HAL_DMA_SRCINC_0);

  // The destination address is incremented by 1 byte after each transfer.
  HAL_DMA_SET_DST_INC(ch, HAL_DMA_DSTINC_1);

  // The DMA shall issue an IRQ upon completion.
  HAL_DMA_SET_IRQ(ch, HAL_DMA_IRQMASK_ENABLE);

  // Xfer all 8 bits of a byte xfer.
  HAL_DMA_SET_M8(ch, HAL_DMA_M8_USE_8_BITS);

  // DMA has highest priority for memory access.
  HAL_DMA_SET_PRIORITY(ch, HAL_DMA_PRI_HIGH);
}
Exemplo n.º 12
0
/******************************************************************************
 * @fn      HalUARTPollDMA
 *
 * @brief   Poll a USART module implemented by DMA.
 *
 * @param   none
 *
 * @return  none
 *****************************************************************************/
static void HalUARTPollDMA(void)
{
  uint16 cnt = 0;
  uint8 evt = 0;

  if (HAL_UART_DMA_NEW_RX_BYTE(dmaCfg.rxHead))
  {
    rxIdx_t tail = findTail();

    // If the DMA has transferred in more Rx bytes, reset the Rx idle timer.
    if (dmaCfg.rxTail != tail)
    {
      dmaCfg.rxTail = tail;

      // Re-sync the shadow on any 1st byte(s) received.
      if (dmaCfg.rxTick == 0)
      {
        dmaCfg.rxShdw = ST0;
      }
      dmaCfg.rxTick = HAL_UART_DMA_IDLE;
    }
    else if (dmaCfg.rxTick)
    {
      // Use the LSB of the sleep timer (ST0 must be read first anyway).
      uint8 decr = ST0 - dmaCfg.rxShdw;

      if (dmaCfg.rxTick > decr)
      {
        dmaCfg.rxTick -= decr;
        dmaCfg.rxShdw = ST0;
      }
      else
      {
        dmaCfg.rxTick = 0;
      }
    }
    cnt = HalUARTRxAvailDMA();
  }
  else
  {
    dmaCfg.rxTick = 0;
  }

  if (cnt >= HAL_UART_DMA_FULL)
  {
    evt = HAL_UART_RX_FULL;
  }
  else if (cnt >= HAL_UART_DMA_HIGH)
  {
    evt = HAL_UART_RX_ABOUT_FULL;
    PxOUT |= HAL_UART_Px_RTS;  // Disable Rx flow.
  }
  else if (cnt && !dmaCfg.rxTick)
  {
    evt = HAL_UART_RX_TIMEOUT;
  }

  if (dmaCfg.txMT)
  {
    dmaCfg.txMT = FALSE;
    evt |= HAL_UART_TX_EMPTY;
  }

  if (dmaCfg.txShdwValid)
  {
    uint8 decr = ST0;
    decr -= dmaCfg.txShdw;
    if (decr > dmaCfg.txTick)
    {
      // No protection for txShdwValid is required
      // because while the shadow was valid, DMA ISR cannot be triggered
      // to cause concurrent access to this variable.
      dmaCfg.txShdwValid = FALSE;
    }
  }
  
  if (dmaCfg.txDMAPending && !dmaCfg.txShdwValid)
  {
    // UART TX DMA is expected to be fired and enough time has lapsed since last DMA ISR
    // to know that DBUF can be overwritten
    halDMADesc_t *ch = HAL_DMA_GET_DESC1234(HAL_DMA_CH_TX);
    halIntState_t intState;

    // Clear the DMA pending flag
    dmaCfg.txDMAPending = FALSE;
    
    HAL_DMA_SET_SOURCE(ch, dmaCfg.txBuf[dmaCfg.txSel]);
    HAL_DMA_SET_LEN(ch, dmaCfg.txIdx[dmaCfg.txSel]);
    dmaCfg.txSel ^= 1;
    HAL_ENTER_CRITICAL_SECTION(intState);
    HAL_DMA_ARM_CH(HAL_DMA_CH_TX);
    do
    {
      asm("NOP");
    } while (!HAL_DMA_CH_ARMED(HAL_DMA_CH_TX));
    HAL_DMA_CLEAR_IRQ(HAL_DMA_CH_TX);
    HAL_DMA_MAN_TRIGGER(HAL_DMA_CH_TX);
    HAL_EXIT_CRITICAL_SECTION(intState);
  }
  else
  {
    halIntState_t his;

