Exemplo n.º 1
0
static NCVStatus _ncvColorConv_host(const NCVMatrix<Tin> &h_imgIn,
                             const NCVMatrix<Tout> &h_imgOut)
{
    ncvAssertReturn(h_imgIn.size() == h_imgOut.size(), NCV_DIMENSIONS_INVALID);
    ncvAssertReturn(h_imgIn.memType() == h_imgOut.memType() &&
                    (h_imgIn.memType() == NCVMemoryTypeHostPinned || h_imgIn.memType() == NCVMemoryTypeNone), NCV_MEM_RESIDENCE_ERROR);
    NCV_SET_SKIP_COND(h_imgIn.memType() == NCVMemoryTypeNone);
    NCV_SKIP_COND_BEGIN

    for (Ncv32u i=0; i<h_imgIn.height(); i++)
    {
        for (Ncv32u j=0; j<h_imgIn.width(); j++)
        {
            __pixColorConv<CSin, CSout, Tin, Tout>::_pixColorConv(h_imgIn.at(j,i), h_imgOut.at(j,i));
        }
    }

    NCV_SKIP_COND_END
    return NCV_SUCCESS;
}
Exemplo n.º 2
0
bool TestRectStdDev::process()
{
    NCVStatus ncvStat;
    bool rcode = false;

    Ncv32s _normWidth = (Ncv32s)this->width - this->rect.x - this->rect.width + 1;
    Ncv32s _normHeight = (Ncv32s)this->height - this->rect.y - this->rect.height + 1;
    if (_normWidth <= 0 || _normHeight <= 0)
    {
        return true;
    }
    Ncv32u normWidth = (Ncv32u)_normWidth;
    Ncv32u normHeight = (Ncv32u)_normHeight;
    NcvSize32u szNormRoi(normWidth, normHeight);

    Ncv32u widthII = this->width + 1;
    Ncv32u heightII = this->height + 1;
    Ncv32u widthSII = this->width + 1;
    Ncv32u heightSII = this->height + 1;

    NCVMatrixAlloc<Ncv8u> d_img(*this->allocatorGPU.get(), this->width, this->height);
    ncvAssertReturn(d_img.isMemAllocated(), false);
    NCVMatrixAlloc<Ncv8u> h_img(*this->allocatorCPU.get(), this->width, this->height);
    ncvAssertReturn(h_img.isMemAllocated(), false);

    NCVMatrixAlloc<Ncv32u> d_imgII(*this->allocatorGPU.get(), widthII, heightII);
    ncvAssertReturn(d_imgII.isMemAllocated(), false);
    NCVMatrixAlloc<Ncv32u> h_imgII(*this->allocatorCPU.get(), widthII, heightII);
    ncvAssertReturn(h_imgII.isMemAllocated(), false);

    NCVMatrixAlloc<Ncv64u> d_imgSII(*this->allocatorGPU.get(), widthSII, heightSII);
    ncvAssertReturn(d_imgSII.isMemAllocated(), false);
    NCVMatrixAlloc<Ncv64u> h_imgSII(*this->allocatorCPU.get(), widthSII, heightSII);
    ncvAssertReturn(h_imgSII.isMemAllocated(), false);

    NCVMatrixAlloc<Ncv32f> d_norm(*this->allocatorGPU.get(), normWidth, normHeight);
    ncvAssertReturn(d_norm.isMemAllocated(), false);
    NCVMatrixAlloc<Ncv32f> h_norm(*this->allocatorCPU.get(), normWidth, normHeight);
    ncvAssertReturn(h_norm.isMemAllocated(), false);
    NCVMatrixAlloc<Ncv32f> h_norm_d(*this->allocatorCPU.get(), normWidth, normHeight);
    ncvAssertReturn(h_norm_d.isMemAllocated(), false);

    Ncv32u bufSizeII, bufSizeSII;
    ncvStat = nppiStIntegralGetSize_8u32u(NcvSize32u(this->width, this->height), &bufSizeII, this->devProp);
    ncvAssertReturn(NPPST_SUCCESS == ncvStat, false);
    ncvStat = nppiStSqrIntegralGetSize_8u64u(NcvSize32u(this->width, this->height), &bufSizeSII, this->devProp);
    ncvAssertReturn(NPPST_SUCCESS == ncvStat, false);
    Ncv32u bufSize = bufSizeII > bufSizeSII ? bufSizeII : bufSizeSII;
    NCVVectorAlloc<Ncv8u> d_tmpBuf(*this->allocatorGPU.get(), bufSize);
    ncvAssertReturn(d_tmpBuf.isMemAllocated(), false);

    NCV_SET_SKIP_COND(this->allocatorGPU.get()->isCounting());
    NCV_SKIP_COND_BEGIN
    ncvAssertReturn(this->src.fill(h_img), false);

    ncvStat = h_img.copySolid(d_img, 0);
    ncvAssertReturn(ncvStat == NPPST_SUCCESS, false);

    ncvStat = nppiStIntegral_8u32u_C1R(d_img.ptr(), d_img.pitch(),
                                       d_imgII.ptr(), d_imgII.pitch(),
                                       NcvSize32u(this->width, this->height),
                                       d_tmpBuf.ptr(), bufSize, this->devProp);
    ncvAssertReturn(ncvStat == NPPST_SUCCESS, false);

    ncvStat = nppiStSqrIntegral_8u64u_C1R(d_img.ptr(), d_img.pitch(),
                                          d_imgSII.ptr(), d_imgSII.pitch(),
                                          NcvSize32u(this->width, this->height),
                                          d_tmpBuf.ptr(), bufSize, this->devProp);
    ncvAssertReturn(ncvStat == NPPST_SUCCESS, false);

    ncvStat = nppiStRectStdDev_32f_C1R(d_imgII.ptr(), d_imgII.pitch(),
                                       d_imgSII.ptr(), d_imgSII.pitch(),
                                       d_norm.ptr(), d_norm.pitch(),
                                       szNormRoi, this->rect,
                                       this->scaleFactor,
                                       this->bTextureCache);
    ncvAssertReturn(ncvStat == NPPST_SUCCESS, false);

    ncvStat = d_norm.copySolid(h_norm_d, 0);
    ncvAssertReturn(ncvStat == NPPST_SUCCESS, false);

    ncvStat = nppiStIntegral_8u32u_C1R_host(h_img.ptr(), h_img.pitch(),
                                          h_imgII.ptr(), h_imgII.pitch(),
                                          NcvSize32u(this->width, this->height));
    ncvAssertReturn(ncvStat == NPPST_SUCCESS, false);

    ncvStat = nppiStSqrIntegral_8u64u_C1R_host(h_img.ptr(), h_img.pitch(),
                                             h_imgSII.ptr(), h_imgSII.pitch(),
                                             NcvSize32u(this->width, this->height));
    ncvAssertReturn(ncvStat == NPPST_SUCCESS, false);

    ncvStat = nppiStRectStdDev_32f_C1R_host(h_imgII.ptr(), h_imgII.pitch(),
                                          h_imgSII.ptr(), h_imgSII.pitch(),
                                          h_norm.ptr(), h_norm.pitch(),
                                          szNormRoi, this->rect,
                                          this->scaleFactor);
    ncvAssertReturn(ncvStat == NPPST_SUCCESS, false);
    NCV_SKIP_COND_END

    //bit-to-bit check
    bool bLoopVirgin = true;

    NCV_SKIP_COND_BEGIN
    const Ncv64f relEPS = 0.005;
    for (Ncv32u i=0; bLoopVirgin && i < h_norm.height(); i++)
    {
        for (Ncv32u j=0; bLoopVirgin && j < h_norm.width(); j++)
        {
            Ncv64f absErr = fabs(h_norm.ptr()[h_norm.stride()*i+j] - h_norm_d.ptr()[h_norm_d.stride()*i+j]);
            Ncv64f relErr = absErr / h_norm.ptr()[h_norm.stride()*i+j];

            if (relErr > relEPS)
            {
                bLoopVirgin = false;
            }
        }
    }
    NCV_SKIP_COND_END

    if (bLoopVirgin)
    {
        rcode = true;
    }

    return rcode;
}
bool TestCompact::process()
{
    NCVStatus ncvStat;
    bool rcode = false;

