Exemplo n.º 1
0
/*
   PostSetSubKSP - Optional user-defined routine that reset SubKSP options when hierarchical bjacobi PC is used
   e.g,
     mpiexec -n 8 ./ex3 -nox -n 10000 -ksp_type fgmres -pc_type bjacobi -pc_bjacobi_blocks 4 -sub_ksp_type gmres -sub_ksp_max_it 3 -post_setsubksp -sub_ksp_rtol 1.e-16
   Set by SNESLineSearchSetPostCheck().

   Input Parameters:
   linesearch - the LineSearch context
   xcurrent - current solution
   y - search direction and length
   x    - the new candidate iterate

   Output Parameters:
   y    - proposed step (search direction and length) (possibly changed)
   x    - current iterate (possibly modified)

 */
PetscErrorCode PostSetSubKSP(SNESLineSearch linesearch,Vec xcurrent,Vec y,Vec x,PetscBool  *changed_y,PetscBool  *changed_x, void * ctx)
{
  PetscErrorCode ierr;
  SetSubKSPCtx   *check;
  PetscInt       iter,its,sub_its,maxit;
  KSP            ksp,sub_ksp,*sub_ksps;
  PC             pc;
  PetscReal      ksp_ratio;
  SNES           snes;

  PetscFunctionBeginUser;
  ierr    = SNESLineSearchGetSNES(linesearch, &snes);CHKERRQ(ierr);
  check   = (SetSubKSPCtx*)ctx;
  ierr    = SNESGetIterationNumber(snes,&iter);CHKERRQ(ierr);
  ierr    = SNESGetKSP(snes,&ksp);CHKERRQ(ierr);
  ierr    = KSPGetPC(ksp,&pc);CHKERRQ(ierr);
  ierr    = PCBJacobiGetSubKSP(pc,NULL,NULL,&sub_ksps);CHKERRQ(ierr);
  sub_ksp = sub_ksps[0];
  ierr    = KSPGetIterationNumber(ksp,&its);CHKERRQ(ierr);      /* outer KSP iteration number */
  ierr    = KSPGetIterationNumber(sub_ksp,&sub_its);CHKERRQ(ierr); /* inner KSP iteration number */

  if (iter) {
    ierr      = PetscPrintf(PETSC_COMM_WORLD,"    ...PostCheck snes iteration %D, ksp_it %d %d, subksp_it %d\n",iter,check->its0,its,sub_its);CHKERRQ(ierr);
    ksp_ratio = ((PetscReal)(its))/check->its0;
    maxit     = (PetscInt)(ksp_ratio*sub_its + 0.5);
    if (maxit < 2) maxit = 2;
    ierr = KSPSetTolerances(sub_ksp,PETSC_DEFAULT,PETSC_DEFAULT,PETSC_DEFAULT,maxit);CHKERRQ(ierr);
    ierr = PetscPrintf(PETSC_COMM_WORLD,"    ...ksp_ratio %g, new maxit %d\n\n",ksp_ratio,maxit);CHKERRQ(ierr);
  }
  check->its0 = its; /* save current outer KSP iteration number */
  PetscFunctionReturn(0);
}
Exemplo n.º 2
0
static PetscErrorCode  KSPSolve_SpecEst(KSP ksp)
{
  PetscErrorCode ierr;
  KSP_SpecEst    *spec = (KSP_SpecEst*)ksp->data;

  PetscFunctionBegin;
  if (spec->current) {
    ierr = KSPSolve(spec->kspcheap,ksp->vec_rhs,ksp->vec_sol);CHKERRQ(ierr);
    ierr = KSPSpecEstPropagateUp(ksp,spec->kspcheap);CHKERRQ(ierr);
  } else {
    PetscInt  i,its,neig;
    PetscReal *real,*imag,rad = 0;
    ierr = KSPSolve(spec->kspest,ksp->vec_rhs,ksp->vec_sol);CHKERRQ(ierr);
    ierr = KSPSpecEstPropagateUp(ksp,spec->kspest);CHKERRQ(ierr);
    ierr = KSPComputeExtremeSingularValues(spec->kspest,&spec->max,&spec->min);CHKERRQ(ierr);

    ierr = KSPGetIterationNumber(spec->kspest,&its);CHKERRQ(ierr);
    ierr = PetscMalloc2(its,PetscReal,&real,its,PetscReal,&imag);CHKERRQ(ierr);
    ierr = KSPComputeEigenvalues(spec->kspest,its,real,imag,&neig);CHKERRQ(ierr);
    for (i=0; i<neig; i++) {
      /* We would really like to compute w (nominally 1/radius) to minimize |1-wB|.  Empirically it
         is better to compute rad = |1-B| than rad = |B|.  There must be a cheap way to do better. */
      rad = PetscMax(rad,PetscRealPart(PetscSqrtScalar((PetscScalar)(PetscSqr(real[i]-1.) + PetscSqr(imag[i])))));
    }
    ierr = PetscFree2(real,imag);CHKERRQ(ierr);
    spec->radius = rad;

    ierr = KSPChebyshevSetEigenvalues(spec->kspcheap,spec->max*spec->maxfactor,spec->min*spec->minfactor);CHKERRQ(ierr);
    ierr = KSPRichardsonSetScale(spec->kspcheap,spec->richfactor/spec->radius);
    ierr = PetscInfo3(ksp,"Estimated singular value min=%G max=%G, spectral radius=%G",spec->min,spec->max,spec->radius);CHKERRQ(ierr);
    spec->current = PETSC_TRUE;
  }
  PetscFunctionReturn(0);
}
Exemplo n.º 3
0
/**
   My handrolled SNES monitor.  Gives some information about KSP convergence as well
   as looking pretty.

   @param snes Petsc nonlinear context
   @param its number of iterations
   @param norm norm of nonlinear residual
   @param dctx application context
*/
PetscErrorCode MonitorFunction(SNES snes, PetscInt its, double norm, void *dctx)
{
  PetscErrorCode ierr;
  PetscInt lits;
  PetscMPIInt rank;
  KSP ksp;
  KSPConvergedReason kspreason;
  PetscReal kspnorm;

  PetscFunctionBegin;
  ierr = MPI_Comm_rank(PETSC_COMM_WORLD,&rank);CHKERRQ(ierr);

  ierr = SNESGetKSP(snes, &ksp);CHKERRQ(ierr);
  ierr = KSPGetConvergedReason(ksp, &kspreason);CHKERRQ(ierr);
  ierr = KSPGetResidualNorm(ksp, &kspnorm);CHKERRQ(ierr);
  ierr = KSPGetIterationNumber(ksp, &lits);CHKERRQ(ierr);

  ierr = PetscPrintf(PETSC_COMM_WORLD, "  %d SNES norm %e, %d KSP its last norm %e",
		       its, norm, lits, kspnorm);CHKERRQ(ierr);
  if (kspreason < 0) {
      ierr = PetscPrintf(PETSC_COMM_WORLD, ", KSP failed: %s", KSPConvergedReasons[kspreason]);CHKERRQ(ierr);
  }

  ierr = PetscPrintf(PETSC_COMM_WORLD, ".\n");CHKERRQ(ierr);

  PetscFunctionReturn(0);
}
Exemplo n.º 4
0
bool PotentialSolve::Solve(Vec delta, Vec pot, double bias) {
    PetscInt its;
    KSPConvergedReason reason;
    bool retval;

    // Delta to -Delta
    VecScale(delta, -1.0/bias);

    // Actually solve
    KSPSolve(solver, delta, pot);
    KSPGetConvergedReason(solver,&reason);
    if (reason<0) {
        PetscPrintf(PETSC_COMM_WORLD,"Diverged : %d.\n",reason);
        retval=false;
    } else {
        KSPGetIterationNumber(solver,&its);
        PetscPrintf(PETSC_COMM_WORLD,"\nConvergence in %d iterations.\n",(int)its);
        retval=true;
    }


    // Remove any values that might have crept in here
    _dg1.ZeroPad(pot);

    // Clean up
    VecScale(delta, -1.0*bias);

    return retval;
}
MGSolver_Status _GetSolveStatus( MGSolver_PETScData* mgData ) {
	PC			pc;
	const KSPType		kspType;
	const PCType		pcType;
	KSPConvergedReason	reason;
	PetscErrorCode		ec;

	ec = KSPGetType( mgData->ksp, &kspType );
	CheckPETScError( ec );
	ec = KSPGetPC( mgData->ksp, &pc );
	CheckPETScError( ec );
	ec = PCGetType( pc, &pcType );
	CheckPETScError( ec );

	if( !strcmp( kspType, KSPRICHARDSON ) && !strcmp( pcType, PCSOR ) ) {
		double		rnorm;
		PetscInt	curIt;

		//rnorm = PETScMatrixSolver_GetResidualNorm( self );
		//curIt = PETScMatrixSolver_GetIterations( self );
		rnorm = _GetResidualNorm( mgData );
		KSPGetIterationNumber( mgData->ksp, &curIt );
		//PETScMatrixSolver_SetNormType( self, MultigridSolver_NormType_Preconditioned );
		KSPSetNormType( mgData->ksp, MultigridSolver_NormType_Preconditioned );
		ec = KSPDefaultConverged( mgData->ksp, curIt, (PetscScalar)rnorm, &reason, PETSC_NULL );
		CheckPETScError( ec );
	}
	else {
		ec = KSPGetConvergedReason( mgData->ksp, &reason );
		CheckPETScError( ec );
	}

	return reason;
}
  /// Solve again w/ the specified RHS, put result in specified vector (specialized)
  void p_resolveImpl(const VectorType& b, VectorType& x) const
  {
    PetscErrorCode ierr(0);
    int me(this->processor_rank());
    try {
      const Vec *bvec(PETScVector(b));
      Vec *xvec(PETScVector(x));

      ierr = KSPSolve(p_KSP, *bvec, *xvec); CHKERRXX(ierr);
      int its;
      KSPConvergedReason reason;
      PetscReal rnorm;
      ierr = KSPGetIterationNumber(p_KSP, &its); CHKERRXX(ierr);
      ierr = KSPGetConvergedReason(p_KSP, &reason); CHKERRXX(ierr);
      ierr = KSPGetResidualNorm(p_KSP, &rnorm); CHKERRXX(ierr);
      std::string msg;
      if (reason < 0) {
        msg = 
          boost::str(boost::format("%d: PETSc KSP diverged after %d iterations, reason: %d") % 
                     me % its % reason);
        throw Exception(msg);
      } else if (me == 0) {
        msg = 
          boost::str(boost::format("%d: PETSc KSP converged after %d iterations, reason: %d") % 
                     me % its % reason);
        std::cerr << msg << std::endl;
      }
    } catch (const PETSC_EXCEPTION_TYPE& e) {
      throw PETScException(ierr, e);
    } catch (const Exception& e) {
      throw e;
    }
  }    
Exemplo n.º 7
0
static PetscErrorCode TaoSolve_SSILS(Tao tao)
{
  TAO_SSLS                     *ssls = (TAO_SSLS *)tao->data;
  PetscReal                    psi, ndpsi, normd, innerd, t=0;
  PetscReal                    delta, rho;
  PetscInt                     iter=0,kspits;
  TaoConvergedReason           reason;
  TaoLineSearchConvergedReason ls_reason;
  PetscErrorCode               ierr;

  PetscFunctionBegin;
  /* Assume that Setup has been called!
     Set the structure for the Jacobian and create a linear solver. */
  delta = ssls->delta;
  rho = ssls->rho;

  ierr = TaoComputeVariableBounds(tao);CHKERRQ(ierr);
  ierr = VecMedian(tao->XL,tao->solution,tao->XU,tao->solution);CHKERRQ(ierr);
  ierr = TaoLineSearchSetObjectiveAndGradientRoutine(tao->linesearch,Tao_SSLS_FunctionGradient,tao);CHKERRQ(ierr);
  ierr = TaoLineSearchSetObjectiveRoutine(tao->linesearch,Tao_SSLS_Function,tao);CHKERRQ(ierr);

  /* Calculate the function value and fischer function value at the
     current iterate */
  ierr = TaoLineSearchComputeObjectiveAndGradient(tao->linesearch,tao->solution,&psi,ssls->dpsi);CHKERRQ(ierr);
  ierr = VecNorm(ssls->dpsi,NORM_2,&ndpsi);CHKERRQ(ierr);

  while (1) {
    ierr=PetscInfo3(tao, "iter: %D, merit: %g, ndpsi: %g\n",iter, (double)ssls->merit, (double)ndpsi);CHKERRQ(ierr);
    /* Check the termination criteria */
    ierr = TaoMonitor(tao,iter++,ssls->merit,ndpsi,0.0,t,&reason);CHKERRQ(ierr);
    if (reason!=TAO_CONTINUE_ITERATING) break;

    /* Calculate direction.  (Really negative of newton direction.  Therefore,
       rest of the code uses -d.) */
    ierr = KSPSetOperators(tao->ksp,tao->jacobian,tao->jacobian_pre);CHKERRQ(ierr);
    ierr = KSPSolve(tao->ksp,ssls->ff,tao->stepdirection);CHKERRQ(ierr);
    ierr = KSPGetIterationNumber(tao->ksp,&kspits);CHKERRQ(ierr);
    tao->ksp_its+=kspits;
    ierr = VecNorm(tao->stepdirection,NORM_2,&normd);CHKERRQ(ierr);
    ierr = VecDot(tao->stepdirection,ssls->dpsi,&innerd);CHKERRQ(ierr);

    /* Make sure that we have a descent direction */
    if (innerd <= delta*pow(normd, rho)) {
      ierr = PetscInfo(tao, "newton direction not descent\n");CHKERRQ(ierr);
      ierr = VecCopy(ssls->dpsi,tao->stepdirection);CHKERRQ(ierr);
      ierr = VecDot(tao->stepdirection,ssls->dpsi,&innerd);CHKERRQ(ierr);
    }

    ierr = VecScale(tao->stepdirection, -1.0);CHKERRQ(ierr);
    innerd = -innerd;

    ierr = TaoLineSearchSetInitialStepLength(tao->linesearch,1.0);
    ierr = TaoLineSearchApply(tao->linesearch,tao->solution,&psi,ssls->dpsi,tao->stepdirection,&t,&ls_reason);CHKERRQ(ierr);
    ierr = VecNorm(ssls->dpsi,NORM_2,&ndpsi);CHKERRQ(ierr);
  }
  PetscFunctionReturn(0);
}
Exemplo n.º 8
0
PetscErrorCode SNESQNApply_BadBroyden(SNES snes,PetscInt it,Vec Y,Vec X,Vec Xold,Vec D,Vec Dold)
{
  PetscErrorCode ierr;
  SNES_QN        *qn = (SNES_QN*)snes->data;
  Vec            W   = snes->work[3];
  Vec            *U  = qn->U;
  Vec            *T  = qn->V;

  /* ksp thing for Jacobian scaling */
  PetscInt           h,k,j,i,lits;
  PetscInt           m = qn->m;
  PetscScalar        gdot,udot;
  PetscInt           l = m;