    HAL_ENTER_CRITICAL_SECTION(his);
    if ((dmaCfg.txIdx[dmaCfg.txSel] != 0) && !HAL_DMA_CH_ARMED(HAL_DMA_CH_TX)
                                          && !HAL_DMA_CHECK_IRQ(HAL_DMA_CH_TX))
    {
      HAL_EXIT_CRITICAL_SECTION(his);
      HalUARTIsrDMA();
    }
    else
    {
      HAL_EXIT_CRITICAL_SECTION(his);
    }
  }

  if (evt && (dmaCfg.uartCB != NULL))
  {
    dmaCfg.uartCB(HAL_UART_DMA-1, evt);
  }
}
Exemplo n.º 13
0
/******************************************************************************
 * @fn      HalUARTInitDMA
 *
 * @brief   Initialize the UART
 *
 * @param   none
 *
 * @return  none
 *****************************************************************************/
static void HalUARTInitDMA(void)
{
  halDMADesc_t *ch;

  P2DIR &= ~P2DIR_PRIPO;
  P2DIR |= HAL_UART_PRIPO;

#if (HAL_UART_DMA == 1)
  PERCFG &= ~HAL_UART_PERCFG_BIT;    // Set UART0 I/O to Alt. 1 location on P0.
#else
  PERCFG |= HAL_UART_PERCFG_BIT;     // Set UART1 I/O to Alt. 2 location on P1.
#endif
  PxSEL  |= HAL_UART_Px_RX_TX;       // Enable Tx and Rx on P1.
  ADCCFG &= ~HAL_UART_Px_RX_TX;      // Make sure ADC doesnt use this.
  UxCSR = CSR_MODE;                  // Mode is UART Mode.
  UxUCR = UCR_FLUSH;                 // Flush it.

  // Setup Tx by DMA.
  ch = HAL_DMA_GET_DESC1234( HAL_DMA_CH_TX );

  // The start address of the destination.
  HAL_DMA_SET_DEST( ch, DMA_UDBUF );

  // Using the length field to determine how many bytes to transfer.
  HAL_DMA_SET_VLEN( ch, HAL_DMA_VLEN_USE_LEN );

  // One byte is transferred each time.
  HAL_DMA_SET_WORD_SIZE( ch, HAL_DMA_WORDSIZE_BYTE );

  // The bytes are transferred 1-by-1 on Tx Complete trigger.
  HAL_DMA_SET_TRIG_MODE( ch, HAL_DMA_TMODE_SINGLE );
  HAL_DMA_SET_TRIG_SRC( ch, DMATRIG_TX );

  // The source address is incremented by 1 byte after each transfer.
  HAL_DMA_SET_SRC_INC( ch, HAL_DMA_SRCINC_1 );

  // The destination address is constant - the Tx Data Buffer.
  HAL_DMA_SET_DST_INC( ch, HAL_DMA_DSTINC_0 );

  // The DMA Tx done is serviced by ISR in order to maintain full thruput.
  HAL_DMA_SET_IRQ( ch, HAL_DMA_IRQMASK_ENABLE );

  // Xfer all 8 bits of a byte xfer.
  HAL_DMA_SET_M8( ch, HAL_DMA_M8_USE_8_BITS );

  // DMA has highest priority for memory access.
  HAL_DMA_SET_PRIORITY( ch, HAL_DMA_PRI_HIGH );

  // Setup Rx by DMA.
  ch = HAL_DMA_GET_DESC1234( HAL_DMA_CH_RX );

  // The start address of the source.
  HAL_DMA_SET_SOURCE( ch, DMA_UDBUF );

  // Using the length field to determine how many bytes to transfer.
  HAL_DMA_SET_VLEN( ch, HAL_DMA_VLEN_USE_LEN );

  /* The trick is to cfg DMA to xfer 2 bytes for every 1 byte of Rx.
   * The byte after the Rx Data Buffer is the Baud Cfg Register,
   * which always has a known value. So init Rx buffer to inverse of that
   * known value. DMA word xfer will flip the bytes, so every valid Rx byte
   * in the Rx buffer will be preceded by a DMA_PAD char equal to the
   * Baud Cfg Register value.
   */
  HAL_DMA_SET_WORD_SIZE( ch, HAL_DMA_WORDSIZE_WORD );

  // The bytes are transferred 1-by-1 on Rx Complete trigger.
  HAL_DMA_SET_TRIG_MODE( ch, HAL_DMA_TMODE_SINGLE_REPEATED );
  HAL_DMA_SET_TRIG_SRC( ch, DMATRIG_RX );