    NCVVectorAlloc<Ncv32u> h_vecSrc(*this->allocatorCPU.get(), this->length);
    ncvAssertReturn(h_vecSrc.isMemAllocated(), false);
    NCVVectorAlloc<Ncv32u> d_vecSrc(*this->allocatorGPU.get(), this->length);
    ncvAssertReturn(d_vecSrc.isMemAllocated(), false);

    NCVVectorAlloc<Ncv32u> h_vecDst(*this->allocatorCPU.get(), this->length);
    ncvAssertReturn(h_vecDst.isMemAllocated(), false);
    NCVVectorAlloc<Ncv32u> d_vecDst(*this->allocatorGPU.get(), this->length);
    ncvAssertReturn(d_vecDst.isMemAllocated(), false);
    NCVVectorAlloc<Ncv32u> h_vecDst_d(*this->allocatorCPU.get(), this->length);
    ncvAssertReturn(h_vecDst_d.isMemAllocated(), false);

    NCV_SET_SKIP_COND(this->allocatorGPU.get()->isCounting());
    NCV_SKIP_COND_BEGIN
    ncvAssertReturn(this->src.fill(h_vecSrc), false);
    for (Ncv32u i=0; i<this->length; i++)
    {
        Ncv32u tmp = (h_vecSrc.ptr()[i]) & 0xFF;
        tmp = tmp * 99 / 255;
        if (tmp < this->badElemPercentage)
        {
            h_vecSrc.ptr()[i] = this->badElem;
        }
    }
    NCV_SKIP_COND_END

    NCVVectorAlloc<Ncv32u> h_dstLen(*this->allocatorCPU.get(), 1);
    ncvAssertReturn(h_dstLen.isMemAllocated(), false);
    Ncv32u bufSize;
    ncvStat = nppsStCompactGetSize_32u(this->length, &bufSize, this->devProp);
    ncvAssertReturn(NPPST_SUCCESS == ncvStat, false);
    NCVVectorAlloc<Ncv8u> d_tmpBuf(*this->allocatorGPU.get(), bufSize);
    ncvAssertReturn(d_tmpBuf.isMemAllocated(), false);

    Ncv32u h_outElemNum_h = 0;

    NCV_SKIP_COND_BEGIN
    ncvStat = h_vecSrc.copySolid(d_vecSrc, 0);
    ncvAssertReturn(ncvStat == NPPST_SUCCESS, false);
    ncvStat = nppsStCompact_32u(d_vecSrc.ptr(), this->length,
                                d_vecDst.ptr(), h_dstLen.ptr(), this->badElem,
                                d_tmpBuf.ptr(), bufSize, this->devProp);
    ncvAssertReturn(ncvStat == NPPST_SUCCESS, false);
    ncvStat = d_vecDst.copySolid(h_vecDst_d, 0);
    ncvAssertReturn(ncvStat == NPPST_SUCCESS, false);

    ncvStat = nppsStCompact_32u_host(h_vecSrc.ptr(), this->length, h_vecDst.ptr(), &h_outElemNum_h, this->badElem);
    ncvAssertReturn(ncvStat == NPPST_SUCCESS, false);
    NCV_SKIP_COND_END

    //bit-to-bit check
    bool bLoopVirgin = true;

    NCV_SKIP_COND_BEGIN
    if (h_dstLen.ptr()[0] != h_outElemNum_h)
    {
        bLoopVirgin = false;
    }
    else
    {
        for (Ncv32u i=0; bLoopVirgin && i < h_outElemNum_h; i++)
        {
            if (h_vecDst.ptr()[i] != h_vecDst_d.ptr()[i])
            {
                bLoopVirgin = false;
            }
        }
    }
    NCV_SKIP_COND_END

    if (bLoopVirgin)
    {
        rcode = true;
    }

    return rcode;
}
Exemplo n.º 4
0
bool TestHypothesesGrow::process()
{
    NCVStatus ncvStat;
    bool rcode = false;

    NCVVectorAlloc<Ncv32u> h_vecSrc(*this->allocatorCPU.get(), this->maxLenSrc);
    ncvAssertReturn(h_vecSrc.isMemAllocated(), false);
    NCVVectorAlloc<Ncv32u> d_vecSrc(*this->allocatorGPU.get(), this->maxLenSrc);
    ncvAssertReturn(d_vecSrc.isMemAllocated(), false);

    NCVVectorAlloc<NcvRect32u> h_vecDst(*this->allocatorCPU.get(), this->maxLenDst);
    ncvAssertReturn(h_vecDst.isMemAllocated(), false);
    NCVVectorAlloc<NcvRect32u> d_vecDst(*this->allocatorGPU.get(), this->maxLenDst);
    ncvAssertReturn(d_vecDst.isMemAllocated(), false);
    NCVVectorAlloc<NcvRect32u> h_vecDst_d(*this->allocatorCPU.get(), this->maxLenDst);
    ncvAssertReturn(h_vecDst_d.isMemAllocated(), false);

    NCV_SET_SKIP_COND(this->allocatorGPU.get()->isCounting());

    NCV_SKIP_COND_BEGIN
    ncvAssertReturn(this->src.fill(h_vecSrc), false);
    memset(h_vecDst.ptr(), 0, h_vecDst.length() * sizeof(NcvRect32u));
    NCVVectorReuse<Ncv32u> h_vecDst_as32u(h_vecDst.getSegment(), lenDst * sizeof(NcvRect32u) / sizeof(Ncv32u));
    ncvAssertReturn(h_vecDst_as32u.isMemReused(), false);
    ncvAssertReturn(this->src.fill(h_vecDst_as32u), false);
    memcpy(h_vecDst_d.ptr(), h_vecDst.ptr(), h_vecDst.length() * sizeof(NcvRect32u));
    NCV_SKIP_COND_END

    ncvStat = h_vecSrc.copySolid(d_vecSrc, 0);
    ncvAssertReturn(ncvStat == NCV_SUCCESS, false);
    ncvStat = h_vecDst.copySolid(d_vecDst, 0);
    ncvAssertReturn(ncvStat == NCV_SUCCESS, false);
    ncvAssertCUDAReturn(cudaStreamSynchronize(0), false);

    Ncv32u h_outElemNum_d = 0;
    Ncv32u h_outElemNum_h = 0;
    NCV_SKIP_COND_BEGIN
    h_outElemNum_d = this->lenDst;
    ncvStat = ncvGrowDetectionsVector_device(d_vecSrc, this->lenSrc,
                                             d_vecDst, h_outElemNum_d, this->maxLenDst,
                                             this->rectWidth, this->rectHeight, this->rectScale, 0);
    ncvAssertReturn(ncvStat == NCV_SUCCESS, false);
    ncvStat = d_vecDst.copySolid(h_vecDst_d, 0);
    ncvAssertReturn(ncvStat == NCV_SUCCESS, false);
    ncvAssertCUDAReturn(cudaStreamSynchronize(0), false);

    h_outElemNum_h = this->lenDst;
    ncvStat = ncvGrowDetectionsVector_host(h_vecSrc, this->lenSrc,
                                           h_vecDst, h_outElemNum_h, this->maxLenDst,
                                           this->rectWidth, this->rectHeight, this->rectScale);
    ncvAssertReturn(ncvStat == NCV_SUCCESS, false);
    NCV_SKIP_COND_END

    //bit-to-bit check
    bool bLoopVirgin = true;