  PetscFunctionBegin;
  if (it < m) l = it;
  ierr = VecCopy(D,Y);CHKERRQ(ierr);
  if (l > 0) {
    k    = (it-1)%l;
    ierr = SNESLineSearchGetLambda(snes->linesearch,&qn->lambda[k]);CHKERRQ(ierr);
    ierr = VecCopy(Dold,U[k]);CHKERRQ(ierr);
    ierr = VecAXPY(U[k],-1.0,D);CHKERRQ(ierr);
    ierr = VecCopy(Xold,T[k]);CHKERRQ(ierr);
    ierr = VecAXPY(T[k],-1.0,X);CHKERRQ(ierr);
  }

  if (qn->scale_type == SNES_QN_SCALE_JACOBIAN) {
    ierr = KSPSolve(snes->ksp,Y,W);CHKERRQ(ierr);
    SNESCheckKSPSolve(snes);
    ierr              = KSPGetIterationNumber(snes->ksp,&lits);CHKERRQ(ierr);
    snes->linear_its += lits;
    ierr              = VecCopy(W,Y);CHKERRQ(ierr);
  } else {
    ierr = VecScale(Y,qn->scaling);CHKERRQ(ierr);
  }

  /* inward recursion starting at the first update and working forward */
  if (l > 0) {
    for (i = 0; i < l-1; i++) {
      j    = (it+i-l)%l;
      k    = (it+i-l+1)%l;
      h    = (it-1)%l;
      ierr = VecDotBegin(U[j],U[h],&gdot);CHKERRQ(ierr);
      ierr = VecDotBegin(U[j],U[j],&udot);CHKERRQ(ierr);
      ierr = VecDotEnd(U[j],U[h],&gdot);CHKERRQ(ierr);
      ierr = VecDotEnd(U[j],U[j],&udot);CHKERRQ(ierr);
      ierr = VecAXPY(Y,PetscRealPart(gdot)/PetscRealPart(udot),T[k]);CHKERRQ(ierr);
      ierr = VecAXPY(Y,-(1.-qn->lambda[k])*PetscRealPart(gdot)/PetscRealPart(udot),T[j]);CHKERRQ(ierr);
      if (qn->monitor) {
        ierr = PetscViewerASCIIAddTab(qn->monitor,((PetscObject)snes)->tablevel+2);CHKERRQ(ierr);
        ierr = PetscViewerASCIIPrintf(qn->monitor, "it: %d k: %d gdot: %14.12e\n", it, k, PetscRealPart(gdot));CHKERRQ(ierr);
        ierr = PetscViewerASCIISubtractTab(qn->monitor,((PetscObject)snes)->tablevel+2);CHKERRQ(ierr);
      }
    }
  }
  PetscFunctionReturn(0);
}
Exemplo n.º 9
0
static PetscErrorCode KSPSpecEstPropagateUp(KSP ksp,KSP subksp)
{
  PetscErrorCode ierr;

  PetscFunctionBegin;
  ierr = KSPGetConvergedReason(subksp,&ksp->reason);CHKERRQ(ierr);
  ierr = KSPGetIterationNumber(subksp,&ksp->its);CHKERRQ(ierr);
  PetscFunctionReturn(0);
}
Exemplo n.º 10
0
static PetscErrorCode SNESSolve_KSPONLY(SNES snes)
{
  PetscErrorCode     ierr;
  PetscInt           lits;
  Vec                Y,X,F;

  PetscFunctionBegin;

  if (snes->xl || snes->xu || snes->ops->computevariablebounds) {
    SETERRQ1(PetscObjectComm((PetscObject)snes),PETSC_ERR_ARG_WRONGSTATE, "SNES solver %s does not support bounds", ((PetscObject)snes)->type_name);
  }

  snes->numFailures            = 0;
  snes->numLinearSolveFailures = 0;
  snes->reason                 = SNES_CONVERGED_ITERATING;
  snes->iter                   = 0;
  snes->norm                   = 0.0;

  X = snes->vec_sol;
  F = snes->vec_func;
  Y = snes->vec_sol_update;

  ierr = SNESComputeFunction(snes,X,F);CHKERRQ(ierr);
  if (snes->numbermonitors) {
    PetscReal fnorm;
    ierr = VecNorm(F,NORM_2,&fnorm);CHKERRQ(ierr);
    ierr = SNESMonitor(snes,0,fnorm);CHKERRQ(ierr);
  }

  /* Call general purpose update function */
  if (snes->ops->update) {
    ierr = (*snes->ops->update)(snes, 0);CHKERRQ(ierr);
  }

  /* Solve J Y = F, where J is Jacobian matrix */
  ierr = SNESComputeJacobian(snes,X,snes->jacobian,snes->jacobian_pre);CHKERRQ(ierr);
  ierr = KSPSetOperators(snes->ksp,snes->jacobian,snes->jacobian_pre);CHKERRQ(ierr);
  ierr = KSPSolve(snes->ksp,F,Y);CHKERRQ(ierr);
  snes->reason = SNES_CONVERGED_ITS;
  SNESCheckKSPSolve(snes);

  ierr              = KSPGetIterationNumber(snes->ksp,&lits);CHKERRQ(ierr);
  snes->linear_its += lits;
  ierr              = PetscInfo2(snes,"iter=%D, linear solve iterations=%D\n",snes->iter,lits);CHKERRQ(ierr);
  snes->iter++;

  /* Take the computed step. */
  ierr = VecAXPY(X,-1.0,Y);CHKERRQ(ierr);
  if (snes->numbermonitors) {
    PetscReal fnorm;
    ierr = SNESComputeFunction(snes,X,F);CHKERRQ(ierr);
    ierr = VecNorm(F,NORM_2,&fnorm);CHKERRQ(ierr);
    ierr = SNESMonitor(snes,1,fnorm);CHKERRQ(ierr);
  }
  PetscFunctionReturn(0);
}
Exemplo n.º 11
0
bool
PETScKrylovLinearSolver::solveSystem(SAMRAIVectorReal<NDIM, double>& x, SAMRAIVectorReal<NDIM, double>& b)
{
    IBTK_TIMER_START(t_solve_system);

#if !defined(NDEBUG)
    TBOX_ASSERT(d_A);
#endif
    int ierr;

    // Initialize the solver, when necessary.
    const bool deallocate_after_solve = !d_is_initialized;
    if (deallocate_after_solve) initializeSolverState(x, b);
#if !defined(NDEBUG)
    TBOX_ASSERT(d_petsc_ksp);
#endif
    resetKSPOptions();

    // Allocate scratch data.
    d_b->allocateVectorData();

    // Solve the system using a PETSc KSP object.
    d_b->copyVector(Pointer<SAMRAIVectorReal<NDIM, double> >(&b, false));
    d_A->setHomogeneousBc(d_homogeneous_bc);
    d_A->modifyRhsForBcs(*d_b);
    d_A->setHomogeneousBc(true);
    PETScSAMRAIVectorReal::replaceSAMRAIVector(d_petsc_x, Pointer<SAMRAIVectorReal<NDIM, double> >(&x, false));
    PETScSAMRAIVectorReal::replaceSAMRAIVector(d_petsc_b, d_b);
    ierr = KSPSolve(d_petsc_ksp, d_petsc_b, d_petsc_x);
    IBTK_CHKERRQ(ierr);
    d_A->setHomogeneousBc(d_homogeneous_bc);
    d_A->imposeSolBcs(x);

    // Get iterations count and residual norm.
    ierr = KSPGetIterationNumber(d_petsc_ksp, &d_current_iterations);
    IBTK_CHKERRQ(ierr);
    ierr = KSPGetResidualNorm(d_petsc_ksp, &d_current_residual_norm);
    IBTK_CHKERRQ(ierr);
    d_A->setHomogeneousBc(d_homogeneous_bc);

    // Determine the convergence reason.
    KSPConvergedReason reason;
    ierr = KSPGetConvergedReason(d_petsc_ksp, &reason);
    IBTK_CHKERRQ(ierr);
    const bool converged = (static_cast<int>(reason) > 0);
    if (d_enable_logging) reportKSPConvergedReason(reason, plog);

    // Dealocate scratch data.
    d_b->deallocateVectorData();

    // Deallocate the solver, when necessary.
    if (deallocate_after_solve) deallocateSolverState();

    IBTK_TIMER_STOP(t_solve_system);
    return converged;
} // solveSystem
Exemplo n.º 12
0
PetscErrorCode SolveH(MPI_Comm comm, KSP ksp, Mat H, Vec rhs, Vec sol)
{
  /*-----------------KSP Solving------------------*/   
  PetscErrorCode ierr;
  PetscLogDouble t1,t2,tpast;
  ierr = Ptime(&t1);CHKERRQ(ierr);

  if (itsH>(maxit-5)){
    ierr = KSPSetOperators(ksp,H,H);CHKERRQ(ierr);}
  else{
    ierr = KSPSetReusePreconditioner(ksp,PETSC_TRUE);CHKERRQ(ierr);}

   ierr = KSPSolve(ksp,rhs,sol);CHKERRQ(ierr);
   ierr = KSPGetIterationNumber(ksp,&itsH);CHKERRQ(ierr);

   // if GMRES is stopped due to maxit, then redo it with sparse direct solve;
   if(itsH>(maxit-2))
     {
	ierr = KSPSetOperators(ksp,H,H);CHKERRQ(ierr);
	ierr = KSPSolve(ksp,rhs,sol);CHKERRQ(ierr);
	ierr = KSPGetIterationNumber(ksp,&itsH);CHKERRQ(ierr);
     }

  //Print kspsolving information
  double norm;
  Vec xdiff;
  ierr=VecDuplicate(sol,&xdiff);CHKERRQ(ierr);
  ierr = MatMult(H,sol, xdiff);CHKERRQ(ierr);
  ierr = VecAXPY(xdiff,-1.0,rhs);CHKERRQ(ierr);
  ierr = VecNorm(xdiff,NORM_INFINITY,&norm);CHKERRQ(ierr);
  ierr = PetscPrintf(PETSC_COMM_WORLD,"==> Helmholtz filter solution: norm of error %g, Kryolv Iterations %d----\n ",norm,itsH);CHKERRQ(ierr);    

  ierr = Ptime(&t2);CHKERRQ(ierr);
  tpast = t2 - t1;

  int rank;
  MPI_Comm_rank(MPI_COMM_WORLD, &rank);
  if(rank==0) PetscPrintf(PETSC_COMM_SELF,"==> Helmholtz filter solution: the runing time is %f s \n",tpast);
  /*--------------Finish KSP Solving---------------*/ 

  VecDestroy(&xdiff);
  PetscFunctionReturn(0);
}
Exemplo n.º 13
0
static PetscErrorCode PCApplyTranspose_KSP(PC pc,Vec x,Vec y)
{
  PetscErrorCode ierr;
  PetscInt       its;
  PC_KSP         *jac = (PC_KSP*)pc->data;

  PetscFunctionBegin;
  ierr      = KSPSolveTranspose(jac->ksp,x,y);CHKERRQ(ierr);
  ierr      = KSPGetIterationNumber(jac->ksp,&its);CHKERRQ(ierr);
  jac->its += its;
  PetscFunctionReturn(0);
}
Exemplo n.º 14
0
static PetscErrorCode PCApply_KSP(PC pc,Vec x,Vec y)
{
  PetscErrorCode ierr;
  PetscInt       its;
  PC_KSP         *jac = (PC_KSP*)pc->data;

  PetscFunctionBegin;
  ierr      = KSPSetInitialGuessNonzero(jac->ksp,pc->nonzero_guess);CHKERRQ(ierr);
  ierr      = KSPSolve(jac->ksp,x,y);CHKERRQ(ierr);
  ierr      = KSPGetIterationNumber(jac->ksp,&its);CHKERRQ(ierr);
  jac->its += its;
  PetscFunctionReturn(0);
}
Exemplo n.º 15
0
PetscErrorCode BSSCR_PCBFBTSubKSPMonitor( KSP ksp, PetscInt index, PetscLogDouble time )
{
        PetscInt max_it;
        PetscReal rnorm;
        KSPConvergedReason reason;

        KSPGetIterationNumber( ksp, &max_it );
        KSPGetResidualNorm( ksp, &rnorm );
        KSPGetConvergedReason( ksp, &reason );
        PetscPrintf(((PetscObject)ksp)->comm,"    PCBFBTSubKSP (%d): %D Residual norm; r0 %12.12e, r %12.12e: Reason %s: Time %5.5e \n", 
		index, max_it, ksp->rnorm0, rnorm, KSPConvergedReasons[reason], time );

        PetscFunctionReturn(0);
}
Exemplo n.º 16
0
int TaoLinearSolverPetsc::Solve(TaoVec* tv, TaoVec* tw, TaoTruth *flag)
{
  TaoVecPetsc *pv = dynamic_cast <TaoVecPetsc *> (tv);
  TaoVecPetsc *pw = dynamic_cast <TaoVecPetsc *> (tw);
  int info;
  PetscInt its;

  PetscFunctionBegin;

  info = KSPSolve(ksp,pv->GetVec(),pw->GetVec()); CHKERRQ(info);
  info = KSPGetIterationNumber(ksp, &its); CHKERRQ(info);

  this->linear_its=PetscMax(its,-its);
  if (its>0) *flag=TAO_TRUE; 
  else *flag=TAO_FALSE;

  PetscFunctionReturn(0);
}
Exemplo n.º 17
0
Arquivo: pcksp.c Projeto: petsc/petsc
static PetscErrorCode PCApply_KSP(PC pc,Vec x,Vec y)
{
  PetscErrorCode     ierr;
  PetscInt           its;
  PC_KSP             *jac = (PC_KSP*)pc->data;

  PetscFunctionBegin;
  if (jac->ksp->presolve) {
    ierr = VecCopy(x,y);CHKERRQ(ierr);
    ierr = KSPSolve(jac->ksp,y,y);CHKERRQ(ierr);
  } else {
    ierr = KSPSolve(jac->ksp,x,y);CHKERRQ(ierr);
  }
  ierr = KSPCheckSolve(jac->ksp,pc,y);CHKERRQ(ierr);
  ierr      = KSPGetIterationNumber(jac->ksp,&its);CHKERRQ(ierr);
  jac->its += its;
  PetscFunctionReturn(0);
}
Exemplo n.º 18
0
PetscErrorCode BSSCR_Lp_monitor( KSP ksp, PetscInt index )
{
	PetscInt max_it;
	PetscReal rnorm;
	KSPConvergedReason reason;
	
	KSPGetIterationNumber( ksp, &max_it );
	KSPGetResidualNorm( ksp, &rnorm );
	KSPGetConvergedReason( ksp, &reason );
	if (ksp->reason > 0) {
		PetscPrintf(((PetscObject)ksp)->comm,"\t<Lp(%d)>: Linear solve converged. its.=%.4d ; |r|=%5.5e ; Reason=%s\n", 
				index, max_it, rnorm, KSPConvergedReasons[reason] );
	} else {
		PetscPrintf(((PetscObject)ksp)->comm,"\t<Lp(%d)>: Linear solve did not converge. its.=%.4d ; |r|=%5.5e ; Reason=%s\n", 
				index, max_it, rnorm, KSPConvergedReasons[reason]);
	}
	
	PetscFunctionReturn(0);
}
Exemplo n.º 19
0
/*
 * Must be passed a KSP solver that has "converged", with KSPSetComputeEigenvalues() called before the solve
 */
static PetscErrorCode KSPChebyshevComputeExtremeEigenvalues_Private(KSP kspest,PetscReal *emin,PetscReal *emax)
{
  PetscErrorCode ierr;
  PetscInt       n,neig;
  PetscReal      *re,*im,min,max;