  // The source address is constant - the Rx Data Buffer.
  HAL_DMA_SET_SRC_INC( ch, HAL_DMA_SRCINC_0 );

  // The destination address is incremented by 1 word after each transfer.
  HAL_DMA_SET_DST_INC( ch, HAL_DMA_DSTINC_1 );
  HAL_DMA_SET_DEST( ch, dmaCfg.rxBuf );
  HAL_DMA_SET_LEN( ch, HAL_UART_DMA_RX_MAX );

  // The DMA is to be polled and shall not issue an IRQ upon completion.
  HAL_DMA_SET_IRQ( ch, HAL_DMA_IRQMASK_DISABLE );

  // Xfer all 8 bits of a byte xfer.
  HAL_DMA_SET_M8( ch, HAL_DMA_M8_USE_8_BITS );

  // DMA has highest priority for memory access.
  HAL_DMA_SET_PRIORITY( ch, HAL_DMA_PRI_HIGH );
}
/******************************************************************************
 * @fn      HalIrGenInitNec
 *
 * @brief   Initialize driver
 *
 * input parameters
 *
 * None.
 *
 * output parameters
 *
 * None.
 *
 * @return  None.
 *
 */
void HalIrGenInitNec(void)
{
  
  // Set TICKSPD:4M
  CLKCONCMD &= ~HAL_IRGEN_CLKCON_TICKSPD_MASK;
  CLKCONCMD |= HAL_IRGEN_TICKSPD_4MHZ;

  // Select port direction to output: P1.1 set output(1)
  P1DIR |= HAL_IRGEN_P1SEL_PORT;

  // Initially clear the port so that there will be no conflict
  P1 &= ~HAL_IRGEN_P1SEL_PORT;

  // Select port function to peripheral: P1.1 set Peripherial(1)
  P1SEL |= HAL_IRGEN_P1SEL_PORT;

  // Select alternative 2 location for T1 CH1 output (P1.1)
  PERCFG |= HAL_IRGEN_PERCFG_T1CFG;
  
  // -- set up bit signal generation timer --
  // -- run timer once to make sure output is deactivated
  
  // Halt timer 1:Suspended
  T1CTL = HAL_IRGEN_T1CTL_MODE_SUSPEND;
  
  // Set up timer 1 channel 0 to compare mode 4
  T1CCTL0 = HAL_IRGEN_TxCCTLx_CMP_CLR_SET | HAL_IRGEN_TxCCTLx_MODE_COMPARE;

  // Set up timer 1 channel 1 to compare mode 4
  T1CCTL1 = HAL_IRGEN_TxCCTLx_CMP_CLR_SET | HAL_IRGEN_TxCCTLx_MODE_COMPARE;

  // Run one timer 1 until output is pulled low. 
  // T1CNTL = 0; // Set up timer comparators for single carrier pulse output
  T1CC0L = 2;
  T1CC0H = 0;
  T1CC1L = 1;
  T1CC1H = 0;
  
  // Clear timer 1
  // this will activate the output pin so start timer immediately.
  T1CNTL = 0;
  
  // Start timer 1: Set Modulo Mode
  T1CTL = HAL_IRGEN_BIT_TIMING_PRESCALER_DIV1 | HAL_IRGEN_T1CTL_MODE_MODULO;
  
  // Wait till the single bit is cleared
  while (T1CNTL == 0);
  
   // Stop timer 1
  T1CTL = HAL_IRGEN_T1CTL_MODE_SUSPEND;

  
#ifdef HAL_IRGEN_CARRIER
   // -- set up carrier signal generation timer --
  // Clear counter and halt the timer
  T3CTL = HAL_IRGEN_T3CTL_CLR;
  
  // Set up timer 3 channel 0 to compare mode 4
  T3CCTL0 = HAL_IRGEN_TxCCTLx_CMP_CLR_SET | HAL_IRGEN_TxCCTLx_MODE_COMPARE;
  
  // Set up timer 3 channel 1 to compare mode 4
  T3CCTL1 = HAL_IRGEN_TxCCTLx_CMP_CLR_SET | HAL_IRGEN_TxCCTLx_MODE_COMPARE;
  
  // Configure 38kHz carrier with 33% duty cycle
  T3CC0 = HAL_IRGEN_NEC_CARRIER_DUTY_CYCLE;
  T3CC1 = HAL_IRGEN_NEC_CARRIER_ACTIVE_PER;

  // Combine carrier signal (Timer 1 CH 1 and Timer 3 CH 1 output)
  IRCTL |= 1;
#endif // HAL_IRGEN_CARRIER
  