    NCV_SKIP_COND_BEGIN
    if (h_outElemNum_d != h_outElemNum_h)
    {
        bLoopVirgin = false;
    }
    else
    {
        if (memcmp(h_vecDst.ptr(), h_vecDst_d.ptr(), this->maxLenDst * sizeof(NcvRect32u)))
        {
            bLoopVirgin = false;
        }
    }
    NCV_SKIP_COND_END

    if (bLoopVirgin)
    {
        rcode = true;
    }

    return rcode;
}
bool TestHaarCascadeApplication::process()
{
#if defined(__APPLE)
	return true;
#endif
    NCVStatus ncvStat;
    bool rcode = false;

    Ncv32u numStages, numNodes, numFeatures;

    ncvStat = ncvHaarGetClassifierSize(this->cascadeName, numStages, numNodes, numFeatures);
    ncvAssertReturn(ncvStat == NCV_SUCCESS, false);

    NCVVectorAlloc<HaarStage64> h_HaarStages(*this->allocatorCPU.get(), numStages);
    ncvAssertReturn(h_HaarStages.isMemAllocated(), false);
    NCVVectorAlloc<HaarClassifierNode128> h_HaarNodes(*this->allocatorCPU.get(), numNodes);
    ncvAssertReturn(h_HaarNodes.isMemAllocated(), false);
    NCVVectorAlloc<HaarFeature64> h_HaarFeatures(*this->allocatorCPU.get(), numFeatures);
    ncvAssertReturn(h_HaarFeatures.isMemAllocated(), false);

    NCVVectorAlloc<HaarStage64> d_HaarStages(*this->allocatorGPU.get(), numStages);
    ncvAssertReturn(d_HaarStages.isMemAllocated(), false);
    NCVVectorAlloc<HaarClassifierNode128> d_HaarNodes(*this->allocatorGPU.get(), numNodes);
    ncvAssertReturn(d_HaarNodes.isMemAllocated(), false);
    NCVVectorAlloc<HaarFeature64> d_HaarFeatures(*this->allocatorGPU.get(), numFeatures);
    ncvAssertReturn(d_HaarFeatures.isMemAllocated(), false);

    HaarClassifierCascadeDescriptor haar;
    haar.ClassifierSize.width = haar.ClassifierSize.height = 1;
    haar.bNeedsTiltedII = false;
    haar.NumClassifierRootNodes = numNodes;
    haar.NumClassifierTotalNodes = numNodes;
    haar.NumFeatures = numFeatures;
    haar.NumStages = numStages;

    NCV_SET_SKIP_COND(this->allocatorGPU.get()->isCounting());
    NCV_SKIP_COND_BEGIN

    ncvStat = ncvHaarLoadFromFile_host(this->cascadeName, haar, h_HaarStages, h_HaarNodes, h_HaarFeatures);
    ncvAssertReturn(ncvStat == NCV_SUCCESS, false);

    ncvAssertReturn(NCV_SUCCESS == h_HaarStages.copySolid(d_HaarStages, 0), false);
    ncvAssertReturn(NCV_SUCCESS == h_HaarNodes.copySolid(d_HaarNodes, 0), false);
    ncvAssertReturn(NCV_SUCCESS == h_HaarFeatures.copySolid(d_HaarFeatures, 0), false);
    ncvAssertCUDAReturn(cudaStreamSynchronize(0), false);

    NCV_SKIP_COND_END

    NcvSize32s srcRoi, srcIIRoi, searchRoi;
    srcRoi.width = this->width;
    srcRoi.height = this->height;
    srcIIRoi.width = srcRoi.width + 1;
    srcIIRoi.height = srcRoi.height + 1;
    searchRoi.width = srcIIRoi.width - haar.ClassifierSize.width;
    searchRoi.height = srcIIRoi.height - haar.ClassifierSize.height;
    if (searchRoi.width <= 0 || searchRoi.height <= 0)
    {
        return false;
    }
    NcvSize32u searchRoiU(searchRoi.width, searchRoi.height);

    NCVMatrixAlloc<Ncv8u> d_img(*this->allocatorGPU.get(), this->width, this->height);
    ncvAssertReturn(d_img.isMemAllocated(), false);
    NCVMatrixAlloc<Ncv8u> h_img(*this->allocatorCPU.get(), this->width, this->height);
    ncvAssertReturn(h_img.isMemAllocated(), false);

    Ncv32u integralWidth = this->width + 1;
    Ncv32u integralHeight = this->height + 1;

    NCVMatrixAlloc<Ncv32u> d_integralImage(*this->allocatorGPU.get(), integralWidth, integralHeight);
    ncvAssertReturn(d_integralImage.isMemAllocated(), false);
    NCVMatrixAlloc<Ncv64u> d_sqIntegralImage(*this->allocatorGPU.get(), integralWidth, integralHeight);
    ncvAssertReturn(d_sqIntegralImage.isMemAllocated(), false);
    NCVMatrixAlloc<Ncv32u> h_integralImage(*this->allocatorCPU.get(), integralWidth, integralHeight);
    ncvAssertReturn(h_integralImage.isMemAllocated(), false);
    NCVMatrixAlloc<Ncv64u> h_sqIntegralImage(*this->allocatorCPU.get(), integralWidth, integralHeight);
    ncvAssertReturn(h_sqIntegralImage.isMemAllocated(), false);

    NCVMatrixAlloc<Ncv32f> d_rectStdDev(*this->allocatorGPU.get(), this->width, this->height);
    ncvAssertReturn(d_rectStdDev.isMemAllocated(), false);
    NCVMatrixAlloc<Ncv32u> d_pixelMask(*this->allocatorGPU.get(), this->width, this->height);
    ncvAssertReturn(d_pixelMask.isMemAllocated(), false);
    NCVMatrixAlloc<Ncv32f> h_rectStdDev(*this->allocatorCPU.get(), this->width, this->height);
    ncvAssertReturn(h_rectStdDev.isMemAllocated(), false);
    NCVMatrixAlloc<Ncv32u> h_pixelMask(*this->allocatorCPU.get(), this->width, this->height);
    ncvAssertReturn(h_pixelMask.isMemAllocated(), false);

    NCVVectorAlloc<NcvRect32u> d_hypotheses(*this->allocatorGPU.get(), this->width * this->height);
    ncvAssertReturn(d_hypotheses.isMemAllocated(), false);
    NCVVectorAlloc<NcvRect32u> h_hypotheses(*this->allocatorCPU.get(), this->width * this->height);
    ncvAssertReturn(h_hypotheses.isMemAllocated(), false);

    NCVStatus nppStat;
    Ncv32u szTmpBufIntegral, szTmpBufSqIntegral;
    nppStat = nppiStIntegralGetSize_8u32u(NcvSize32u(this->width, this->height), &szTmpBufIntegral, this->devProp);
    ncvAssertReturn(nppStat == NPPST_SUCCESS, false);
    nppStat = nppiStSqrIntegralGetSize_8u64u(NcvSize32u(this->width, this->height), &szTmpBufSqIntegral, this->devProp);
    ncvAssertReturn(nppStat == NPPST_SUCCESS, false);
    NCVVectorAlloc<Ncv8u> d_tmpIIbuf(*this->allocatorGPU.get(), std::max(szTmpBufIntegral, szTmpBufSqIntegral));
    ncvAssertReturn(d_tmpIIbuf.isMemAllocated(), false);

    Ncv32u detectionsOnThisScale_d = 0;
    Ncv32u detectionsOnThisScale_h = 0;