  PetscFunctionBegin;
  ierr = KSPGetIterationNumber(kspest,&n);CHKERRQ(ierr);
  ierr = PetscMalloc2(n,&re,n,&im);CHKERRQ(ierr);
  ierr = KSPComputeEigenvalues(kspest,n,re,im,&neig);CHKERRQ(ierr);
  min  = PETSC_MAX_REAL;
  max  = PETSC_MIN_REAL;
  for (n=0; n<neig; n++) {
    min = PetscMin(min,re[n]);
    max = PetscMax(max,re[n]);
  }
  ierr  = PetscFree2(re,im);CHKERRQ(ierr);
  *emax = max;
  *emin = min;
  PetscFunctionReturn(0);
}
Exemplo n.º 20
0
Arquivo: ex5.c Projeto: fengyuqi/petsc
int main(int Argc,char **Args)
{
  PetscInt       x_mesh = 15,levels = 3,cycles = 1,use_jacobi = 0;
  PetscInt       i,smooths = 1,*N,its;
  PetscErrorCode ierr;
  PCMGType       am = PC_MG_MULTIPLICATIVE;
  Mat            cmat,mat[20],fmat;
  KSP            cksp,ksp[20],kspmg;
  PetscReal      e[3];  /* l_2 error,max error, residual */
  const char     *shellname;
  Vec            x,solution,X[20],R[20],B[20];
  PC             pcmg,pc;
  PetscBool      flg;

  PetscInitialize(&Argc,&Args,(char*)0,help);

  ierr = PetscOptionsGetInt(NULL,"-x",&x_mesh,NULL);CHKERRQ(ierr);
  ierr = PetscOptionsGetInt(NULL,"-l",&levels,NULL);CHKERRQ(ierr);
  ierr = PetscOptionsGetInt(NULL,"-c",&cycles,NULL);CHKERRQ(ierr);
  ierr = PetscOptionsGetInt(NULL,"-smooths",&smooths,NULL);CHKERRQ(ierr);
  ierr = PetscOptionsHasName(NULL,"-a",&flg);CHKERRQ(ierr);

  if (flg) am = PC_MG_ADDITIVE;
  ierr = PetscOptionsHasName(NULL,"-f",&flg);CHKERRQ(ierr);
  if (flg) am = PC_MG_FULL;
  ierr = PetscOptionsHasName(NULL,"-j",&flg);CHKERRQ(ierr);
  if (flg) use_jacobi = 1;

  ierr = PetscMalloc1(levels,&N);CHKERRQ(ierr);
  N[0] = x_mesh;
  for (i=1; i<levels; i++) {
    N[i] = N[i-1]/2;
    if (N[i] < 1) SETERRQ(PETSC_COMM_WORLD,1,"Too many levels");
  }

  ierr = Create1dLaplacian(N[levels-1],&cmat);CHKERRQ(ierr);

  ierr = KSPCreate(PETSC_COMM_WORLD,&kspmg);CHKERRQ(ierr);
  ierr = KSPGetPC(kspmg,&pcmg);CHKERRQ(ierr);
  ierr = KSPSetFromOptions(kspmg);CHKERRQ(ierr);
  ierr = PCSetType(pcmg,PCMG);CHKERRQ(ierr);
  ierr = PCMGSetLevels(pcmg,levels,NULL);CHKERRQ(ierr);
  ierr = PCMGSetType(pcmg,am);CHKERRQ(ierr);

  ierr = PCMGGetCoarseSolve(pcmg,&cksp);CHKERRQ(ierr);
  ierr = KSPSetOperators(cksp,cmat,cmat);CHKERRQ(ierr);
  ierr = KSPGetPC(cksp,&pc);CHKERRQ(ierr);
  ierr = PCSetType(pc,PCLU);CHKERRQ(ierr);
  ierr = KSPSetType(cksp,KSPPREONLY);CHKERRQ(ierr);

  /* zero is finest level */
  for (i=0; i<levels-1; i++) {
    ierr = PCMGSetResidual(pcmg,levels - 1 - i,residual,(Mat)0);CHKERRQ(ierr);
    ierr = MatCreateShell(PETSC_COMM_WORLD,N[i+1],N[i],N[i+1],N[i],(void*)0,&mat[i]);CHKERRQ(ierr);
    ierr = MatShellSetOperation(mat[i],MATOP_MULT,(void (*)(void))restrct);CHKERRQ(ierr);
    ierr = MatShellSetOperation(mat[i],MATOP_MULT_TRANSPOSE_ADD,(void (*)(void))interpolate);CHKERRQ(ierr);
    ierr = PCMGSetInterpolation(pcmg,levels - 1 - i,mat[i]);CHKERRQ(ierr);
    ierr = PCMGSetRestriction(pcmg,levels - 1 - i,mat[i]);CHKERRQ(ierr);
    ierr = PCMGSetCyclesOnLevel(pcmg,levels - 1 - i,cycles);CHKERRQ(ierr);

    /* set smoother */
    ierr = PCMGGetSmoother(pcmg,levels - 1 - i,&ksp[i]);CHKERRQ(ierr);
    ierr = KSPGetPC(ksp[i],&pc);CHKERRQ(ierr);
    ierr = PCSetType(pc,PCSHELL);CHKERRQ(ierr);
    ierr = PCShellSetName(pc,"user_precond");CHKERRQ(ierr);
    ierr = PCShellGetName(pc,&shellname);CHKERRQ(ierr);
    ierr = PetscPrintf(PETSC_COMM_WORLD,"level=%D, PCShell name is %s\n",i,shellname);CHKERRQ(ierr);

    /* this is a dummy! since KSP requires a matrix passed in  */
    ierr = KSPSetOperators(ksp[i],mat[i],mat[i]);CHKERRQ(ierr);
    /*
        We override the matrix passed in by forcing it to use Richardson with
        a user provided application. This is non-standard and this practice
        should be avoided.
    */
    ierr = PCShellSetApplyRichardson(pc,gauss_seidel);CHKERRQ(ierr);
    if (use_jacobi) {
      ierr = PCShellSetApplyRichardson(pc,jacobi);CHKERRQ(ierr);
    }
    ierr = KSPSetType(ksp[i],KSPRICHARDSON);CHKERRQ(ierr);
    ierr = KSPSetInitialGuessNonzero(ksp[i],PETSC_TRUE);CHKERRQ(ierr);
    ierr = KSPSetTolerances(ksp[i],PETSC_DEFAULT,PETSC_DEFAULT,PETSC_DEFAULT,smooths);CHKERRQ(ierr);

    ierr = VecCreateSeq(PETSC_COMM_SELF,N[i],&x);CHKERRQ(ierr);

    X[levels - 1 - i] = x;
    if (i > 0) {
      ierr = PCMGSetX(pcmg,levels - 1 - i,x);CHKERRQ(ierr);
    }
    ierr = VecCreateSeq(PETSC_COMM_SELF,N[i],&x);CHKERRQ(ierr);

    B[levels -1 - i] = x;
    if (i > 0) {
      ierr = PCMGSetRhs(pcmg,levels - 1 - i,x);CHKERRQ(ierr);
    }
    ierr = VecCreateSeq(PETSC_COMM_SELF,N[i],&x);CHKERRQ(ierr);

    R[levels - 1 - i] = x;

    ierr = PCMGSetR(pcmg,levels - 1 - i,x);CHKERRQ(ierr);
  }
  /* create coarse level vectors */
  ierr = VecCreateSeq(PETSC_COMM_SELF,N[levels-1],&x);CHKERRQ(ierr);
  ierr = PCMGSetX(pcmg,0,x);CHKERRQ(ierr); X[0] = x;
  ierr = VecCreateSeq(PETSC_COMM_SELF,N[levels-1],&x);CHKERRQ(ierr);
  ierr = PCMGSetRhs(pcmg,0,x);CHKERRQ(ierr); B[0] = x;

  /* create matrix multiply for finest level */
  ierr = MatCreateShell(PETSC_COMM_WORLD,N[0],N[0],N[0],N[0],(void*)0,&fmat);CHKERRQ(ierr);
  ierr = MatShellSetOperation(fmat,MATOP_MULT,(void (*)(void))amult);CHKERRQ(ierr);
  ierr = KSPSetOperators(kspmg,fmat,fmat);CHKERRQ(ierr);

  ierr = CalculateSolution(N[0],&solution);CHKERRQ(ierr);
  ierr = CalculateRhs(B[levels-1]);CHKERRQ(ierr);
  ierr = VecSet(X[levels-1],0.0);CHKERRQ(ierr);

  ierr = residual((Mat)0,B[levels-1],X[levels-1],R[levels-1]);CHKERRQ(ierr);
  ierr = CalculateError(solution,X[levels-1],R[levels-1],e);CHKERRQ(ierr);
  ierr = PetscPrintf(PETSC_COMM_SELF,"l_2 error %g max error %g resi %g\n",(double)e[0],(double)e[1],(double)e[2]);CHKERRQ(ierr);

  ierr = KSPSolve(kspmg,B[levels-1],X[levels-1]);CHKERRQ(ierr);
  ierr = KSPGetIterationNumber(kspmg,&its);CHKERRQ(ierr);
  ierr = residual((Mat)0,B[levels-1],X[levels-1],R[levels-1]);CHKERRQ(ierr);
  ierr = CalculateError(solution,X[levels-1],R[levels-1],e);CHKERRQ(ierr);
  ierr = PetscPrintf(PETSC_COMM_SELF,"its %D l_2 error %g max error %g resi %g\n",its,(double)e[0],(double)e[1],(double)e[2]);CHKERRQ(ierr);

  ierr = PetscFree(N);CHKERRQ(ierr);
  ierr = VecDestroy(&solution);CHKERRQ(ierr);

  /* note we have to keep a list of all vectors allocated, this is
     not ideal, but putting it in MGDestroy is not so good either*/
  for (i=0; i<levels; i++) {
    ierr = VecDestroy(&X[i]);CHKERRQ(ierr);
    ierr = VecDestroy(&B[i]);CHKERRQ(ierr);
    if (i) {ierr = VecDestroy(&R[i]);CHKERRQ(ierr);}
  }
  for (i=0; i<levels-1; i++) {
    ierr = MatDestroy(&mat[i]);CHKERRQ(ierr);
  }
  ierr = MatDestroy(&cmat);CHKERRQ(ierr);
  ierr = MatDestroy(&fmat);CHKERRQ(ierr);
  ierr = KSPDestroy(&kspmg);CHKERRQ(ierr);
  ierr = PetscFinalize();
  return 0;
}
Exemplo n.º 21
0
Arquivo: ex46.c Projeto: 00liujj/petsc
int main(int argc,char **argv)
{
  DM             da;            /* distributed array */
  Vec            x,b,u;         /* approx solution, RHS, exact solution */
  Mat            A;             /* linear system matrix */
  KSP            ksp;           /* linear solver context */
  PetscRandom    rctx;          /* random number generator context */
  PetscReal      norm;          /* norm of solution error */
  PetscInt       i,j,its;
  PetscErrorCode ierr;
  PetscBool      flg = PETSC_FALSE;
  PetscLogStage  stage;
  DMDALocalInfo  info;

  ierr = PetscInitialize(&argc,&argv,(char*)0,help);CHKERRQ(ierr);

  /*
     Create distributed array to handle parallel distribution.
     The problem size will default to 8 by 7, but this can be
     changed using -da_grid_x M -da_grid_y N
  */
  ierr = DMDACreate2d(PETSC_COMM_WORLD, DM_BOUNDARY_NONE, DM_BOUNDARY_NONE,DMDA_STENCIL_STAR,-8,-7,PETSC_DECIDE,PETSC_DECIDE,1,1,NULL,NULL,&da);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
         Compute the matrix and right-hand-side vector that define
         the linear system, Ax = b.
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  /*
     Create parallel matrix preallocated according to the DMDA, format AIJ by default.
     To use symmetric storage, run with -dm_mat_type sbaij -mat_ignore_lower_triangular
  */
  ierr = DMSetMatType(da,MATAIJ);CHKERRQ(ierr);
  ierr = DMCreateMatrix(da,&A);CHKERRQ(ierr);

  /*
     Set matrix elements for the 2-D, five-point stencil in parallel.
      - Each processor needs to insert only elements that it owns
        locally (but any non-local elements will be sent to the
        appropriate processor during matrix assembly).
      - Rows and columns are specified by the stencil
      - Entries are normalized for a domain [0,1]x[0,1]
   */
  ierr = PetscLogStageRegister("Assembly", &stage);CHKERRQ(ierr);
  ierr = PetscLogStagePush(stage);CHKERRQ(ierr);
  ierr = DMDAGetLocalInfo(da,&info);CHKERRQ(ierr);
  for (j=info.ys; j<info.ys+info.ym; j++) {
    for (i=info.xs; i<info.xs+info.xm; i++) {
      PetscReal   hx  = 1./info.mx,hy = 1./info.my;
      MatStencil  row = {0},col[5] = {{0}};
      PetscScalar v[5];
      PetscInt    ncols = 0;
      row.j        = j; row.i = i;
      col[ncols].j = j; col[ncols].i = i; v[ncols++] = 2*(hx/hy + hy/hx);
      /* boundaries */
      if (i>0)         {col[ncols].j = j;   col[ncols].i = i-1; v[ncols++] = -hy/hx;}
      if (i<info.mx-1) {col[ncols].j = j;   col[ncols].i = i+1; v[ncols++] = -hy/hx;}
      if (j>0)         {col[ncols].j = j-1; col[ncols].i = i;   v[ncols++] = -hx/hy;}
      if (j<info.my-1) {col[ncols].j = j+1; col[ncols].i = i;   v[ncols++] = -hx/hy;}
      ierr = MatSetValuesStencil(A,1,&row,ncols,col,v,INSERT_VALUES);CHKERRQ(ierr);
    }
  }

  /*
     Assemble matrix, using the 2-step process:
       MatAssemblyBegin(), MatAssemblyEnd()
     Computations can be done while messages are in transition
     by placing code between these two statements.
  */
  ierr = MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
  ierr = MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
  ierr = PetscLogStagePop();CHKERRQ(ierr);

  /*
     Create parallel vectors compatible with the DMDA.
  */
  ierr = DMCreateGlobalVector(da,&u);CHKERRQ(ierr);
  ierr = VecDuplicate(u,&b);CHKERRQ(ierr);
  ierr = VecDuplicate(u,&x);CHKERRQ(ierr);

  /*
     Set exact solution; then compute right-hand-side vector.
     By default we use an exact solution of a vector with all
     elements of 1.0;  Alternatively, using the runtime option
     -random_sol forms a solution vector with random components.
  */
  ierr = PetscOptionsGetBool(NULL,"-random_exact_sol",&flg,NULL);CHKERRQ(ierr);
  if (flg) {
    ierr = PetscRandomCreate(PETSC_COMM_WORLD,&rctx);CHKERRQ(ierr);
    ierr = PetscRandomSetFromOptions(rctx);CHKERRQ(ierr);
    ierr = VecSetRandom(u,rctx);CHKERRQ(ierr);
    ierr = PetscRandomDestroy(&rctx);CHKERRQ(ierr);
  } else {
    ierr = VecSet(u,1.);CHKERRQ(ierr);
  }
  ierr = MatMult(A,u,b);CHKERRQ(ierr);

  /*
     View the exact solution vector if desired
  */
  flg  = PETSC_FALSE;
  ierr = PetscOptionsGetBool(NULL,"-view_exact_sol",&flg,NULL);CHKERRQ(ierr);
  if (flg) {ierr = VecView(u,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);}

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
                Create the linear solver and set various options
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

  /*
     Create linear solver context
  */
  ierr = KSPCreate(PETSC_COMM_WORLD,&ksp);CHKERRQ(ierr);

  /*
     Set operators. Here the matrix that defines the linear system
     also serves as the preconditioning matrix.
  */
  ierr = KSPSetOperators(ksp,A,A);CHKERRQ(ierr);