  // -- Configure DMA --
  
  // Select proper DMA channel descriptor structure
  
  // Set up DMA channel for CC0
#if HAL_IRGEN_DMA_CH_CC0 == 0
  pDmaDescCc0 = HAL_DMA_GET_DESC0();
#else
  pDmaDescCc0 = HAL_DMA_GET_DESC1234(HAL_IRGEN_DMA_CH_CC0);
#endif
  
  // The start address of the destination.
  HAL_DMA_SET_DEST(pDmaDescCc0, HAL_IRGEN_T1CC0L_ADDR);

  // Using the length field to determine how many bytes to transfer.
  HAL_DMA_SET_VLEN(pDmaDescCc0, HAL_DMA_VLEN_USE_LEN);

  // Two bytes are transferred each time.
  HAL_DMA_SET_WORD_SIZE(pDmaDescCc0, HAL_DMA_WORDSIZE_WORD);

  // One word is transferred each time .
  HAL_DMA_SET_TRIG_MODE(pDmaDescCc0, HAL_DMA_TMODE_SINGLE);
  
  // Timer 1 channel 1 trigger DMA xfer
  HAL_DMA_SET_TRIG_SRC(pDmaDescCc0, HAL_DMA_TRIG_T1_CH1);

  // The source address is incremented by 1 word after each transfer.
  HAL_DMA_SET_SRC_INC(pDmaDescCc0, HAL_DMA_SRCINC_1);

  // The destination address is constant - T1CC0.
  HAL_DMA_SET_DST_INC(pDmaDescCc0, HAL_DMA_DSTINC_0);

  // IRQ handler is set up to tigger on CC1
  HAL_DMA_SET_IRQ(pDmaDescCc0, HAL_DMA_IRQMASK_DISABLE);

  // Xfer all 8 bits of a byte xfer.
  HAL_DMA_SET_M8(pDmaDescCc0, HAL_DMA_M8_USE_8_BITS);

  // Set highest priority
  HAL_DMA_SET_PRIORITY(pDmaDescCc0, HAL_DMA_PRI_HIGH);
  
  // Set source data stream
  HAL_DMA_SET_SOURCE(pDmaDescCc0, &halIrGenCc0Buf[0]);
  
  // Set up DMA channel for CC1
#if HAL_IRGEN_DMA_CH_CC1 == 0
  pDmaDescCc1 = HAL_DMA_GET_DESC0();
#else
  pDmaDescCc1 = HAL_DMA_GET_DESC1234(HAL_IRGEN_DMA_CH_CC1);
#endif  

  // The start address of the destination.
  HAL_DMA_SET_DEST(pDmaDescCc1, HAL_IRGEN_T1CC1L_ADDR);

  // Using the length field to determine how many bytes to transfer.
  HAL_DMA_SET_VLEN(pDmaDescCc1, HAL_DMA_VLEN_USE_LEN);

  // Two bytes are transferred each time.
  HAL_DMA_SET_WORD_SIZE(pDmaDescCc1, HAL_DMA_WORDSIZE_WORD);

  // One word is transferred each time
  HAL_DMA_SET_TRIG_MODE( pDmaDescCc1, HAL_DMA_TMODE_SINGLE );
  
  //  Timer 1 channel 1 trigger
  HAL_DMA_SET_TRIG_SRC(pDmaDescCc1, HAL_DMA_TRIG_T1_CH1);

  // The source address is not incremented since active periode is constant.
  HAL_DMA_SET_SRC_INC(pDmaDescCc1, HAL_DMA_SRCINC_0);

  // The destination address is constant - T1CC1.
  HAL_DMA_SET_DST_INC(pDmaDescCc1, HAL_DMA_DSTINC_0);

  // IRQ handler is set up so that sleep enable/disable can be determined.
  HAL_DMA_SET_IRQ(pDmaDescCc1, HAL_DMA_IRQMASK_ENABLE);

  // Xfer all 8 bits of a byte xfer.
  HAL_DMA_SET_M8(pDmaDescCc1, HAL_DMA_M8_USE_8_BITS);

  // Set highest priority
  HAL_DMA_SET_PRIORITY(pDmaDescCc1, HAL_DMA_PRI_HIGH);
  
  // Set source data stream. It is always constant.
  HAL_DMA_SET_SOURCE(pDmaDescCc1, &halIrGenCc1);
 
  // Timer is not running
  halIrGenTimerRunning = FALSE;
}