    NCV_SKIP_COND_BEGIN

    ncvAssertReturn(this->src.fill(h_img), false);
    ncvStat = h_img.copySolid(d_img, 0);
    ncvAssertReturn(ncvStat == NCV_SUCCESS, false);
    ncvAssertCUDAReturn(cudaStreamSynchronize(0), false);

    nppStat = nppiStIntegral_8u32u_C1R(d_img.ptr(), d_img.pitch(),
                                       d_integralImage.ptr(), d_integralImage.pitch(),
                                       NcvSize32u(d_img.width(), d_img.height()),
                                       d_tmpIIbuf.ptr(), szTmpBufIntegral, this->devProp);
    ncvAssertReturn(nppStat == NPPST_SUCCESS, false);

    nppStat = nppiStSqrIntegral_8u64u_C1R(d_img.ptr(), d_img.pitch(),
                                          d_sqIntegralImage.ptr(), d_sqIntegralImage.pitch(),
                                          NcvSize32u(d_img.width(), d_img.height()),
                                          d_tmpIIbuf.ptr(), szTmpBufSqIntegral, this->devProp);
    ncvAssertReturn(nppStat == NPPST_SUCCESS, false);

    const NcvRect32u rect(
        HAAR_STDDEV_BORDER,
        HAAR_STDDEV_BORDER,
        haar.ClassifierSize.width - 2*HAAR_STDDEV_BORDER,
        haar.ClassifierSize.height - 2*HAAR_STDDEV_BORDER);
    nppStat = nppiStRectStdDev_32f_C1R(
        d_integralImage.ptr(), d_integralImage.pitch(),
        d_sqIntegralImage.ptr(), d_sqIntegralImage.pitch(),
        d_rectStdDev.ptr(), d_rectStdDev.pitch(),
        NcvSize32u(searchRoi.width, searchRoi.height), rect,
        1.0f, true);
    ncvAssertReturn(nppStat == NPPST_SUCCESS, false);

    ncvStat = d_integralImage.copySolid(h_integralImage, 0);
    ncvAssertReturn(ncvStat == NCV_SUCCESS, false);
    ncvStat = d_rectStdDev.copySolid(h_rectStdDev, 0);
    ncvAssertReturn(ncvStat == NCV_SUCCESS, false);

    for (Ncv32u i=0; i<searchRoiU.height; i++)
    {
        for (Ncv32u j=0; j<h_pixelMask.stride(); j++)
        {
            if (j<searchRoiU.width)
            {
                h_pixelMask.ptr()[i*h_pixelMask.stride()+j] = (i << 16) | j;
            }
            else
            {
                h_pixelMask.ptr()[i*h_pixelMask.stride()+j] = OBJDET_MASK_ELEMENT_INVALID_32U;
            }
        }
    }
    ncvAssertReturn(cudaSuccess == cudaStreamSynchronize(0), false);

#if !defined(__APPLE__)

#if defined(__GNUC__)
    //http://www.christian-seiler.de/projekte/fpmath/

    fpu_control_t fpu_oldcw, fpu_cw;
    _FPU_GETCW(fpu_oldcw); // store old cw
     fpu_cw = (fpu_oldcw & ~_FPU_EXTENDED & ~_FPU_DOUBLE & ~_FPU_SINGLE) | _FPU_SINGLE;
    _FPU_SETCW(fpu_cw);

    // calculations here
    ncvStat = ncvApplyHaarClassifierCascade_host(
        h_integralImage, h_rectStdDev, h_pixelMask,
        detectionsOnThisScale_h,
        haar, h_HaarStages, h_HaarNodes, h_HaarFeatures, false,
        searchRoiU, 1, 1.0f);
    ncvAssertReturn(ncvStat == NCV_SUCCESS, false);

    _FPU_SETCW(fpu_oldcw); // restore old cw
#else
#ifndef _WIN64
    Ncv32u fpu_oldcw, fpu_cw;
    _controlfp_s(&fpu_cw, 0, 0);
    fpu_oldcw = fpu_cw;
    _controlfp_s(&fpu_cw, _PC_24, _MCW_PC);
#endif
    ncvStat = ncvApplyHaarClassifierCascade_host(
        h_integralImage, h_rectStdDev, h_pixelMask,
        detectionsOnThisScale_h,
        haar, h_HaarStages, h_HaarNodes, h_HaarFeatures, false,
        searchRoiU, 1, 1.0f);
    ncvAssertReturn(ncvStat == NCV_SUCCESS, false);
#ifndef _WIN64
    _controlfp_s(&fpu_cw, fpu_oldcw, _MCW_PC);
#endif
#endif

#endif
    NCV_SKIP_COND_END

    int devId;
    ncvAssertCUDAReturn(cudaGetDevice(&devId), false);
    cudaDeviceProp _devProp;
    ncvAssertCUDAReturn(cudaGetDeviceProperties(&_devProp, devId), false);

    ncvStat = ncvApplyHaarClassifierCascade_device(
        d_integralImage, d_rectStdDev, d_pixelMask,
        detectionsOnThisScale_d,
        haar, h_HaarStages, d_HaarStages, d_HaarNodes, d_HaarFeatures, false,
        searchRoiU, 1, 1.0f,
        *this->allocatorGPU.get(), *this->allocatorCPU.get(),
        _devProp, 0);
    ncvAssertReturn(ncvStat == NCV_SUCCESS, false);

    NCVMatrixAlloc<Ncv32u> h_pixelMask_d(*this->allocatorCPU.get(), this->width, this->height);
    ncvAssertReturn(h_pixelMask_d.isMemAllocated(), false);

    //bit-to-bit check
    bool bLoopVirgin = true;

    NCV_SKIP_COND_BEGIN

    ncvStat = d_pixelMask.copySolid(h_pixelMask_d, 0);
    ncvAssertReturn(ncvStat == NCV_SUCCESS, false);

    if (detectionsOnThisScale_d != detectionsOnThisScale_h)
    {
        bLoopVirgin = false;
    }
    else
    {
        std::sort(h_pixelMask_d.ptr(), h_pixelMask_d.ptr() + detectionsOnThisScale_d);
        for (Ncv32u i=0; i<detectionsOnThisScale_d && bLoopVirgin; i++)
        {
            if (h_pixelMask.ptr()[i] != h_pixelMask_d.ptr()[i])
            {
                bLoopVirgin = false;
            }
        }
    }

    NCV_SKIP_COND_END

    if (bLoopVirgin)
    {
        rcode = true;
    }

    return rcode;
}
Exemplo n.º 6
0
bool TestTranspose<T>::process()
{
    NCVStatus ncvStat;
    bool rcode = false;

    NcvSize32u srcSize(this->width, this->height);

    NCVMatrixAlloc<T> d_img(*this->allocatorGPU.get(), this->width, this->height);
    ncvAssertReturn(d_img.isMemAllocated(), false);
    NCVMatrixAlloc<T> h_img(*this->allocatorCPU.get(), this->width, this->height);
    ncvAssertReturn(h_img.isMemAllocated(), false);

    NCVMatrixAlloc<T> d_dst(*this->allocatorGPU.get(), this->height, this->width);
    ncvAssertReturn(d_dst.isMemAllocated(), false);
    NCVMatrixAlloc<T> h_dst(*this->allocatorCPU.get(), this->height, this->width);
    ncvAssertReturn(h_dst.isMemAllocated(), false);
    NCVMatrixAlloc<T> h_dst_d(*this->allocatorCPU.get(), this->height, this->width);
    ncvAssertReturn(h_dst_d.isMemAllocated(), false);

    NCV_SET_SKIP_COND(this->allocatorGPU.get()->isCounting());
    NCV_SKIP_COND_BEGIN
    ncvAssertReturn(this->src.fill(h_img), false);
    NCV_SKIP_COND_END

    ncvStat = h_img.copySolid(d_img, 0);
    ncvAssertReturn(ncvStat == NPPST_SUCCESS, false);
    NCV_SKIP_COND_BEGIN
    if (sizeof(T) == sizeof(Ncv32u))
    {
        ncvStat = nppiStTranspose_32u_C1R((Ncv32u *)d_img.ptr(), d_img.pitch(),
                                          (Ncv32u *)d_dst.ptr(), d_dst.pitch(),
                                          NcvSize32u(this->width, this->height));
    }
    else if (sizeof(T) == sizeof(Ncv64u))
    {
        ncvStat = nppiStTranspose_64u_C1R((Ncv64u *)d_img.ptr(), d_img.pitch(),
                                        (Ncv64u *)d_dst.ptr(), d_dst.pitch(),
                                        NcvSize32u(this->width, this->height));
    }
    else
    {
        ncvAssertPrintReturn(false, "Incorrect transpose test instance", false);
    }
    ncvAssertReturn(ncvStat == NPPST_SUCCESS, false);
    NCV_SKIP_COND_END
    ncvStat = d_dst.copySolid(h_dst_d, 0);
    ncvAssertReturn(ncvStat == NPPST_SUCCESS, false);