  /*
    Set runtime options, e.g.,
        -ksp_type <type> -pc_type <type> -ksp_monitor -ksp_rtol <rtol>
    These options will override those specified above as long as
    KSPSetFromOptions() is called _after_ any other customization
    routines.
  */
  ierr = KSPSetFromOptions(ksp);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
                      Solve the linear system
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

  ierr = KSPSolve(ksp,b,x);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
                      Check solution and clean up
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

  /*
     Check the error
  */
  ierr = VecAXPY(x,-1.,u);CHKERRQ(ierr);
  ierr = VecNorm(x,NORM_2,&norm);CHKERRQ(ierr);
  ierr = KSPGetIterationNumber(ksp,&its);CHKERRQ(ierr);

  /*
     Print convergence information.  PetscPrintf() produces a single
     print statement from all processes that share a communicator.
     An alternative is PetscFPrintf(), which prints to a file.
  */
  ierr = PetscPrintf(PETSC_COMM_WORLD,"Norm of error %g iterations %D\n",(double)norm,its);CHKERRQ(ierr);

  /*
     Free work space.  All PETSc objects should be destroyed when they
     are no longer needed.
  */
  ierr = KSPDestroy(&ksp);CHKERRQ(ierr);
  ierr = VecDestroy(&u);CHKERRQ(ierr);
  ierr = VecDestroy(&x);CHKERRQ(ierr);
  ierr = VecDestroy(&b);CHKERRQ(ierr);
  ierr = MatDestroy(&A);CHKERRQ(ierr);
  ierr = DMDestroy(&da);CHKERRQ(ierr);

  /*
     Always call PetscFinalize() before exiting a program.  This routine
       - finalizes the PETSc libraries as well as MPI
       - provides summary and diagnostic information if certain runtime
         options are chosen (e.g., -log_summary).
  */
  ierr = PetscFinalize();
  return 0;
}
Exemplo n.º 22
0
Arquivo: ex17.c Projeto: Kun-Qu/petsc
int main(int argc,char **args)
{
  Vec            x,b,u;      /* approx solution, RHS, exact solution */
  Mat            A;            /* linear system matrix */
  KSP            ksp;         /* KSP context */
  PetscErrorCode ierr;
  PetscInt       n = 10,its, dim,p = 1,use_random;
  PetscScalar    none = -1.0,pfive = 0.5;
  PetscReal      norm;
  PetscRandom    rctx;
  TestType       type;
  PetscBool      flg;

  PetscInitialize(&argc,&args,(char *)0,help);
  ierr = PetscOptionsGetInt(PETSC_NULL,"-n",&n,PETSC_NULL);CHKERRQ(ierr);
  ierr = PetscOptionsGetInt(PETSC_NULL,"-p",&p,PETSC_NULL);CHKERRQ(ierr);
  switch (p) {
    case 1:  type = TEST_1;      dim = n;   break;
    case 2:  type = TEST_2;      dim = n;   break;
    case 3:  type = TEST_3;      dim = n;   break;
    case 4:  type = HELMHOLTZ_1; dim = n*n; break;
    case 5:  type = HELMHOLTZ_2; dim = n*n; break;
    default: type = TEST_1;      dim = n;
  }

  /* Create vectors */
  ierr = VecCreate(PETSC_COMM_WORLD,&x);CHKERRQ(ierr);
  ierr = VecSetSizes(x,PETSC_DECIDE,dim);CHKERRQ(ierr);
  ierr = VecSetFromOptions(x);CHKERRQ(ierr);
  ierr = VecDuplicate(x,&b);CHKERRQ(ierr);
  ierr = VecDuplicate(x,&u);CHKERRQ(ierr);

  use_random = 1;
  flg        = PETSC_FALSE;
  ierr = PetscOptionsGetBool(PETSC_NULL,"-norandom",&flg,PETSC_NULL);CHKERRQ(ierr);
  if (flg) {
    use_random = 0;
    ierr = VecSet(u,pfive);CHKERRQ(ierr);
  } else {
    ierr = PetscRandomCreate(PETSC_COMM_WORLD,&rctx);CHKERRQ(ierr);
    ierr = PetscRandomSetFromOptions(rctx);CHKERRQ(ierr);
    ierr = VecSetRandom(u,rctx);CHKERRQ(ierr);
  }

  /* Create and assemble matrix */
  ierr = MatCreate(PETSC_COMM_WORLD,&A);CHKERRQ(ierr);
  ierr = MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,dim,dim);CHKERRQ(ierr);
  ierr = MatSetFromOptions(A);CHKERRQ(ierr);
  ierr = MatSetUp(A);CHKERRQ(ierr);
  ierr = FormTestMatrix(A,n,type);CHKERRQ(ierr);
  ierr = MatMult(A,u,b);CHKERRQ(ierr);
  flg  = PETSC_FALSE;
  ierr = PetscOptionsGetBool(PETSC_NULL,"-printout",&flg,PETSC_NULL);CHKERRQ(ierr);
  if (flg) {
    ierr = MatView(A,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);
    ierr = VecView(u,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);
    ierr = VecView(b,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);
  }

  /* Create KSP context; set operators and options; solve linear system */
  ierr = KSPCreate(PETSC_COMM_WORLD,&ksp);CHKERRQ(ierr);
  ierr = KSPSetOperators(ksp,A,A,DIFFERENT_NONZERO_PATTERN);CHKERRQ(ierr);
  ierr = KSPSetFromOptions(ksp);CHKERRQ(ierr);
  ierr = KSPSolve(ksp,b,x);CHKERRQ(ierr);
  ierr = KSPView(ksp,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);

  /* Check error */
  ierr = VecAXPY(x,none,u);CHKERRQ(ierr);
  ierr  = VecNorm(x,NORM_2,&norm);CHKERRQ(ierr);
  ierr = KSPGetIterationNumber(ksp,&its);CHKERRQ(ierr);
  ierr = PetscPrintf(PETSC_COMM_WORLD,"Norm of error %G,Iterations %D\n",norm,its);CHKERRQ(ierr);

  /* Free work space */
  ierr = VecDestroy(&x);CHKERRQ(ierr); ierr = VecDestroy(&u);CHKERRQ(ierr);
  ierr = VecDestroy(&b);CHKERRQ(ierr); ierr = MatDestroy(&A);CHKERRQ(ierr);
  if (use_random) {ierr = PetscRandomDestroy(&rctx);CHKERRQ(ierr);}
  ierr = KSPDestroy(&ksp);CHKERRQ(ierr);
  ierr = PetscFinalize();
  return 0;
}
Exemplo n.º 23
0
int main(int argc,char **args)
{
  Vec            x1,b1,x2,b2; /* solution and RHS vectors for systems #1 and #2 */
  Vec            u;              /* exact solution vector */
  Mat            C1,C2;         /* matrices for systems #1 and #2 */
  KSP            ksp1,ksp2;   /* KSP contexts for systems #1 and #2 */
  PetscInt       ntimes = 3;     /* number of times to solve the linear systems */
  PetscLogEvent  CHECK_ERROR;    /* event number for error checking */
  PetscInt       ldim,low,high,iglobal,Istart,Iend,Istart2,Iend2;
  PetscInt       Ii,J,i,j,m = 3,n = 2,its,t;
  PetscErrorCode ierr;
  PetscBool      flg = PETSC_FALSE;
  PetscScalar    v;
  PetscMPIInt    rank,size;
#if defined (PETSC_USE_LOG)
  PetscLogStage  stages[3];
#endif

  PetscInitialize(&argc,&args,(char *)0,help);
  ierr = PetscOptionsGetInt(PETSC_NULL,"-m",&m,PETSC_NULL);CHKERRQ(ierr);
  ierr = PetscOptionsGetInt(PETSC_NULL,"-t",&ntimes,PETSC_NULL);CHKERRQ(ierr);
  ierr = MPI_Comm_rank(PETSC_COMM_WORLD,&rank);CHKERRQ(ierr);
  ierr = MPI_Comm_size(PETSC_COMM_WORLD,&size);CHKERRQ(ierr);
  n = 2*size;

  /*
     Register various stages for profiling
  */
  ierr = PetscLogStageRegister("Prelim setup",&stages[0]);CHKERRQ(ierr);
  ierr = PetscLogStageRegister("Linear System 1",&stages[1]);CHKERRQ(ierr);
  ierr = PetscLogStageRegister("Linear System 2",&stages[2]);CHKERRQ(ierr);

  /*
     Register a user-defined event for profiling (error checking).
  */
  CHECK_ERROR = 0;
  ierr = PetscLogEventRegister("Check Error",KSP_CLASSID,&CHECK_ERROR);CHKERRQ(ierr);

  /* - - - - - - - - - - - - Stage 0: - - - - - - - - - - - - - -
                        Preliminary Setup
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

  ierr = PetscLogStagePush(stages[0]);CHKERRQ(ierr);

  /*
     Create data structures for first linear system.
      - Create parallel matrix, specifying only its global dimensions.
        When using MatCreate(), the matrix format can be specified at
        runtime. Also, the parallel partitioning of the matrix is
        determined by PETSc at runtime.
      - Create parallel vectors.
        - When using VecSetSizes(), we specify only the vector's global
          dimension; the parallel partitioning is determined at runtime.
        - Note: We form 1 vector from scratch and then duplicate as needed.
  */
  ierr = MatCreate(PETSC_COMM_WORLD,&C1);CHKERRQ(ierr);
  ierr = MatSetSizes(C1,PETSC_DECIDE,PETSC_DECIDE,m*n,m*n);CHKERRQ(ierr);
  ierr = MatSetFromOptions(C1);CHKERRQ(ierr);
  ierr = MatSetUp(C1);CHKERRQ(ierr);
  ierr = MatGetOwnershipRange(C1,&Istart,&Iend);CHKERRQ(ierr);
  ierr = VecCreate(PETSC_COMM_WORLD,&u);CHKERRQ(ierr);
  ierr = VecSetSizes(u,PETSC_DECIDE,m*n);CHKERRQ(ierr);
  ierr = VecSetFromOptions(u);CHKERRQ(ierr);
  ierr = VecDuplicate(u,&b1);CHKERRQ(ierr);
  ierr = VecDuplicate(u,&x1);CHKERRQ(ierr);

  /*
     Create first linear solver context.
     Set runtime options (e.g., -pc_type <type>).
     Note that the first linear system uses the default option
     names, while the second linear systme uses a different
     options prefix.
  */
  ierr = KSPCreate(PETSC_COMM_WORLD,&ksp1);CHKERRQ(ierr);
  ierr = KSPSetFromOptions(ksp1);CHKERRQ(ierr);

  /*
     Set user-defined monitoring routine for first linear system.
  */
  ierr = PetscOptionsGetBool(PETSC_NULL,"-my_ksp_monitor",&flg,PETSC_NULL);CHKERRQ(ierr);
  if (flg) {ierr = KSPMonitorSet(ksp1,MyKSPMonitor,PETSC_NULL,0);CHKERRQ(ierr);}

  /*
     Create data structures for second linear system.
  */
  ierr = MatCreate(PETSC_COMM_WORLD,&C2);CHKERRQ(ierr);
  ierr = MatSetSizes(C2,PETSC_DECIDE,PETSC_DECIDE,m*n,m*n);CHKERRQ(ierr);
  ierr = MatSetFromOptions(C2);CHKERRQ(ierr);
  ierr = MatSetUp(C2);CHKERRQ(ierr);
  ierr = MatGetOwnershipRange(C2,&Istart2,&Iend2);CHKERRQ(ierr);
  ierr = VecDuplicate(u,&b2);CHKERRQ(ierr);
  ierr = VecDuplicate(u,&x2);CHKERRQ(ierr);

  /*
     Create second linear solver context
  */
  ierr = KSPCreate(PETSC_COMM_WORLD,&ksp2);CHKERRQ(ierr);

  /*
     Set different options prefix for second linear system.
     Set runtime options (e.g., -s2_pc_type <type>)
  */
  ierr = KSPAppendOptionsPrefix(ksp2,"s2_");CHKERRQ(ierr);
  ierr = KSPSetFromOptions(ksp2);CHKERRQ(ierr);

  /*
     Assemble exact solution vector in parallel.  Note that each
     processor needs to set only its local part of the vector.
  */
  ierr = VecGetLocalSize(u,&ldim);CHKERRQ(ierr);
  ierr = VecGetOwnershipRange(u,&low,&high);CHKERRQ(ierr);
  for (i=0; i<ldim; i++) {
    iglobal = i + low;
    v = (PetscScalar)(i + 100*rank);
    ierr = VecSetValues(u,1,&iglobal,&v,ADD_VALUES);CHKERRQ(ierr);
  }
  ierr = VecAssemblyBegin(u);CHKERRQ(ierr);
  ierr = VecAssemblyEnd(u);CHKERRQ(ierr);

  /*
     Log the number of flops for computing vector entries
  */
  ierr = PetscLogFlops(2.0*ldim);CHKERRQ(ierr);

  /*
     End curent profiling stage
  */
  ierr = PetscLogStagePop();CHKERRQ(ierr);

  /* --------------------------------------------------------------
                        Linear solver loop:
      Solve 2 different linear systems several times in succession
     -------------------------------------------------------------- */

  for (t=0; t<ntimes; t++) {

    /* - - - - - - - - - - - - Stage 1: - - - - - - - - - - - - - -
                 Assemble and solve first linear system
       - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

    /*
       Begin profiling stage #1
    */
    ierr = PetscLogStagePush(stages[1]);CHKERRQ(ierr);

    /*
       Initialize all matrix entries to zero.  MatZeroEntries() retains
       the nonzero structure of the matrix for sparse formats.
    */
    if (t > 0) {ierr = MatZeroEntries(C1);CHKERRQ(ierr);}

    /*
       Set matrix entries in parallel.  Also, log the number of flops
       for computing matrix entries.
        - Each processor needs to insert only elements that it owns
          locally (but any non-local elements will be sent to the
          appropriate processor during matrix assembly).
        - Always specify global row and columns of matrix entries.
    */
    for (Ii=Istart; Ii<Iend; Ii++) {
      v = -1.0; i = Ii/n; j = Ii - i*n;
      if (i>0)   {J = Ii - n; ierr = MatSetValues(C1,1,&Ii,1,&J,&v,ADD_VALUES);CHKERRQ(ierr);}
      if (i<m-1) {J = Ii + n; ierr = MatSetValues(C1,1,&Ii,1,&J,&v,ADD_VALUES);CHKERRQ(ierr);}
      if (j>0)   {J = Ii - 1; ierr = MatSetValues(C1,1,&Ii,1,&J,&v,ADD_VALUES);CHKERRQ(ierr);}
      if (j<n-1) {J = Ii + 1; ierr = MatSetValues(C1,1,&Ii,1,&J,&v,ADD_VALUES);CHKERRQ(ierr);}
      v = 4.0; ierr = MatSetValues(C1,1,&Ii,1,&Ii,&v,ADD_VALUES);CHKERRQ(ierr);
    }
    for (Ii=Istart; Ii<Iend; Ii++) { /* Make matrix nonsymmetric */
      v = -1.0*(t+0.5); i = Ii/n;
      if (i>0)   {J = Ii - n; ierr = MatSetValues(C1,1,&Ii,1,&J,&v,ADD_VALUES);CHKERRQ(ierr);}
    }
    ierr = PetscLogFlops(2.0*(Iend-Istart));CHKERRQ(ierr);

    /*
       Assemble matrix, using the 2-step process:
         MatAssemblyBegin(), MatAssemblyEnd()
       Computations can be done while messages are in transition
       by placing code between these two statements.
    */
    ierr = MatAssemblyBegin(C1,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
    ierr = MatAssemblyEnd(C1,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);

    /*
       Indicate same nonzero structure of successive linear system matrices
    */
    ierr = MatSetOption(C1,MAT_NEW_NONZERO_LOCATIONS,PETSC_TRUE);CHKERRQ(ierr);