    NCV_SKIP_COND_BEGIN
    if (sizeof(T) == sizeof(Ncv32u))
    {
        ncvStat = nppiStTranspose_32u_C1R_host((Ncv32u *)h_img.ptr(), h_img.pitch(),
                                               (Ncv32u *)h_dst.ptr(), h_dst.pitch(),
                                               NcvSize32u(this->width, this->height));
    }
    else if (sizeof(T) == sizeof(Ncv64u))
    {
        ncvStat = nppiStTranspose_64u_C1R_host((Ncv64u *)h_img.ptr(), h_img.pitch(),
                                               (Ncv64u *)h_dst.ptr(), h_dst.pitch(),
                                               NcvSize32u(this->width, this->height));
    }
    else
    {
        ncvAssertPrintReturn(false, "Incorrect downsample test instance", false);
    }
    ncvAssertReturn(ncvStat == NPPST_SUCCESS, false);
    NCV_SKIP_COND_END

    //bit-to-bit check
    bool bLoopVirgin = true;

    NCV_SKIP_COND_BEGIN
    //const Ncv64f relEPS = 0.005;
    for (Ncv32u i=0; bLoopVirgin && i < this->width; i++)
    {
        for (Ncv32u j=0; bLoopVirgin && j < this->height; j++)
        {
            if (h_dst.ptr()[h_dst.stride()*i+j] != h_dst_d.ptr()[h_dst_d.stride()*i+j])
            {
                bLoopVirgin = false;
            }
        }
    }
    NCV_SKIP_COND_END

    if (bLoopVirgin)
    {
        rcode = true;
    }

    return rcode;
}
Exemplo n.º 7
0
bool TestResize<T>::process()
{
    NCVStatus ncvStat;
    bool rcode = false;

    Ncv32s smallWidth = this->width / this->scaleFactor;
    Ncv32s smallHeight = this->height / this->scaleFactor;
    if (smallWidth == 0 || smallHeight == 0)
    {
        return true;
    }

    NcvSize32u srcSize(this->width, this->height);

    NCVMatrixAlloc<T> d_img(*this->allocatorGPU.get(), this->width, this->height);
    ncvAssertReturn(d_img.isMemAllocated(), false);
    NCVMatrixAlloc<T> h_img(*this->allocatorCPU.get(), this->width, this->height);
    ncvAssertReturn(h_img.isMemAllocated(), false);

    NCVMatrixAlloc<T> d_small(*this->allocatorGPU.get(), smallWidth, smallHeight);
    ncvAssertReturn(d_small.isMemAllocated(), false);
    NCVMatrixAlloc<T> h_small(*this->allocatorCPU.get(), smallWidth, smallHeight);
    ncvAssertReturn(h_small.isMemAllocated(), false);
    NCVMatrixAlloc<T> h_small_d(*this->allocatorCPU.get(), smallWidth, smallHeight);
    ncvAssertReturn(h_small_d.isMemAllocated(), false);

    NCV_SET_SKIP_COND(this->allocatorGPU.get()->isCounting());
    NCV_SKIP_COND_BEGIN
    ncvAssertReturn(this->src.fill(h_img), false);
    NCV_SKIP_COND_END

    ncvStat = h_img.copySolid(d_img, 0);
    ncvAssertReturn(ncvStat == NPPST_SUCCESS, false);
    NCV_SKIP_COND_BEGIN
    if (sizeof(T) == sizeof(Ncv32u))
    {
        ncvStat = nppiStDecimate_32u_C1R((Ncv32u *)d_img.ptr(), d_img.pitch(),
                                         (Ncv32u *)d_small.ptr(), d_small.pitch(),
                                         srcSize, this->scaleFactor,
                                         this->bTextureCache);
    }
    else if (sizeof(T) == sizeof(Ncv64u))
    {
        ncvStat = nppiStDecimate_64u_C1R((Ncv64u *)d_img.ptr(), d_img.pitch(),
                                         (Ncv64u *)d_small.ptr(), d_small.pitch(),
                                         srcSize, this->scaleFactor,
                                         this->bTextureCache);
    }
    else
    {
        ncvAssertPrintReturn(false, "Incorrect downsample test instance", false);
    }
    ncvAssertReturn(ncvStat == NPPST_SUCCESS, false);
    NCV_SKIP_COND_END
    ncvStat = d_small.copySolid(h_small_d, 0);
    ncvAssertReturn(ncvStat == NPPST_SUCCESS, false);

    NCV_SKIP_COND_BEGIN
    if (sizeof(T) == sizeof(Ncv32u))
    {
        ncvStat = nppiStDecimate_32u_C1R_host((Ncv32u *)h_img.ptr(), h_img.pitch(),
                                              (Ncv32u *)h_small.ptr(), h_small.pitch(),
                                              srcSize, this->scaleFactor);
    }
    else if (sizeof(T) == sizeof(Ncv64u))
    {
        ncvStat = nppiStDecimate_64u_C1R_host((Ncv64u *)h_img.ptr(), h_img.pitch(),
                                              (Ncv64u *)h_small.ptr(), h_small.pitch(),
                                              srcSize, this->scaleFactor);
    }
    else
    {
        ncvAssertPrintReturn(false, "Incorrect downsample test instance", false);
    }
    ncvAssertReturn(ncvStat == NPPST_SUCCESS, false);
    NCV_SKIP_COND_END

    //bit-to-bit check
    bool bLoopVirgin = true;

    NCV_SKIP_COND_BEGIN
    //const Ncv64f relEPS = 0.005;
    for (Ncv32u i=0; bLoopVirgin && i < h_small.height(); i++)
    {
        for (Ncv32u j=0; bLoopVirgin && j < h_small.width(); j++)
        {
            if (h_small.ptr()[h_small.stride()*i+j] != h_small_d.ptr()[h_small_d.stride()*i+j])
            {
                bLoopVirgin = false;
            }
        }
    }
    NCV_SKIP_COND_END

    if (bLoopVirgin)
    {
        rcode = true;
    }

    return rcode;
}
Exemplo n.º 8
0
bool TestIntegralImage<T_in, T_out>::process()
{
    NCVStatus ncvStat;
    bool rcode = false;

    Ncv32u widthII = this->width + 1;
    Ncv32u heightII = this->height + 1;

    NCVMatrixAlloc<T_in> d_img(*this->allocatorGPU.get(), this->width, this->height);
    ncvAssertReturn(d_img.isMemAllocated(), false);
    NCVMatrixAlloc<T_in> h_img(*this->allocatorCPU.get(), this->width, this->height);
    ncvAssertReturn(h_img.isMemAllocated(), false);
    NCVMatrixAlloc<T_out> d_imgII(*this->allocatorGPU.get(), widthII, heightII);
    ncvAssertReturn(d_imgII.isMemAllocated(), false);
    NCVMatrixAlloc<T_out> h_imgII(*this->allocatorCPU.get(), widthII, heightII);
    ncvAssertReturn(h_imgII.isMemAllocated(), false);
    NCVMatrixAlloc<T_out> h_imgII_d(*this->allocatorCPU.get(), widthII, heightII);
    ncvAssertReturn(h_imgII_d.isMemAllocated(), false);

    Ncv32u bufSize;
    if (sizeof(T_in) == sizeof(Ncv8u))
    {
        ncvStat = nppiStIntegralGetSize_8u32u(NcvSize32u(this->width, this->height), &bufSize, this->devProp);
        ncvAssertReturn(NPPST_SUCCESS == ncvStat, false);
    }
    else if (sizeof(T_in) == sizeof(Ncv32f))
    {
        ncvStat = nppiStIntegralGetSize_32f32f(NcvSize32u(this->width, this->height), &bufSize, this->devProp);
        ncvAssertReturn(NPPST_SUCCESS == ncvStat, false);
    }
    else
    {
        ncvAssertPrintReturn(false, "Incorrect integral image test instance", false);
    }

    NCVVectorAlloc<Ncv8u> d_tmpBuf(*this->allocatorGPU.get(), bufSize);
    ncvAssertReturn(d_tmpBuf.isMemAllocated(), false);

    NCV_SET_SKIP_COND(this->allocatorGPU.get()->isCounting());
    NCV_SKIP_COND_BEGIN

    ncvAssertReturn(this->src.fill(h_img), false);

    ncvStat = h_img.copySolid(d_img, 0);
    ncvAssertReturn(ncvStat == NPPST_SUCCESS, false);

    if (sizeof(T_in) == sizeof(Ncv8u))
    {
        ncvStat = nppiStIntegral_8u32u_C1R((Ncv8u *)d_img.ptr(), d_img.pitch(),
                                           (Ncv32u *)d_imgII.ptr(), d_imgII.pitch(),
                                           NcvSize32u(this->width, this->height),
                                           d_tmpBuf.ptr(), bufSize, this->devProp);
        ncvAssertReturn(ncvStat == NPPST_SUCCESS, false);
    }
    else if (sizeof(T_in) == sizeof(Ncv32f))
    {
        ncvStat = nppiStIntegral_32f32f_C1R((Ncv32f *)d_img.ptr(), d_img.pitch(),
                                            (Ncv32f *)d_imgII.ptr(), d_imgII.pitch(),
                                            NcvSize32u(this->width, this->height),
                                            d_tmpBuf.ptr(), bufSize, this->devProp);
        ncvAssertReturn(ncvStat == NPPST_SUCCESS, false);
    }
    else
    {
        ncvAssertPrintReturn(false, "Incorrect integral image test instance", false);
    }

    ncvStat = d_imgII.copySolid(h_imgII_d, 0);
    ncvAssertReturn(ncvStat == NPPST_SUCCESS, false);

    if (sizeof(T_in) == sizeof(Ncv8u))
    {
        ncvStat = nppiStIntegral_8u32u_C1R_host((Ncv8u *)h_img.ptr(), h_img.pitch(),
                                                (Ncv32u *)h_imgII.ptr(), h_imgII.pitch(),
                                                NcvSize32u(this->width, this->height));
        ncvAssertReturn(ncvStat == NPPST_SUCCESS, false);
    }
    else if (sizeof(T_in) == sizeof(Ncv32f))
    {
        ncvStat = nppiStIntegral_32f32f_C1R_host((Ncv32f *)h_img.ptr(), h_img.pitch(),
                                                 (Ncv32f *)h_imgII.ptr(), h_imgII.pitch(),
                                                 NcvSize32u(this->width, this->height));
        ncvAssertReturn(ncvStat == NPPST_SUCCESS, false);
    }
    else
    {
        ncvAssertPrintReturn(false, "Incorrect integral image test instance", false);
    }

    NCV_SKIP_COND_END

    //bit-to-bit check
    bool bLoopVirgin = true;

    NCV_SKIP_COND_BEGIN
    for (Ncv32u i=0; bLoopVirgin && i < h_img.height() + 1; i++)
    {
        for (Ncv32u j=0; bLoopVirgin && j < h_img.width() + 1; j++)
        {
            if (sizeof(T_in) == sizeof(Ncv8u))
            {
                if (h_imgII.ptr()[h_imgII.stride()*i+j] != h_imgII_d.ptr()[h_imgII_d.stride()*i+j])
                {
                    bLoopVirgin = false;
                }
            }
            else if (sizeof(T_in) == sizeof(Ncv32f))
            {
                if (fabsf((float)h_imgII.ptr()[h_imgII.stride()*i+j] - (float)h_imgII_d.ptr()[h_imgII_d.stride()*i+j]) > 0.01f)
                {
                    bLoopVirgin = false;
                }
            }
            else
            {
                ncvAssertPrintReturn(false, "Incorrect integral image test instance", false);
            }
        }
    }
    NCV_SKIP_COND_END

    if (bLoopVirgin)
    {
        rcode = true;
    }

    return rcode;
}
Exemplo n.º 9
0
bool TestHaarCascadeLoader::process()
{
    NCVStatus ncvStat;
    bool rcode = false;

    Ncv32u numStages, numNodes, numFeatures;
    Ncv32u numStages_2 = 0, numNodes_2 = 0, numFeatures_2 = 0;

    ncvStat = ncvHaarGetClassifierSize(this->cascadeName, numStages, numNodes, numFeatures);
    ncvAssertReturn(ncvStat == NCV_SUCCESS, false);

    NCVVectorAlloc<HaarStage64> h_HaarStages(*this->allocatorCPU.get(), numStages);
    ncvAssertReturn(h_HaarStages.isMemAllocated(), false);
    NCVVectorAlloc<HaarClassifierNode128> h_HaarNodes(*this->allocatorCPU.get(), numNodes);
    ncvAssertReturn(h_HaarNodes.isMemAllocated(), false);
    NCVVectorAlloc<HaarFeature64> h_HaarFeatures(*this->allocatorCPU.get(), numFeatures);
    ncvAssertReturn(h_HaarFeatures.isMemAllocated(), false);

    NCVVectorAlloc<HaarStage64> h_HaarStages_2(*this->allocatorCPU.get(), numStages);
    ncvAssertReturn(h_HaarStages_2.isMemAllocated(), false);
    NCVVectorAlloc<HaarClassifierNode128> h_HaarNodes_2(*this->allocatorCPU.get(), numNodes);
    ncvAssertReturn(h_HaarNodes_2.isMemAllocated(), false);
    NCVVectorAlloc<HaarFeature64> h_HaarFeatures_2(*this->allocatorCPU.get(), numFeatures);
    ncvAssertReturn(h_HaarFeatures_2.isMemAllocated(), false);

    HaarClassifierCascadeDescriptor haar;
    HaarClassifierCascadeDescriptor haar_2;

    NCV_SET_SKIP_COND(this->allocatorGPU.get()->isCounting());
    NCV_SKIP_COND_BEGIN

    const std::string testNvbinName = "test.nvbin";
    ncvStat = ncvHaarLoadFromFile_host(this->cascadeName, haar, h_HaarStages, h_HaarNodes, h_HaarFeatures);
    ncvAssertReturn(ncvStat == NCV_SUCCESS, false);

    ncvStat = ncvHaarStoreNVBIN_host(testNvbinName, haar, h_HaarStages, h_HaarNodes, h_HaarFeatures);
    ncvAssertReturn(ncvStat == NCV_SUCCESS, false);

    ncvStat = ncvHaarGetClassifierSize(testNvbinName, numStages_2, numNodes_2, numFeatures_2);
    ncvAssertReturn(ncvStat == NCV_SUCCESS, false);

    ncvStat = ncvHaarLoadFromFile_host(testNvbinName, haar_2, h_HaarStages_2, h_HaarNodes_2, h_HaarFeatures_2);
    ncvAssertReturn(ncvStat == NCV_SUCCESS, false);

    NCV_SKIP_COND_END

    //bit-to-bit check
    bool bLoopVirgin = true;