    /*
       Compute right-hand-side vector
    */
    ierr = MatMult(C1,u,b1);CHKERRQ(ierr);

    /*
       Set operators. Here the matrix that defines the linear system
       also serves as the preconditioning matrix.
        - The flag SAME_NONZERO_PATTERN indicates that the
          preconditioning matrix has identical nonzero structure
          as during the last linear solve (although the values of
          the entries have changed). Thus, we can save some
          work in setting up the preconditioner (e.g., no need to
          redo symbolic factorization for ILU/ICC preconditioners).
        - If the nonzero structure of the matrix is different during
          the second linear solve, then the flag DIFFERENT_NONZERO_PATTERN
          must be used instead.  If you are unsure whether the
          matrix structure has changed or not, use the flag
          DIFFERENT_NONZERO_PATTERN.
        - Caution:  If you specify SAME_NONZERO_PATTERN, PETSc
          believes your assertion and does not check the structure
          of the matrix.  If you erroneously claim that the structure
          is the same when it actually is not, the new preconditioner
          will not function correctly.  Thus, use this optimization
          feature with caution!
    */
    ierr = KSPSetOperators(ksp1,C1,C1,SAME_NONZERO_PATTERN);CHKERRQ(ierr);

    /*
       Use the previous solution of linear system #1 as the initial
       guess for the next solve of linear system #1.  The user MUST
       call KSPSetInitialGuessNonzero() in indicate use of an initial
       guess vector; otherwise, an initial guess of zero is used.
    */
    if (t>0) {
      ierr = KSPSetInitialGuessNonzero(ksp1,PETSC_TRUE);CHKERRQ(ierr);
    }

    /*
       Solve the first linear system.  Here we explicitly call
       KSPSetUp() for more detailed performance monitoring of
       certain preconditioners, such as ICC and ILU.  This call
       is optional, ase KSPSetUp() will automatically be called
       within KSPSolve() if it hasn't been called already.
    */
    ierr = KSPSetUp(ksp1);CHKERRQ(ierr);
    ierr = KSPSolve(ksp1,b1,x1);CHKERRQ(ierr);
    ierr = KSPGetIterationNumber(ksp1,&its);CHKERRQ(ierr);

    /*
       Check error of solution to first linear system
    */
    ierr = CheckError(u,x1,b1,its,1.e-4,CHECK_ERROR);CHKERRQ(ierr);

    /* - - - - - - - - - - - - Stage 2: - - - - - - - - - - - - - -
                 Assemble and solve second linear system
       - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

    /*
       Conclude profiling stage #1; begin profiling stage #2
    */
    ierr = PetscLogStagePop();CHKERRQ(ierr);
    ierr = PetscLogStagePush(stages[2]);CHKERRQ(ierr);

    /*
       Initialize all matrix entries to zero
    */
    if (t > 0) {ierr = MatZeroEntries(C2);CHKERRQ(ierr);}

   /*
      Assemble matrix in parallel. Also, log the number of flops
      for computing matrix entries.
       - To illustrate the features of parallel matrix assembly, we
         intentionally set the values differently from the way in
         which the matrix is distributed across the processors.  Each
         entry that is not owned locally will be sent to the appropriate
         processor during MatAssemblyBegin() and MatAssemblyEnd().
       - For best efficiency the user should strive to set as many
         entries locally as possible.
    */
    for (i=0; i<m; i++) {
      for (j=2*rank; j<2*rank+2; j++) {
        v = -1.0;  Ii = j + n*i;
        if (i>0)   {J = Ii - n; ierr = MatSetValues(C2,1,&Ii,1,&J,&v,ADD_VALUES);CHKERRQ(ierr);}
        if (i<m-1) {J = Ii + n; ierr = MatSetValues(C2,1,&Ii,1,&J,&v,ADD_VALUES);CHKERRQ(ierr);}
        if (j>0)   {J = Ii - 1; ierr = MatSetValues(C2,1,&Ii,1,&J,&v,ADD_VALUES);CHKERRQ(ierr);}
        if (j<n-1) {J = Ii + 1; ierr = MatSetValues(C2,1,&Ii,1,&J,&v,ADD_VALUES);CHKERRQ(ierr);}
        v = 6.0 + t*0.5; ierr = MatSetValues(C2,1,&Ii,1,&Ii,&v,ADD_VALUES);CHKERRQ(ierr);
      }
    }
    for (Ii=Istart2; Ii<Iend2; Ii++) { /* Make matrix nonsymmetric */
      v = -1.0*(t+0.5); i = Ii/n;
      if (i>0)   {J = Ii - n; ierr = MatSetValues(C2,1,&Ii,1,&J,&v,ADD_VALUES);CHKERRQ(ierr);}
    }
    ierr = MatAssemblyBegin(C2,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
    ierr = MatAssemblyEnd(C2,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
    ierr = PetscLogFlops(2.0*(Iend-Istart));CHKERRQ(ierr);

    /*
       Indicate same nonzero structure of successive linear system matrices
    */
    ierr = MatSetOption(C2,MAT_NEW_NONZERO_LOCATIONS,PETSC_FALSE);CHKERRQ(ierr);

    /*
       Compute right-hand-side vector
    */
    ierr = MatMult(C2,u,b2);CHKERRQ(ierr);

    /*
       Set operators. Here the matrix that defines the linear system
       also serves as the preconditioning matrix.  Indicate same nonzero
       structure of successive preconditioner matrices by setting flag
       SAME_NONZERO_PATTERN.
    */
    ierr = KSPSetOperators(ksp2,C2,C2,SAME_NONZERO_PATTERN);CHKERRQ(ierr);

    /*
       Solve the second linear system
    */
    ierr = KSPSetUp(ksp2);CHKERRQ(ierr);
    ierr = KSPSolve(ksp2,b2,x2);CHKERRQ(ierr);
    ierr = KSPGetIterationNumber(ksp2,&its);CHKERRQ(ierr);

    /*
       Check error of solution to second linear system
    */
    ierr = CheckError(u,x2,b2,its,1.e-4,CHECK_ERROR);CHKERRQ(ierr);

    /*
       Conclude profiling stage #2
    */
    ierr = PetscLogStagePop();CHKERRQ(ierr);
  }
  /* --------------------------------------------------------------
                       End of linear solver loop
     -------------------------------------------------------------- */

  /*
     Free work space.  All PETSc objects should be destroyed when they
     are no longer needed.
  */
  ierr = KSPDestroy(&ksp1);CHKERRQ(ierr); ierr = KSPDestroy(&ksp2);CHKERRQ(ierr);
  ierr = VecDestroy(&x1);CHKERRQ(ierr);   ierr = VecDestroy(&x2);CHKERRQ(ierr);
  ierr = VecDestroy(&b1);CHKERRQ(ierr);   ierr = VecDestroy(&b2);CHKERRQ(ierr);
  ierr = MatDestroy(&C1);CHKERRQ(ierr);   ierr = MatDestroy(&C2);CHKERRQ(ierr);
  ierr = VecDestroy(&u);CHKERRQ(ierr);

  ierr = PetscFinalize();
  return 0;
}
Exemplo n.º 24
0
Arquivo: ex11.c Projeto: 00liujj/petsc
int main(int argc,char **args)
{
  Vec            x,b,u;      /* approx solution, RHS, exact solution */
  Mat            A;            /* linear system matrix */
  KSP            ksp;         /* linear solver context */
  PetscReal      norm;         /* norm of solution error */
  PetscInt       dim,i,j,Ii,J,Istart,Iend,n = 6,its,use_random;
  PetscErrorCode ierr;
  PetscScalar    v,none = -1.0,sigma2,pfive = 0.5,*xa;
  PetscRandom    rctx;
  PetscReal      h2,sigma1 = 100.0;
  PetscBool      flg = PETSC_FALSE;
  PetscScalar    a   = 1.0+PETSC_i;

  PetscInitialize(&argc,&args,(char*)0,help);
#if !defined(PETSC_USE_COMPLEX)
  SETERRQ(PETSC_COMM_WORLD,1,"This example requires complex numbers");
#endif

  a=1.0+PETSC_i;
  printf("%g+%gi\n",(double)PetscRealPart(a),(double)PetscImaginaryPart(a));

  ierr = PetscOptionsGetReal(NULL,"-sigma1",&sigma1,NULL);CHKERRQ(ierr);
  ierr = PetscOptionsGetInt(NULL,"-n",&n,NULL);CHKERRQ(ierr);
  dim  = n*n;

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
         Compute the matrix and right-hand-side vector that define
         the linear system, Ax = b.
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  /*
     Create parallel matrix, specifying only its global dimensions.
     When using MatCreate(), the matrix format can be specified at
     runtime. Also, the parallel partitioning of the matrix is
     determined by PETSc at runtime.
  */
  ierr = MatCreate(PETSC_COMM_WORLD,&A);CHKERRQ(ierr);
  ierr = MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,dim,dim);CHKERRQ(ierr);
  ierr = MatSetFromOptions(A);CHKERRQ(ierr);
  ierr = MatSetUp(A);CHKERRQ(ierr);

  /*
     Currently, all PETSc parallel matrix formats are partitioned by
     contiguous chunks of rows across the processors.  Determine which
     rows of the matrix are locally owned.
  */
  ierr = MatGetOwnershipRange(A,&Istart,&Iend);CHKERRQ(ierr);

  /*
     Set matrix elements in parallel.
      - Each processor needs to insert only elements that it owns
        locally (but any non-local elements will be sent to the
        appropriate processor during matrix assembly).
      - Always specify global rows and columns of matrix entries.
  */

  ierr = PetscOptionsGetBool(NULL,"-norandom",&flg,NULL);CHKERRQ(ierr);
  if (flg) use_random = 0;
  else use_random = 1;
  if (use_random) {
    ierr = PetscRandomCreate(PETSC_COMM_WORLD,&rctx);CHKERRQ(ierr);
    ierr = PetscRandomSetFromOptions(rctx);CHKERRQ(ierr);
    ierr = PetscRandomSetInterval(rctx,0.0,PETSC_i);CHKERRQ(ierr);
  } else {
    sigma2 = 10.0*PETSC_i;
  }
  h2 = 1.0/((n+1)*(n+1));
  for (Ii=Istart; Ii<Iend; Ii++) {
    v = -1.0; i = Ii/n; j = Ii - i*n;
    if (i>0) {
      J = Ii-n; ierr = MatSetValues(A,1,&Ii,1,&J,&v,ADD_VALUES);CHKERRQ(ierr);
    }
    if (i<n-1) {
      J = Ii+n; ierr = MatSetValues(A,1,&Ii,1,&J,&v,ADD_VALUES);CHKERRQ(ierr);
    }
    if (j>0) {
      J = Ii-1; ierr = MatSetValues(A,1,&Ii,1,&J,&v,ADD_VALUES);CHKERRQ(ierr);
    }
    if (j<n-1) {
      J = Ii+1; ierr = MatSetValues(A,1,&Ii,1,&J,&v,ADD_VALUES);CHKERRQ(ierr);
    }
    if (use_random) {ierr = PetscRandomGetValue(rctx,&sigma2);CHKERRQ(ierr);}
    v    = 4.0 - sigma1*h2 + sigma2*h2;
    ierr = MatSetValues(A,1,&Ii,1,&Ii,&v,ADD_VALUES);CHKERRQ(ierr);
  }
  if (use_random) {ierr = PetscRandomDestroy(&rctx);CHKERRQ(ierr);}

  /*
     Assemble matrix, using the 2-step process:
       MatAssemblyBegin(), MatAssemblyEnd()
     Computations can be done while messages are in transition
     by placing code between these two statements.
  */
  ierr = MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
  ierr = MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);

  /*
     Create parallel vectors.
      - When using VecCreate(), VecSetSizes() and VecSetFromOptions(),
      we specify only the vector's global
        dimension; the parallel partitioning is determined at runtime.
      - Note: We form 1 vector from scratch and then duplicate as needed.
  */
  ierr = VecCreate(PETSC_COMM_WORLD,&u);CHKERRQ(ierr);
  ierr = VecSetSizes(u,PETSC_DECIDE,dim);CHKERRQ(ierr);
  ierr = VecSetFromOptions(u);CHKERRQ(ierr);
  ierr = VecDuplicate(u,&b);CHKERRQ(ierr);
  ierr = VecDuplicate(b,&x);CHKERRQ(ierr);

  /*
     Set exact solution; then compute right-hand-side vector.
  */

  if (use_random) {
    ierr = PetscRandomCreate(PETSC_COMM_WORLD,&rctx);CHKERRQ(ierr);
    ierr = PetscRandomSetFromOptions(rctx);CHKERRQ(ierr);
    ierr = VecSetRandom(u,rctx);CHKERRQ(ierr);
  } else {
    ierr = VecSet(u,pfive);CHKERRQ(ierr);
  }
  ierr = MatMult(A,u,b);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
                Create the linear solver and set various options
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

  /*
     Create linear solver context
  */
  ierr = KSPCreate(PETSC_COMM_WORLD,&ksp);CHKERRQ(ierr);

  /*
     Set operators. Here the matrix that defines the linear system
     also serves as the preconditioning matrix.
  */
  ierr = KSPSetOperators(ksp,A,A);CHKERRQ(ierr);

  /*
    Set runtime options, e.g.,
        -ksp_type <type> -pc_type <type> -ksp_monitor -ksp_rtol <rtol>
  */
  ierr = KSPSetFromOptions(ksp);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
                      Solve the linear system
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

  ierr = KSPSolve(ksp,b,x);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
                      Check solution and clean up
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

  /*
      Print the first 3 entries of x; this demonstrates extraction of the
      real and imaginary components of the complex vector, x.
  */
  flg  = PETSC_FALSE;
  ierr = PetscOptionsGetBool(NULL,"-print_x3",&flg,NULL);CHKERRQ(ierr);
  if (flg) {
    ierr = VecGetArray(x,&xa);CHKERRQ(ierr);
    ierr = PetscPrintf(PETSC_COMM_WORLD,"The first three entries of x are:\n");CHKERRQ(ierr);
    for (i=0; i<3; i++) {
      ierr = PetscPrintf(PETSC_COMM_WORLD,"x[%D] = %g + %g i\n",i,(double)PetscRealPart(xa[i]),(double)PetscImaginaryPart(xa[i]));CHKERRQ(ierr);
    }
    ierr = VecRestoreArray(x,&xa);CHKERRQ(ierr);
  }

  /*
     Check the error
  */
  ierr = VecAXPY(x,none,u);CHKERRQ(ierr);
  ierr = VecNorm(x,NORM_2,&norm);CHKERRQ(ierr);
  ierr = KSPGetIterationNumber(ksp,&its);CHKERRQ(ierr);
  ierr = PetscPrintf(PETSC_COMM_WORLD,"Norm of error %g iterations %D\n",(double)norm,its);CHKERRQ(ierr);

  /*
     Free work space.  All PETSc objects should be destroyed when they
     are no longer needed.
  */
  ierr = KSPDestroy(&ksp);CHKERRQ(ierr);
  if (use_random) {ierr = PetscRandomDestroy(&rctx);CHKERRQ(ierr);}
  ierr = VecDestroy(&u);CHKERRQ(ierr); ierr = VecDestroy(&x);CHKERRQ(ierr);
  ierr = VecDestroy(&b);CHKERRQ(ierr); ierr = MatDestroy(&A);CHKERRQ(ierr);
  ierr = PetscFinalize();
  return 0;
}
Exemplo n.º 25
0
int main(int argc,char **args)
{
  Vec            x, b, u;      /* approx solution, RHS, exact solution */
  Mat            A;            /* linear system matrix */
  KSP            ksp;          /* linear solver context */
  PC             pc;           /* preconditioner context */
  PetscReal      norm;         /* norm of solution error */
  PetscErrorCode ierr;
  PetscInt       i,n = 10,col[3],its;
  PetscMPIInt    size;
  PetscScalar    one = 1.0,value[3];
  PetscBool      nonzeroguess = PETSC_FALSE;

  ierr = PetscInitialize(&argc,&args,(char*)0,help);if (ierr) return ierr;
  ierr = MPI_Comm_size(PETSC_COMM_WORLD,&size);CHKERRQ(ierr);
  if (size != 1) SETERRQ(PETSC_COMM_WORLD,1,"This is a uniprocessor example only!");
  ierr = PetscOptionsGetInt(NULL,NULL,"-n",&n,NULL);CHKERRQ(ierr);
  ierr = PetscOptionsGetBool(NULL,NULL,"-nonzero_guess",&nonzeroguess,NULL);CHKERRQ(ierr);


  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
         Compute the matrix and right-hand-side vector that define
         the linear system, Ax = b.
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

  /*
     Create vectors.  Note that we form 1 vector from scratch and
     then duplicate as needed.
  */
  ierr = VecCreate(PETSC_COMM_WORLD,&x);CHKERRQ(ierr);
  ierr = PetscObjectSetName((PetscObject) x, "Solution");CHKERRQ(ierr);
  ierr = VecSetSizes(x,PETSC_DECIDE,n);CHKERRQ(ierr);
  ierr = VecSetFromOptions(x);CHKERRQ(ierr);
  ierr = VecDuplicate(x,&b);CHKERRQ(ierr);
  ierr = VecDuplicate(x,&u);CHKERRQ(ierr);

  /*
     Create matrix.  When using MatCreate(), the matrix format can
     be specified at runtime.

     Performance tuning note:  For problems of substantial size,
     preallocation of matrix memory is crucial for attaining good
     performance. See the matrix chapter of the users manual for details.
  */
  ierr = MatCreate(PETSC_COMM_WORLD,&A);CHKERRQ(ierr);
  ierr = MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,n,n);CHKERRQ(ierr);
  ierr = MatSetFromOptions(A);CHKERRQ(ierr);
  ierr = MatSetUp(A);CHKERRQ(ierr);

  /*
     Assemble matrix
  */
  value[0] = -1.0; value[1] = 2.0; value[2] = -1.0;
  for (i=1; i<n-1; i++) {
    col[0] = i-1; col[1] = i; col[2] = i+1;
    ierr   = MatSetValues(A,1,&i,3,col,value,INSERT_VALUES);CHKERRQ(ierr);
  }
  i    = n - 1; col[0] = n - 2; col[1] = n - 1;
  ierr = MatSetValues(A,1,&i,2,col,value,INSERT_VALUES);CHKERRQ(ierr);
  i    = 0; col[0] = 0; col[1] = 1; value[0] = 2.0; value[1] = -1.0;
  ierr = MatSetValues(A,1,&i,2,col,value,INSERT_VALUES);CHKERRQ(ierr);
  ierr = MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
  ierr = MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);

  /*
     Set exact solution; then compute right-hand-side vector.
  */
  ierr = VecSet(u,one);CHKERRQ(ierr);
  ierr = MatMult(A,u,b);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
                Create the linear solver and set various options
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  /*
     Create linear solver context
  */
  ierr = KSPCreate(PETSC_COMM_WORLD,&ksp);CHKERRQ(ierr);

  /*
     Set operators. Here the matrix that defines the linear system
     also serves as the preconditioning matrix.
  */
  ierr = KSPSetOperators(ksp,A,A);CHKERRQ(ierr);

  /*
     Set linear solver defaults for this problem (optional).
     - By extracting the KSP and PC contexts from the KSP context,
       we can then directly call any KSP and PC routines to set
       various options.
     - The following four statements are optional; all of these
       parameters could alternatively be specified at runtime via
       KSPSetFromOptions();
  */
  ierr = KSPGetPC(ksp,&pc);CHKERRQ(ierr);
  ierr = PCSetType(pc,PCJACOBI);CHKERRQ(ierr);
  ierr = KSPSetTolerances(ksp,1.e-5,PETSC_DEFAULT,PETSC_DEFAULT,PETSC_DEFAULT);CHKERRQ(ierr);

  /*
    Set runtime options, e.g.,
        -ksp_type <type> -pc_type <type> -ksp_monitor -ksp_rtol <rtol>
    These options will override those specified above as long as
    KSPSetFromOptions() is called _after_ any other customization
    routines.
  */
  ierr = KSPSetFromOptions(ksp);CHKERRQ(ierr);

  if (nonzeroguess) {
    PetscScalar p = .5;
    ierr = VecSet(x,p);CHKERRQ(ierr);
    ierr = KSPSetInitialGuessNonzero(ksp,PETSC_TRUE);CHKERRQ(ierr);
  }

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
                      Solve the linear system
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  /*
     Solve linear system
  */
  ierr = KSPSolve(ksp,b,x);CHKERRQ(ierr);

  /*
     View solver info; we could instead use the option -ksp_view to
     print this info to the screen at the conclusion of KSPSolve().
  */
  ierr = KSPView(ksp,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
                      Check solution and clean up
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  /*
     Check the error
  */
  ierr = VecAXPY(x,-1.0,u);CHKERRQ(ierr);
  ierr = VecNorm(x,NORM_2,&norm);CHKERRQ(ierr);
  ierr = KSPGetIterationNumber(ksp,&its);CHKERRQ(ierr);
  ierr = PetscPrintf(PETSC_COMM_WORLD,"Norm of error %g, Iterations %D\n",(double)norm,its);CHKERRQ(ierr);

  /*
     Free work space.  All PETSc objects should be destroyed when they
     are no longer needed.
  */
  ierr = VecDestroy(&x);CHKERRQ(ierr); ierr = VecDestroy(&u);CHKERRQ(ierr);
  ierr = VecDestroy(&b);CHKERRQ(ierr); ierr = MatDestroy(&A);CHKERRQ(ierr);
  ierr = KSPDestroy(&ksp);CHKERRQ(ierr);

  /*
     Always call PetscFinalize() before exiting a program.  This routine
       - finalizes the PETSc libraries as well as MPI
       - provides summary and diagnostic information if certain runtime
         options are chosen (e.g., -log_view).
  */
  ierr = PetscFinalize();
  return ierr;
}
Exemplo n.º 26
0
/*
   SNESSolve_NEWTONTR - Implements Newton's Method with a very simple trust
   region approach for solving systems of nonlinear equations.


*/
static PetscErrorCode SNESSolve_NEWTONTR(SNES snes)
{
  SNES_NEWTONTR       *neP = (SNES_NEWTONTR*)snes->data;
  Vec                 X,F,Y,G,Ytmp;
  PetscErrorCode      ierr;
  PetscInt            maxits,i,lits;
  PetscReal           rho,fnorm,gnorm,gpnorm,xnorm=0,delta,nrm,ynorm,norm1;
  PetscScalar         cnorm;
  KSP                 ksp;
  SNESConvergedReason reason = SNES_CONVERGED_ITERATING;
  PetscBool           conv   = PETSC_FALSE,breakout = PETSC_FALSE;

  PetscFunctionBegin;
  if (snes->xl || snes->xu || snes->ops->computevariablebounds) SETERRQ1(PetscObjectComm((PetscObject)snes),PETSC_ERR_ARG_WRONGSTATE, "SNES solver %s does not support bounds", ((PetscObject)snes)->type_name);

  maxits = snes->max_its;               /* maximum number of iterations */
  X      = snes->vec_sol;               /* solution vector */
  F      = snes->vec_func;              /* residual vector */
  Y      = snes->work[0];               /* work vectors */
  G      = snes->work[1];
  Ytmp   = snes->work[2];

  ierr       = PetscObjectSAWsTakeAccess((PetscObject)snes);CHKERRQ(ierr);
  snes->iter = 0;
  ierr       = PetscObjectSAWsGrantAccess((PetscObject)snes);CHKERRQ(ierr);

  if (!snes->vec_func_init_set) {
    ierr = SNESComputeFunction(snes,X,F);CHKERRQ(ierr);          /* F(X) */
  } else snes->vec_func_init_set = PETSC_FALSE;

  ierr = VecNorm(F,NORM_2,&fnorm);CHKERRQ(ierr);             /* fnorm <- || F || */
  SNESCheckFunctionNorm(snes,fnorm);
  ierr = VecNorm(X,NORM_2,&xnorm);CHKERRQ(ierr);             /* fnorm <- || F || */
  ierr       = PetscObjectSAWsTakeAccess((PetscObject)snes);CHKERRQ(ierr);
  snes->norm = fnorm;
  ierr       = PetscObjectSAWsGrantAccess((PetscObject)snes);CHKERRQ(ierr);
  delta      = xnorm ? neP->delta0*xnorm : neP->delta0;
  neP->delta = delta;
  ierr       = SNESLogConvergenceHistory(snes,fnorm,0);CHKERRQ(ierr);
  ierr       = SNESMonitor(snes,0,fnorm);CHKERRQ(ierr);

  /* test convergence */
  ierr = (*snes->ops->converged)(snes,snes->iter,0.0,0.0,fnorm,&snes->reason,snes->cnvP);CHKERRQ(ierr);
  if (snes->reason) PetscFunctionReturn(0);

  /* Set the stopping criteria to use the More' trick. */
  ierr = PetscOptionsGetBool(((PetscObject)snes)->options,((PetscObject)snes)->prefix,"-snes_tr_ksp_regular_convergence_test",&conv,NULL);CHKERRQ(ierr);
  if (!conv) {
    SNES_TR_KSPConverged_Ctx *ctx;
    ierr      = SNESGetKSP(snes,&ksp);CHKERRQ(ierr);
    ierr      = PetscNew(&ctx);CHKERRQ(ierr);
    ctx->snes = snes;
    ierr      = KSPConvergedDefaultCreate(&ctx->ctx);CHKERRQ(ierr);
    ierr      = KSPSetConvergenceTest(ksp,SNESTR_KSPConverged_Private,ctx,SNESTR_KSPConverged_Destroy);CHKERRQ(ierr);
    ierr      = PetscInfo(snes,"Using Krylov convergence test SNESTR_KSPConverged_Private\n");CHKERRQ(ierr);
  }

  for (i=0; i<maxits; i++) {

    /* Call general purpose update function */
    if (snes->ops->update) {
      ierr = (*snes->ops->update)(snes, snes->iter);CHKERRQ(ierr);
    }

    /* Solve J Y = F, where J is Jacobian matrix */
    ierr = SNESComputeJacobian(snes,X,snes->jacobian,snes->jacobian_pre);CHKERRQ(ierr);
    SNESCheckJacobianDomainerror(snes);
    ierr = KSPSetOperators(snes->ksp,snes->jacobian,snes->jacobian_pre);CHKERRQ(ierr);
    ierr = KSPSolve(snes->ksp,F,Ytmp);CHKERRQ(ierr);
    ierr = KSPGetIterationNumber(snes->ksp,&lits);CHKERRQ(ierr);

    snes->linear_its += lits;

    ierr  = PetscInfo2(snes,"iter=%D, linear solve iterations=%D\n",snes->iter,lits);CHKERRQ(ierr);
    ierr  = VecNorm(Ytmp,NORM_2,&nrm);CHKERRQ(ierr);
    norm1 = nrm;
    while (1) {
      ierr = VecCopy(Ytmp,Y);CHKERRQ(ierr);
      nrm  = norm1;

      /* Scale Y if need be and predict new value of F norm */
      if (nrm >= delta) {
        nrm    = delta/nrm;
        gpnorm = (1.0 - nrm)*fnorm;
        cnorm  = nrm;
        ierr   = PetscInfo1(snes,"Scaling direction by %g\n",(double)nrm);CHKERRQ(ierr);
        ierr   = VecScale(Y,cnorm);CHKERRQ(ierr);
        nrm    = gpnorm;
        ynorm  = delta;
      } else {
        gpnorm = 0.0;
        ierr   = PetscInfo(snes,"Direction is in Trust Region\n");CHKERRQ(ierr);
        ynorm  = nrm;
      }
      ierr = VecAYPX(Y,-1.0,X);CHKERRQ(ierr);            /* Y <- X - Y */
      ierr = VecCopy(X,snes->vec_sol_update);CHKERRQ(ierr);
      ierr = SNESComputeFunction(snes,Y,G);CHKERRQ(ierr); /*  F(X) */
      ierr = VecNorm(G,NORM_2,&gnorm);CHKERRQ(ierr);      /* gnorm <- || g || */
      if (fnorm == gpnorm) rho = 0.0;
      else rho = (fnorm*fnorm - gnorm*gnorm)/(fnorm*fnorm - gpnorm*gpnorm);

      /* Update size of trust region */
      if      (rho < neP->mu)  delta *= neP->delta1;
      else if (rho < neP->eta) delta *= neP->delta2;
      else                     delta *= neP->delta3;
      ierr = PetscInfo3(snes,"fnorm=%g, gnorm=%g, ynorm=%g\n",(double)fnorm,(double)gnorm,(double)ynorm);CHKERRQ(ierr);
      ierr = PetscInfo3(snes,"gpred=%g, rho=%g, delta=%g\n",(double)gpnorm,(double)rho,(double)delta);CHKERRQ(ierr);

      neP->delta = delta;
      if (rho > neP->sigma) break;
      ierr = PetscInfo(snes,"Trying again in smaller region\n");CHKERRQ(ierr);
      /* check to see if progress is hopeless */
      neP->itflag = PETSC_FALSE;
      ierr        = SNESTR_Converged_Private(snes,snes->iter,xnorm,ynorm,fnorm,&reason,snes->cnvP);CHKERRQ(ierr);
      if (!reason) { ierr = (*snes->ops->converged)(snes,snes->iter,xnorm,ynorm,fnorm,&reason,snes->cnvP);CHKERRQ(ierr); }
      if (reason) {
        /* We're not progressing, so return with the current iterate */
        ierr     = SNESMonitor(snes,i+1,fnorm);CHKERRQ(ierr);
        breakout = PETSC_TRUE;
        break;
      }
      snes->numFailures++;
    }
    if (!breakout) {
      /* Update function and solution vectors */
      fnorm = gnorm;
      ierr  = VecCopy(G,F);CHKERRQ(ierr);
      ierr  = VecCopy(Y,X);CHKERRQ(ierr);
      /* Monitor convergence */
      ierr       = PetscObjectSAWsTakeAccess((PetscObject)snes);CHKERRQ(ierr);
      snes->iter = i+1;
      snes->norm = fnorm;
      snes->xnorm = xnorm;
      snes->ynorm = ynorm;
      ierr       = PetscObjectSAWsGrantAccess((PetscObject)snes);CHKERRQ(ierr);
      ierr       = SNESLogConvergenceHistory(snes,snes->norm,lits);CHKERRQ(ierr);
      ierr       = SNESMonitor(snes,snes->iter,snes->norm);CHKERRQ(ierr);
      /* Test for convergence, xnorm = || X || */
      neP->itflag = PETSC_TRUE;
      if (snes->ops->converged != SNESConvergedSkip) { ierr = VecNorm(X,NORM_2,&xnorm);CHKERRQ(ierr); }
      ierr = (*snes->ops->converged)(snes,snes->iter,xnorm,ynorm,fnorm,&reason,snes->cnvP);CHKERRQ(ierr);
      if (reason) break;
    } else break;
  }
  if (i == maxits) {
    ierr = PetscInfo1(snes,"Maximum number of iterations has been reached: %D\n",maxits);CHKERRQ(ierr);
    if (!reason) reason = SNES_DIVERGED_MAX_IT;
  }
  ierr         = PetscObjectSAWsTakeAccess((PetscObject)snes);CHKERRQ(ierr);
  snes->reason = reason;
  ierr         = PetscObjectSAWsGrantAccess((PetscObject)snes);CHKERRQ(ierr);
  PetscFunctionReturn(0);
}
Exemplo n.º 27
0
Arquivo: ex7.c Projeto: fengyuqi/petsc
int main(int argc,char **args)
{
  Vec            x,b,u;      /* approx solution, RHS, exact solution */
  Mat            A;            /* linear system matrix */
  KSP            ksp;         /* KSP context */
  KSP            *subksp;     /* array of local KSP contexts on this processor */
  PC             pc;           /* PC context */
  PC             subpc;        /* PC context for subdomain */
  PetscReal      norm;         /* norm of solution error */
  PetscErrorCode ierr;
  PetscInt       i,j,Ii,J,*blks,m = 4,n;
  PetscMPIInt    rank,size;
  PetscInt       its,nlocal,first,Istart,Iend;
  PetscScalar    v,one = 1.0,none = -1.0;
  PetscBool      isbjacobi;