    NCV_SKIP_COND_BEGIN

    if (
    numStages_2 != numStages                                       ||
    numNodes_2 != numNodes                                         ||
    numFeatures_2 != numFeatures                                   ||
    haar.NumStages               != haar_2.NumStages               ||
    haar.NumClassifierRootNodes  != haar_2.NumClassifierRootNodes  ||
    haar.NumClassifierTotalNodes != haar_2.NumClassifierTotalNodes ||
    haar.NumFeatures             != haar_2.NumFeatures             ||
    haar.ClassifierSize.width    != haar_2.ClassifierSize.width    ||
    haar.ClassifierSize.height   != haar_2.ClassifierSize.height   ||
    haar.bNeedsTiltedII          != haar_2.bNeedsTiltedII          ||
    haar.bHasStumpsOnly          != haar_2.bHasStumpsOnly          )
    {
        bLoopVirgin = false;
    }
    if (memcmp(h_HaarStages.ptr(), h_HaarStages_2.ptr(), haar.NumStages * sizeof(HaarStage64)) ||
        memcmp(h_HaarNodes.ptr(), h_HaarNodes_2.ptr(), haar.NumClassifierTotalNodes * sizeof(HaarClassifierNode128)) ||
        memcmp(h_HaarFeatures.ptr(), h_HaarFeatures_2.ptr(), haar.NumFeatures * sizeof(HaarFeature64)) )
    {
        bLoopVirgin = false;
    }
    NCV_SKIP_COND_END

    if (bLoopVirgin)
    {
        rcode = true;
    }

    return rcode;
}
Exemplo n.º 10
0
bool TestDrawRects<T>::process()
{
    NCVStatus ncvStat;
    bool rcode = false;

    NCVMatrixAlloc<T> d_img(*this->allocatorGPU.get(), this->width, this->height);
    ncvAssertReturn(d_img.isMemAllocated(), false);
    NCVMatrixAlloc<T> h_img(*this->allocatorCPU.get(), this->width, this->height);
    ncvAssertReturn(h_img.isMemAllocated(), false);
    NCVMatrixAlloc<T> h_img_d(*this->allocatorCPU.get(), this->width, this->height);
    ncvAssertReturn(h_img_d.isMemAllocated(), false);

    NCVVectorAlloc<NcvRect32u> d_rects(*this->allocatorGPU.get(), this->numRects);
    ncvAssertReturn(d_rects.isMemAllocated(), false);
    NCVVectorAlloc<NcvRect32u> h_rects(*this->allocatorCPU.get(), this->numRects);
    ncvAssertReturn(h_rects.isMemAllocated(), false);

    NCV_SET_SKIP_COND(this->allocatorGPU.get()->isCounting());
    NCV_SKIP_COND_BEGIN
    ncvAssertReturn(this->src.fill(h_img), false);
    ncvStat = h_img.copySolid(d_img, 0);
    ncvAssertReturn(ncvStat == NCV_SUCCESS, false);
    ncvAssertCUDAReturn(cudaStreamSynchronize(0), false);

    //fill vector of rectangles with random rects covering the input
    NCVVectorReuse<Ncv32u> h_rects_as32u(h_rects.getSegment());
    ncvAssertReturn(h_rects_as32u.isMemReused(), false);
    ncvAssertReturn(this->src32u.fill(h_rects_as32u), false);
    for (Ncv32u i=0; i<this->numRects; i++)
    {
        h_rects.ptr()[i].x = (Ncv32u)(((1.0 * h_rects.ptr()[i].x) / RAND_MAX) * (this->width-2));
        h_rects.ptr()[i].y = (Ncv32u)(((1.0 * h_rects.ptr()[i].y) / RAND_MAX) * (this->height-2));
        h_rects.ptr()[i].width = (Ncv32u)(((1.0 * h_rects.ptr()[i].width) / RAND_MAX) * (this->width+10 - h_rects.ptr()[i].x));
        h_rects.ptr()[i].height = (Ncv32u)(((1.0 * h_rects.ptr()[i].height) / RAND_MAX) * (this->height+10 - h_rects.ptr()[i].y));
    }
    ncvStat = h_rects.copySolid(d_rects, 0);
    ncvAssertReturn(ncvStat == NCV_SUCCESS, false);
    ncvAssertCUDAReturn(cudaStreamSynchronize(0), false);

    if (sizeof(T) == sizeof(Ncv32u))
    {
        ncvStat = ncvDrawRects_32u_device((Ncv32u *)d_img.ptr(), d_img.stride(), this->width, this->height,
                                          (NcvRect32u *)d_rects.ptr(), this->numRects, this->color, 0);
    }
    else if (sizeof(T) == sizeof(Ncv8u))
    {
        ncvStat = ncvDrawRects_8u_device((Ncv8u *)d_img.ptr(), d_img.stride(), this->width, this->height,
                                         (NcvRect32u *)d_rects.ptr(), this->numRects, (Ncv8u)this->color, 0);
    }
    else
    {
        ncvAssertPrintReturn(false, "Incorrect drawrects test instance", false);
    }
    ncvAssertReturn(ncvStat == NCV_SUCCESS, false);
    NCV_SKIP_COND_END

    ncvStat = d_img.copySolid(h_img_d, 0);
    ncvAssertReturn(ncvStat == NCV_SUCCESS, false);
    ncvAssertCUDAReturn(cudaStreamSynchronize(0), false);

    NCV_SKIP_COND_BEGIN
    if (sizeof(T) == sizeof(Ncv32u))
    {
        ncvStat = ncvDrawRects_32u_host((Ncv32u *)h_img.ptr(), h_img.stride(), this->width, this->height,
                                        (NcvRect32u *)h_rects.ptr(), this->numRects, this->color);
    }
    else if (sizeof(T) == sizeof(Ncv8u))
    {
        ncvStat = ncvDrawRects_8u_host((Ncv8u *)h_img.ptr(), h_img.stride(), this->width, this->height,
                                       (NcvRect32u *)h_rects.ptr(), this->numRects, (Ncv8u)this->color);
    }
    else
    {
        ncvAssertPrintReturn(false, "Incorrect drawrects test instance", false);
    }
    ncvAssertReturn(ncvStat == NCV_SUCCESS, false);
    NCV_SKIP_COND_END

    //bit-to-bit check
    bool bLoopVirgin = true;

    NCV_SKIP_COND_BEGIN
    //const Ncv64f relEPS = 0.005;
    for (Ncv32u i=0; bLoopVirgin && i < h_img.height(); i++)
    {
        for (Ncv32u j=0; bLoopVirgin && j < h_img.width(); j++)
        {
            if (h_img.ptr()[h_img.stride()*i+j] != h_img_d.ptr()[h_img_d.stride()*i+j])
            {
                bLoopVirgin = false;
            }
        }
    }
    NCV_SKIP_COND_END

    if (bLoopVirgin)
    {
        rcode = true;
    }

    return rcode;
}
Exemplo n.º 11
0
bool TestIntegralImageSquared::process()
{
    NCVStatus ncvStat;
    bool rcode = false;

    Ncv32u widthSII = this->width + 1;
    Ncv32u heightSII = this->height + 1;

    NCVMatrixAlloc<Ncv8u> d_img(*this->allocatorGPU.get(), this->width, this->height);
    ncvAssertReturn(d_img.isMemAllocated(), false);
    NCVMatrixAlloc<Ncv8u> h_img(*this->allocatorCPU.get(), this->width, this->height);
    ncvAssertReturn(h_img.isMemAllocated(), false);
    NCVMatrixAlloc<Ncv64u> d_imgSII(*this->allocatorGPU.get(), widthSII, heightSII);
    ncvAssertReturn(d_imgSII.isMemAllocated(), false);
    NCVMatrixAlloc<Ncv64u> h_imgSII(*this->allocatorCPU.get(), widthSII, heightSII);
    ncvAssertReturn(h_imgSII.isMemAllocated(), false);
    NCVMatrixAlloc<Ncv64u> h_imgSII_d(*this->allocatorCPU.get(), widthSII, heightSII);
    ncvAssertReturn(h_imgSII_d.isMemAllocated(), false);