  PetscInitialize(&argc,&args,(char*)0,help);
  ierr = PetscOptionsGetInt(NULL,"-m",&m,NULL);CHKERRQ(ierr);
  ierr = MPI_Comm_rank(PETSC_COMM_WORLD,&rank);CHKERRQ(ierr);
  ierr = MPI_Comm_size(PETSC_COMM_WORLD,&size);CHKERRQ(ierr);
  n    = m+2;

  /* -------------------------------------------------------------------
         Compute the matrix and right-hand-side vector that define
         the linear system, Ax = b.
     ------------------------------------------------------------------- */

  /*
     Create and assemble parallel matrix
  */
  ierr = MatCreate(PETSC_COMM_WORLD,&A);CHKERRQ(ierr);
  ierr = MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,m*n,m*n);CHKERRQ(ierr);
  ierr = MatSetFromOptions(A);CHKERRQ(ierr);
  ierr = MatMPIAIJSetPreallocation(A,5,NULL,5,NULL);CHKERRQ(ierr);
  ierr = MatSeqAIJSetPreallocation(A,5,NULL);CHKERRQ(ierr);
  ierr = MatGetOwnershipRange(A,&Istart,&Iend);CHKERRQ(ierr);
  for (Ii=Istart; Ii<Iend; Ii++) {
    v = -1.0; i = Ii/n; j = Ii - i*n;
    if (i>0)   {J = Ii - n; ierr = MatSetValues(A,1,&Ii,1,&J,&v,ADD_VALUES);CHKERRQ(ierr);}
    if (i<m-1) {J = Ii + n; ierr = MatSetValues(A,1,&Ii,1,&J,&v,ADD_VALUES);CHKERRQ(ierr);}
    if (j>0)   {J = Ii - 1; ierr = MatSetValues(A,1,&Ii,1,&J,&v,ADD_VALUES);CHKERRQ(ierr);}
    if (j<n-1) {J = Ii + 1; ierr = MatSetValues(A,1,&Ii,1,&J,&v,ADD_VALUES);CHKERRQ(ierr);}
    v = 4.0; ierr = MatSetValues(A,1,&Ii,1,&Ii,&v,ADD_VALUES);CHKERRQ(ierr);
  }
  ierr = MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
  ierr = MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);

  /*
     Create parallel vectors
  */
  ierr = VecCreate(PETSC_COMM_WORLD,&u);CHKERRQ(ierr);
  ierr = VecSetSizes(u,PETSC_DECIDE,m*n);CHKERRQ(ierr);
  ierr = VecSetFromOptions(u);CHKERRQ(ierr);
  ierr = VecDuplicate(u,&b);CHKERRQ(ierr);
  ierr = VecDuplicate(b,&x);CHKERRQ(ierr);

  /*
     Set exact solution; then compute right-hand-side vector.
  */
  ierr = VecSet(u,one);CHKERRQ(ierr);
  ierr = MatMult(A,u,b);CHKERRQ(ierr);

  /*
     Create linear solver context
  */
  ierr = KSPCreate(PETSC_COMM_WORLD,&ksp);CHKERRQ(ierr);

  /*
     Set operators. Here the matrix that defines the linear system
     also serves as the preconditioning matrix.
  */
  ierr = KSPSetOperators(ksp,A,A);CHKERRQ(ierr);

  /*
     Set default preconditioner for this program to be block Jacobi.
     This choice can be overridden at runtime with the option
        -pc_type <type>
  */
  ierr = KSPGetPC(ksp,&pc);CHKERRQ(ierr);
  ierr = PCSetType(pc,PCBJACOBI);CHKERRQ(ierr);


  /* -------------------------------------------------------------------
                   Define the problem decomposition
     ------------------------------------------------------------------- */

  /*
     Call PCBJacobiSetTotalBlocks() to set individually the size of
     each block in the preconditioner.  This could also be done with
     the runtime option
         -pc_bjacobi_blocks <blocks>
     Also, see the command PCBJacobiSetLocalBlocks() to set the
     local blocks.

      Note: The default decomposition is 1 block per processor.
  */
  ierr = PetscMalloc1(m,&blks);CHKERRQ(ierr);
  for (i=0; i<m; i++) blks[i] = n;
  ierr = PCBJacobiSetTotalBlocks(pc,m,blks);CHKERRQ(ierr);
  ierr = PetscFree(blks);CHKERRQ(ierr);


  /* -------------------------------------------------------------------
               Set the linear solvers for the subblocks
     ------------------------------------------------------------------- */

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       Basic method, should be sufficient for the needs of most users.
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

     By default, the block Jacobi method uses the same solver on each
     block of the problem.  To set the same solver options on all blocks,
     use the prefix -sub before the usual PC and KSP options, e.g.,
          -sub_pc_type <pc> -sub_ksp_type <ksp> -sub_ksp_rtol 1.e-4
  */

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        Advanced method, setting different solvers for various blocks.
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

     Note that each block's KSP context is completely independent of
     the others, and the full range of uniprocessor KSP options is
     available for each block. The following section of code is intended
     to be a simple illustration of setting different linear solvers for
     the individual blocks.  These choices are obviously not recommended
     for solving this particular problem.
  */
  ierr = PetscObjectTypeCompare((PetscObject)pc,PCBJACOBI,&isbjacobi);CHKERRQ(ierr);
  if (isbjacobi) {
    /*
       Call KSPSetUp() to set the block Jacobi data structures (including
       creation of an internal KSP context for each block).

       Note: KSPSetUp() MUST be called before PCBJacobiGetSubKSP().
    */
    ierr = KSPSetUp(ksp);CHKERRQ(ierr);

    /*
       Extract the array of KSP contexts for the local blocks
    */
    ierr = PCBJacobiGetSubKSP(pc,&nlocal,&first,&subksp);CHKERRQ(ierr);

    /*
       Loop over the local blocks, setting various KSP options
       for each block.
    */
    for (i=0; i<nlocal; i++) {
      ierr = KSPGetPC(subksp[i],&subpc);CHKERRQ(ierr);
      if (!rank) {
        if (i%2) {
          ierr = PCSetType(subpc,PCILU);CHKERRQ(ierr);
        } else {
          ierr = PCSetType(subpc,PCNONE);CHKERRQ(ierr);
          ierr = KSPSetType(subksp[i],KSPBCGS);CHKERRQ(ierr);
          ierr = KSPSetTolerances(subksp[i],1.e-6,PETSC_DEFAULT,PETSC_DEFAULT,PETSC_DEFAULT);CHKERRQ(ierr);
        }
      } else {
        ierr = PCSetType(subpc,PCJACOBI);CHKERRQ(ierr);
        ierr = KSPSetType(subksp[i],KSPGMRES);CHKERRQ(ierr);
        ierr = KSPSetTolerances(subksp[i],1.e-6,PETSC_DEFAULT,PETSC_DEFAULT,PETSC_DEFAULT);CHKERRQ(ierr);
      }
    }
  }

  /* -------------------------------------------------------------------
                      Solve the linear system
     ------------------------------------------------------------------- */

  /*
    Set runtime options
  */
  ierr = KSPSetFromOptions(ksp);CHKERRQ(ierr);

  /*
     Solve the linear system
  */
  ierr = KSPSolve(ksp,b,x);CHKERRQ(ierr);

  /* -------------------------------------------------------------------
                      Check solution and clean up
     ------------------------------------------------------------------- */

  /*
     Check the error
  */
  ierr = VecAXPY(x,none,u);CHKERRQ(ierr);
  ierr = VecNorm(x,NORM_2,&norm);CHKERRQ(ierr);
  ierr = KSPGetIterationNumber(ksp,&its);CHKERRQ(ierr);
  ierr = PetscPrintf(PETSC_COMM_WORLD,"Norm of error %g iterations %D\n",(double)norm,its);CHKERRQ(ierr);

  /*
     Free work space.  All PETSc objects should be destroyed when they
     are no longer needed.
  */
  ierr = KSPDestroy(&ksp);CHKERRQ(ierr);
  ierr = VecDestroy(&u);CHKERRQ(ierr);  ierr = VecDestroy(&x);CHKERRQ(ierr);
  ierr = VecDestroy(&b);CHKERRQ(ierr);  ierr = MatDestroy(&A);CHKERRQ(ierr);
  ierr = PetscFinalize();
  return 0;
}
Exemplo n.º 28
0
int main(int argc,char **args)
{
  Mat            C;
  PetscScalar    v,none = -1.0;
  PetscInt       i,j,Ii,J,Istart,Iend,N,m = 4,n = 4,its,k;
  PetscErrorCode ierr;
  PetscMPIInt    size,rank;
  PetscReal      err_norm,res_norm;
  Vec            x,b,u,u_tmp;
  PC             pc;
  KSP            ksp;

  ierr = PetscInitialize(&argc,&args,(char*)0,help);if (ierr) return ierr;
  ierr = MPI_Comm_rank(PETSC_COMM_WORLD,&rank);CHKERRQ(ierr);
  ierr = MPI_Comm_size(PETSC_COMM_WORLD,&size);CHKERRQ(ierr);
  ierr = PetscOptionsGetInt(NULL,NULL,"-m",&m,NULL);CHKERRQ(ierr);
  ierr = PetscOptionsGetInt(NULL,NULL,"-n",&n,NULL);CHKERRQ(ierr);
  N    = m*n;

  /* Generate matrix */
  ierr = MatCreate(PETSC_COMM_WORLD,&C);CHKERRQ(ierr);
  ierr = MatSetSizes(C,PETSC_DECIDE,PETSC_DECIDE,N,N);CHKERRQ(ierr);
  ierr = MatSetFromOptions(C);CHKERRQ(ierr);
  ierr = MatSetUp(C);CHKERRQ(ierr);
  ierr = MatGetOwnershipRange(C,&Istart,&Iend);CHKERRQ(ierr);
  for (Ii=Istart; Ii<Iend; Ii++) {
    v = -1.0; i = Ii/n; j = Ii - i*n;
    if (i>0)   {J = Ii - n; ierr = MatSetValues(C,1,&Ii,1,&J,&v,ADD_VALUES);CHKERRQ(ierr);}
    if (i<m-1) {J = Ii + n; ierr = MatSetValues(C,1,&Ii,1,&J,&v,ADD_VALUES);CHKERRQ(ierr);}
    if (j>0)   {J = Ii - 1; ierr = MatSetValues(C,1,&Ii,1,&J,&v,ADD_VALUES);CHKERRQ(ierr);}
    if (j<n-1) {J = Ii + 1; ierr = MatSetValues(C,1,&Ii,1,&J,&v,ADD_VALUES);CHKERRQ(ierr);}
    v = 4.0; ierr = MatSetValues(C,1,&Ii,1,&Ii,&v,ADD_VALUES);CHKERRQ(ierr);
  }
  ierr = MatAssemblyBegin(C,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
  ierr = MatAssemblyEnd(C,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);

  /* a shift can make C indefinite. Preconditioners LU, ILU (for BAIJ format) and ICC may fail */
  /* ierr = MatShift(C,alpha);CHKERRQ(ierr); */
  /* ierr = MatView(C,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr); */

  /* Setup and solve for system */
  /* Create vectors.  */
  ierr = VecCreate(PETSC_COMM_WORLD,&x);CHKERRQ(ierr);
  ierr = VecSetSizes(x,PETSC_DECIDE,N);CHKERRQ(ierr);
  ierr = VecSetFromOptions(x);CHKERRQ(ierr);
  ierr = VecDuplicate(x,&b);CHKERRQ(ierr);
  ierr = VecDuplicate(x,&u);CHKERRQ(ierr);
  ierr = VecDuplicate(x,&u_tmp);CHKERRQ(ierr);
  /* Set exact solution u; then compute right-hand-side vector b. */
  ierr = VecSet(u,1.0);CHKERRQ(ierr);
  ierr = MatMult(C,u,b);CHKERRQ(ierr);

  for (k=0; k<3; k++) {
    if (k == 0) {                              /* CG  */
      ierr = KSPCreate(PETSC_COMM_WORLD,&ksp);CHKERRQ(ierr);
      ierr = KSPSetOperators(ksp,C,C);CHKERRQ(ierr);
      ierr = PetscPrintf(PETSC_COMM_WORLD,"\n CG: \n");CHKERRQ(ierr);
      ierr = KSPSetType(ksp,KSPCG);CHKERRQ(ierr);
    } else if (k == 1) {                       /* MINRES */
      ierr = KSPCreate(PETSC_COMM_WORLD,&ksp);CHKERRQ(ierr);
      ierr = KSPSetOperators(ksp,C,C);CHKERRQ(ierr);
      ierr = PetscPrintf(PETSC_COMM_WORLD,"\n MINRES: \n");CHKERRQ(ierr);
      ierr = KSPSetType(ksp,KSPMINRES);CHKERRQ(ierr);
    } else {                                 /* SYMMLQ */
      ierr = KSPCreate(PETSC_COMM_WORLD,&ksp);CHKERRQ(ierr);
      ierr = KSPSetOperators(ksp,C,C);CHKERRQ(ierr);
      ierr = PetscPrintf(PETSC_COMM_WORLD,"\n SYMMLQ: \n");CHKERRQ(ierr);
      ierr = KSPSetType(ksp,KSPSYMMLQ);CHKERRQ(ierr);
    }
    ierr = KSPGetPC(ksp,&pc);CHKERRQ(ierr);
    /* ierr = PCSetType(pc,PCICC);CHKERRQ(ierr); */
    ierr = PCSetType(pc,PCJACOBI);CHKERRQ(ierr);
    ierr = KSPSetTolerances(ksp,1.e-7,PETSC_DEFAULT,PETSC_DEFAULT,PETSC_DEFAULT);CHKERRQ(ierr);

    /*
    Set runtime options, e.g.,
        -ksp_type <type> -pc_type <type> -ksp_monitor -ksp_rtol <rtol>
    These options will override those specified above as long as
    KSPSetFromOptions() is called _after_ any other customization
    routines.
    */
    ierr = KSPSetFromOptions(ksp);CHKERRQ(ierr);

    /* Solve linear system; */
    ierr = KSPSetUp(ksp);CHKERRQ(ierr);
    ierr = KSPSolve(ksp,b,x);CHKERRQ(ierr);

    ierr = KSPGetIterationNumber(ksp,&its);CHKERRQ(ierr);
    /* Check error */
    ierr = VecCopy(u,u_tmp);CHKERRQ(ierr);
    ierr = VecAXPY(u_tmp,none,x);CHKERRQ(ierr);
    ierr = VecNorm(u_tmp,NORM_2,&err_norm);CHKERRQ(ierr);
    ierr = MatMult(C,x,u_tmp);CHKERRQ(ierr);
    ierr = VecAXPY(u_tmp,none,b);CHKERRQ(ierr);
    ierr = VecNorm(u_tmp,NORM_2,&res_norm);CHKERRQ(ierr);

    ierr = PetscPrintf(PETSC_COMM_WORLD,"Number of iterations = %3D\n",its);CHKERRQ(ierr);
    ierr = PetscPrintf(PETSC_COMM_WORLD,"Residual norm %g;",(double)res_norm);CHKERRQ(ierr);
    ierr = PetscPrintf(PETSC_COMM_WORLD,"  Error norm %g.\n",(double)err_norm);CHKERRQ(ierr);
    ierr = KSPDestroy(&ksp);CHKERRQ(ierr);
  }

  /*
       Free work space.  All PETSc objects should be destroyed when they
       are no longer needed.
  */
  ierr = VecDestroy(&b);CHKERRQ(ierr);
  ierr = VecDestroy(&u);CHKERRQ(ierr);
  ierr = VecDestroy(&x);CHKERRQ(ierr);
  ierr = VecDestroy(&u_tmp);CHKERRQ(ierr);
  ierr = MatDestroy(&C);CHKERRQ(ierr);

  ierr = PetscFinalize();
  return ierr;
}
Exemplo n.º 29
0
int main(int argc,char **argv)
{
  KSP                ksp;
  PC                 pc;
  Mat                A,M;
  Vec                X,B,D;
  MPI_Comm           comm;
  PetscScalar        v;
  KSPConvergedReason reason;
  PetscInt           i,j,its;
  PetscErrorCode     ierr;

  PetscFunctionBegin;
  ierr = PetscInitialize(&argc,&argv,0,help);CHKERRQ(ierr);
  ierr = PetscOptionsSetValue("-options_left",PETSC_NULL);CHKERRQ(ierr);
  comm = MPI_COMM_SELF;

  /*
   * Construct the Kershaw matrix
   * and a suitable rhs / initial guess
   */
  ierr = MatCreateSeqAIJ(comm,4,4,4,0,&A);CHKERRQ(ierr);
  ierr = VecCreateSeq(comm,4,&B);CHKERRQ(ierr);
  ierr = VecDuplicate(B,&X);CHKERRQ(ierr);
  for (i=0; i<4; i++) {
    v=3;
    ierr = MatSetValues(A,1,&i,1,&i,&v,INSERT_VALUES);CHKERRQ(ierr);
    v=1;
    ierr = VecSetValues(B,1,&i,&v,INSERT_VALUES);CHKERRQ(ierr);
    ierr = VecSetValues(X,1,&i,&v,INSERT_VALUES);CHKERRQ(ierr);
  }

  i=0; v=0;
  ierr = VecSetValues(X,1,&i,&v,INSERT_VALUES);CHKERRQ(ierr);

  for (i=0; i<3; i++) {
    v=-2; j=i+1;
    ierr = MatSetValues(A,1,&i,1,&j,&v,INSERT_VALUES);CHKERRQ(ierr);
    ierr = MatSetValues(A,1,&j,1,&i,&v,INSERT_VALUES);CHKERRQ(ierr);
  }
  i=0; j=3; v=2;
  ierr = MatSetValues(A,1,&i,1,&j,&v,INSERT_VALUES);CHKERRQ(ierr);
  ierr = MatSetValues(A,1,&j,1,&i,&v,INSERT_VALUES);CHKERRQ(ierr);
  ierr = MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
  ierr = MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
  ierr = VecAssemblyBegin(B);CHKERRQ(ierr);
  ierr = VecAssemblyEnd(B);CHKERRQ(ierr);
  printf("\nThe Kershaw matrix:\n\n"); MatView(A,0);

  /*
   * A Conjugate Gradient method
   * with ILU(0) preconditioning
   */
  ierr = KSPCreate(comm,&ksp);CHKERRQ(ierr);
  ierr = KSPSetOperators(ksp,A,A,DIFFERENT_NONZERO_PATTERN);CHKERRQ(ierr);

  ierr = KSPSetType(ksp,KSPCG);CHKERRQ(ierr);
  ierr = KSPSetInitialGuessNonzero(ksp,PETSC_TRUE);CHKERRQ(ierr);

  /*
   * ILU preconditioner;
   * The iterative method will break down unless you comment in the SetShift
   * line below, or use the -pc_factor_shift_positive_definite option.
   * Run the code twice: once as given to see the negative pivot and the
   * divergence behaviour, then comment in the Shift line, or add the
   * command line option, and see that the pivots are all positive and
   * the method converges.
   */
  ierr = KSPGetPC(ksp,&pc);CHKERRQ(ierr);
  ierr = PCSetType(pc,PCICC);CHKERRQ(ierr);
  /* ierr = PCFactorSetShiftType(prec,MAT_SHIFT_POSITIVE_DEFINITE);CHKERRQ(ierr); */

  ierr = KSPSetFromOptions(ksp);CHKERRQ(ierr);
  ierr = KSPSetUp(ksp);CHKERRQ(ierr);

  /*
   * Now that the factorisation is done, show the pivots;
   * note that the last one is negative. This in itself is not an error,
   * but it will make the iterative method diverge.
   */
  ierr = PCFactorGetMatrix(pc,&M);CHKERRQ(ierr);
  ierr = VecDuplicate(B,&D);CHKERRQ(ierr);
  ierr = MatGetDiagonal(M,D);CHKERRQ(ierr);
  printf("\nPivots:\n\n"); VecView(D,0);

  /*
   * Solve the system;
   * without the shift this will diverge with
   * an indefinite preconditioner
   */
  ierr = KSPSolve(ksp,B,X);CHKERRQ(ierr);
  ierr = KSPGetConvergedReason(ksp,&reason);CHKERRQ(ierr);
  if (reason==KSP_DIVERGED_INDEFINITE_PC) {
    printf("\nDivergence because of indefinite preconditioner;\n");
    printf("Run the executable again but with -pc_factor_shift_positive_definite option.\n");
  } else if (reason<0) {
    printf("\nOther kind of divergence: this should not happen.\n");
  } else {
    ierr = KSPGetIterationNumber(ksp,&its);CHKERRQ(ierr);
    printf("\nConvergence in %d iterations.\n",(int)its);
  }
  printf("\n");

  ierr = KSPDestroy(&ksp);CHKERRQ(ierr);
  ierr = MatDestroy(&A);CHKERRQ(ierr);
  ierr = VecDestroy(&B);CHKERRQ(ierr);
  ierr = VecDestroy(&X);CHKERRQ(ierr);
  ierr = VecDestroy(&D);CHKERRQ(ierr);
  PetscFinalize();
  PetscFunctionReturn(0);
}
Exemplo n.º 30
0
Arquivo: ls.c Projeto: ziolai/petsc
PetscErrorCode SNESSolve_NEWTONLS(SNES snes)
{
  PetscErrorCode       ierr;
  PetscInt             maxits,i,lits;
  SNESLineSearchReason lssucceed;
  PetscReal            fnorm,gnorm,xnorm,ynorm;
  Vec                  Y,X,F;
  SNESLineSearch       linesearch;
  SNESConvergedReason  reason;

  PetscFunctionBegin;
  if (snes->xl || snes->xu || snes->ops->computevariablebounds) SETERRQ1(PetscObjectComm((PetscObject)snes),PETSC_ERR_ARG_WRONGSTATE, "SNES solver %s does not support bounds", ((PetscObject)snes)->type_name);

  snes->numFailures            = 0;
  snes->numLinearSolveFailures = 0;
  snes->reason                 = SNES_CONVERGED_ITERATING;

  maxits = snes->max_its;               /* maximum number of iterations */
  X      = snes->vec_sol;               /* solution vector */
  F      = snes->vec_func;              /* residual vector */
  Y      = snes->vec_sol_update;        /* newton step */

  ierr       = PetscObjectSAWsTakeAccess((PetscObject)snes);CHKERRQ(ierr);
  snes->iter = 0;
  snes->norm = 0.0;
  ierr       = PetscObjectSAWsGrantAccess((PetscObject)snes);CHKERRQ(ierr);
  ierr       = SNESGetLineSearch(snes, &linesearch);CHKERRQ(ierr);

  /* compute the preconditioned function first in the case of left preconditioning with preconditioned function */
  if (snes->pc && snes->pcside == PC_LEFT && snes->functype == SNES_FUNCTION_PRECONDITIONED) {
    ierr = SNESApplyNPC(snes,X,NULL,F);CHKERRQ(ierr);
    ierr = SNESGetConvergedReason(snes->pc,&reason);CHKERRQ(ierr);
    if (reason < 0  && reason != SNES_DIVERGED_MAX_IT) {
      snes->reason = SNES_DIVERGED_INNER;
      PetscFunctionReturn(0);
    }

    ierr = VecNormBegin(F,NORM_2,&fnorm);CHKERRQ(ierr);
    ierr = VecNormEnd(F,NORM_2,&fnorm);CHKERRQ(ierr);
  } else {
    if (!snes->vec_func_init_set) {
      ierr = SNESComputeFunction(snes,X,F);CHKERRQ(ierr);
    } else snes->vec_func_init_set = PETSC_FALSE;
  }

  ierr = VecNorm(F,NORM_2,&fnorm);CHKERRQ(ierr);        /* fnorm <- ||F||  */
  SNESCheckFunctionNorm(snes,fnorm);
  ierr       = PetscObjectSAWsTakeAccess((PetscObject)snes);CHKERRQ(ierr);
  snes->norm = fnorm;
  ierr       = PetscObjectSAWsGrantAccess((PetscObject)snes);CHKERRQ(ierr);
  ierr       = SNESLogConvergenceHistory(snes,fnorm,0);CHKERRQ(ierr);
  ierr       = SNESMonitor(snes,0,fnorm);CHKERRQ(ierr);

  /* test convergence */
  ierr = (*snes->ops->converged)(snes,0,0.0,0.0,fnorm,&snes->reason,snes->cnvP);CHKERRQ(ierr);
  if (snes->reason) PetscFunctionReturn(0);

  for (i=0; i<maxits; i++) {

    /* Call general purpose update function */
    if (snes->ops->update) {
      ierr = (*snes->ops->update)(snes, snes->iter);CHKERRQ(ierr);
    }

    /* apply the nonlinear preconditioner */
    if (snes->pc) {
      if (snes->pcside == PC_RIGHT) {
        ierr = SNESSetInitialFunction(snes->pc, F);CHKERRQ(ierr);
        ierr = PetscLogEventBegin(SNES_NPCSolve,snes->pc,X,snes->vec_rhs,0);CHKERRQ(ierr);
        ierr = SNESSolve(snes->pc, snes->vec_rhs, X);CHKERRQ(ierr);
        ierr = PetscLogEventEnd(SNES_NPCSolve,snes->pc,X,snes->vec_rhs,0);CHKERRQ(ierr);
        ierr = SNESGetConvergedReason(snes->pc,&reason);CHKERRQ(ierr);
        if (reason < 0  && reason != SNES_DIVERGED_MAX_IT) {
          snes->reason = SNES_DIVERGED_INNER;
          PetscFunctionReturn(0);
        }
        ierr = SNESGetNPCFunction(snes,F,&fnorm);CHKERRQ(ierr);
      } else if (snes->pcside == PC_LEFT && snes->functype == SNES_FUNCTION_UNPRECONDITIONED) {
        ierr = SNESApplyNPC(snes,X,F,F);CHKERRQ(ierr);
        ierr = SNESGetConvergedReason(snes->pc,&reason);CHKERRQ(ierr);
        if (reason < 0  && reason != SNES_DIVERGED_MAX_IT) {
          snes->reason = SNES_DIVERGED_INNER;
          PetscFunctionReturn(0);
        }
      }
    }

    /* Solve J Y = F, where J is Jacobian matrix */
    ierr = SNESComputeJacobian(snes,X,snes->jacobian,snes->jacobian_pre);CHKERRQ(ierr);
    ierr = KSPSetOperators(snes->ksp,snes->jacobian,snes->jacobian_pre);CHKERRQ(ierr);
    ierr = KSPSolve(snes->ksp,F,Y);CHKERRQ(ierr);
    SNESCheckKSPSolve(snes);
    ierr              = KSPGetIterationNumber(snes->ksp,&lits);CHKERRQ(ierr);
    snes->linear_its += lits;
    ierr              = PetscInfo2(snes,"iter=%D, linear solve iterations=%D\n",snes->iter,lits);CHKERRQ(ierr);

    if (PetscLogPrintInfo) {
      ierr = SNESNEWTONLSCheckResidual_Private(snes,snes->jacobian,F,Y);CHKERRQ(ierr);
    }

    /* Compute a (scaled) negative update in the line search routine:
         X <- X - lambda*Y
       and evaluate F = function(X) (depends on the line search).
    */
    gnorm = fnorm;
    ierr  = SNESLineSearchApply(linesearch, X, F, &fnorm, Y);CHKERRQ(ierr);
    ierr  = SNESLineSearchGetReason(linesearch, &lssucceed);CHKERRQ(ierr);
    ierr  = SNESLineSearchGetNorms(linesearch, &xnorm, &fnorm, &ynorm);CHKERRQ(ierr);
    ierr  = PetscInfo4(snes,"fnorm=%18.16e, gnorm=%18.16e, ynorm=%18.16e, lssucceed=%d\n",(double)gnorm,(double)fnorm,(double)ynorm,(int)lssucceed);CHKERRQ(ierr);
    if (snes->reason == SNES_DIVERGED_FUNCTION_COUNT) break;
    SNESCheckFunctionNorm(snes,fnorm);
    if (lssucceed) {
      if (snes->stol*xnorm > ynorm) {
        snes->reason = SNES_CONVERGED_SNORM_RELATIVE;
        PetscFunctionReturn(0);
      }
      if (++snes->numFailures >= snes->maxFailures) {
        PetscBool ismin;
        snes->reason = SNES_DIVERGED_LINE_SEARCH;
        ierr         = SNESNEWTONLSCheckLocalMin_Private(snes,snes->jacobian,F,fnorm,&ismin);CHKERRQ(ierr);
        if (ismin) snes->reason = SNES_DIVERGED_LOCAL_MIN;
        break;
      }
    }
    /* Monitor convergence */
    ierr       = PetscObjectSAWsTakeAccess((PetscObject)snes);CHKERRQ(ierr);
    snes->iter = i+1;
    snes->norm = fnorm;
    ierr       = PetscObjectSAWsGrantAccess((PetscObject)snes);CHKERRQ(ierr);
    ierr       = SNESLogConvergenceHistory(snes,snes->norm,lits);CHKERRQ(ierr);
    ierr       = SNESMonitor(snes,snes->iter,snes->norm);CHKERRQ(ierr);
    /* Test for convergence */
    ierr = (*snes->ops->converged)(snes,snes->iter,xnorm,ynorm,fnorm,&snes->reason,snes->cnvP);CHKERRQ(ierr);
    if (snes->reason) break;
  }
  if (i == maxits) {
    ierr = PetscInfo1(snes,"Maximum number of iterations has been reached: %D\n",maxits);CHKERRQ(ierr);
    if (!snes->reason) snes->reason = SNES_DIVERGED_MAX_IT;
  }
  PetscFunctionReturn(0);
}