    Ncv32u bufSize;
    ncvStat = nppiStSqrIntegralGetSize_8u64u(NcvSize32u(this->width, this->height), &bufSize, this->devProp);
    ncvAssertReturn(NPPST_SUCCESS == ncvStat, false);
    NCVVectorAlloc<Ncv8u> d_tmpBuf(*this->allocatorGPU.get(), bufSize);
    ncvAssertReturn(d_tmpBuf.isMemAllocated(), false);

    NCV_SET_SKIP_COND(this->allocatorGPU.get()->isCounting());
    NCV_SKIP_COND_BEGIN

    ncvAssertReturn(this->src.fill(h_img), false);

    ncvStat = h_img.copySolid(d_img, 0);
    ncvAssertReturn(ncvStat == NPPST_SUCCESS, false);

    ncvStat = nppiStSqrIntegral_8u64u_C1R(d_img.ptr(), d_img.pitch(),
                                          d_imgSII.ptr(), d_imgSII.pitch(),
                                          NcvSize32u(this->width, this->height),
                                          d_tmpBuf.ptr(), bufSize, this->devProp);
    ncvAssertReturn(ncvStat == NPPST_SUCCESS, false);

    ncvStat = d_imgSII.copySolid(h_imgSII_d, 0);
    ncvAssertReturn(ncvStat == NPPST_SUCCESS, false);

    ncvStat = nppiStSqrIntegral_8u64u_C1R_host(h_img.ptr(), h_img.pitch(),
                                               h_imgSII.ptr(), h_imgSII.pitch(),
                                               NcvSize32u(this->width, this->height));
    ncvAssertReturn(ncvStat == NPPST_SUCCESS, false);

    NCV_SKIP_COND_END

    //bit-to-bit check
    bool bLoopVirgin = true;

    NCV_SKIP_COND_BEGIN
    for (Ncv32u i=0; bLoopVirgin && i < h_img.height() + 1; i++)
    {
        for (Ncv32u j=0; bLoopVirgin && j < h_img.width() + 1; j++)
        {
            if (h_imgSII.ptr()[h_imgSII.stride()*i+j] != h_imgSII_d.ptr()[h_imgSII_d.stride()*i+j])
            {
                bLoopVirgin = false;
            }
        }
    }
    NCV_SKIP_COND_END

    if (bLoopVirgin)
    {
        rcode = true;
    }

    return rcode;
}
Exemplo n.º 12
0
bool TestHypothesesFilter::process()
{
    NCVStatus ncvStat;
    bool rcode = false;

    NCVVectorAlloc<Ncv32u> h_random32u(*this->allocatorCPU.get(), this->numDstRects * sizeof(NcvRect32u) / sizeof(Ncv32u));
    ncvAssertReturn(h_random32u.isMemAllocated(), false);

    Ncv32u srcSlotSize = 2 * this->minNeighbors + 1;

    NCVVectorAlloc<NcvRect32u> h_vecSrc(*this->allocatorCPU.get(), this->numDstRects*srcSlotSize);
    ncvAssertReturn(h_vecSrc.isMemAllocated(), false);
    NCVVectorAlloc<NcvRect32u> h_vecDst_groundTruth(*this->allocatorCPU.get(), this->numDstRects);
    ncvAssertReturn(h_vecDst_groundTruth.isMemAllocated(), false);

    NCV_SET_SKIP_COND(this->allocatorCPU.get()->isCounting());

    NCV_SKIP_COND_BEGIN
    ncvAssertReturn(this->src.fill(h_random32u), false);
    Ncv32u randCnt = 0;
    Ncv64f randVal;

    for (Ncv32u i=0; i<this->numDstRects; i++)
    {
        h_vecDst_groundTruth.ptr()[i].x = i * this->canvasWidth / this->numDstRects + this->canvasWidth / (this->numDstRects * 4);
        h_vecDst_groundTruth.ptr()[i].y = i * this->canvasHeight / this->numDstRects + this->canvasHeight / (this->numDstRects * 4);
        h_vecDst_groundTruth.ptr()[i].width = this->canvasWidth / (this->numDstRects * 2);
        h_vecDst_groundTruth.ptr()[i].height = this->canvasHeight / (this->numDstRects * 2);

        Ncv32u numNeighbors = this->minNeighbors + 1 + (Ncv32u)(((1.0 * h_random32u.ptr()[i]) * (this->minNeighbors + 1)) / 0xFFFFFFFF);
        numNeighbors = (numNeighbors > srcSlotSize) ? srcSlotSize : numNeighbors;

        //fill in strong hypotheses                           (2 * ((1.0 * randVal) / 0xFFFFFFFF) - 1)
        for (Ncv32u j=0; j<numNeighbors; j++)
        {
            randVal = (1.0 * h_random32u.ptr()[randCnt++]) / 0xFFFFFFFF; randCnt = randCnt % h_random32u.length();
            h_vecSrc.ptr()[srcSlotSize * i + j].x =
                h_vecDst_groundTruth.ptr()[i].x +
                (Ncv32s)(h_vecDst_groundTruth.ptr()[i].width * this->eps * (randVal - 0.5));
            randVal = (1.0 * h_random32u.ptr()[randCnt++]) / 0xFFFFFFFF; randCnt = randCnt % h_random32u.length();
            h_vecSrc.ptr()[srcSlotSize * i + j].y =
                h_vecDst_groundTruth.ptr()[i].y +
                (Ncv32s)(h_vecDst_groundTruth.ptr()[i].height * this->eps * (randVal - 0.5));
            h_vecSrc.ptr()[srcSlotSize * i + j].width = h_vecDst_groundTruth.ptr()[i].width;
            h_vecSrc.ptr()[srcSlotSize * i + j].height = h_vecDst_groundTruth.ptr()[i].height;
        }

        //generate weak hypotheses (to be removed in processing)
        for (Ncv32u j=numNeighbors; j<srcSlotSize; j++)
        {
            randVal = (1.0 * h_random32u.ptr()[randCnt++]) / 0xFFFFFFFF; randCnt = randCnt % h_random32u.length();
            h_vecSrc.ptr()[srcSlotSize * i + j].x =
                this->canvasWidth + h_vecDst_groundTruth.ptr()[i].x +
                (Ncv32s)(h_vecDst_groundTruth.ptr()[i].width * this->eps * (randVal - 0.5));
            randVal = (1.0 * h_random32u.ptr()[randCnt++]) / 0xFFFFFFFF; randCnt = randCnt % h_random32u.length();
            h_vecSrc.ptr()[srcSlotSize * i + j].y =
                this->canvasHeight + h_vecDst_groundTruth.ptr()[i].y +
                (Ncv32s)(h_vecDst_groundTruth.ptr()[i].height * this->eps * (randVal - 0.5));
            h_vecSrc.ptr()[srcSlotSize * i + j].width = h_vecDst_groundTruth.ptr()[i].width;
            h_vecSrc.ptr()[srcSlotSize * i + j].height = h_vecDst_groundTruth.ptr()[i].height;
        }
    }

    //shuffle
    for (Ncv32u i=0; i<this->numDstRects*srcSlotSize-1; i++)
    {
        Ncv32u randValLocal = h_random32u.ptr()[randCnt++]; randCnt = randCnt % h_random32u.length();
        Ncv32u secondSwap = randValLocal % (this->numDstRects*srcSlotSize-1 - i);
        NcvRect32u tmp = h_vecSrc.ptr()[i + secondSwap];
        h_vecSrc.ptr()[i + secondSwap] = h_vecSrc.ptr()[i];
        h_vecSrc.ptr()[i] = tmp;
    }
    NCV_SKIP_COND_END

    Ncv32u numHypothesesSrc = static_cast<Ncv32u>(h_vecSrc.length());
    NCV_SKIP_COND_BEGIN
    ncvStat = ncvGroupRectangles_host(h_vecSrc, numHypothesesSrc, this->minNeighbors, this->eps, NULL);
    ncvAssertReturn(ncvStat == NCV_SUCCESS, false);
    NCV_SKIP_COND_END

    //verification
    bool bLoopVirgin = true;

    NCV_SKIP_COND_BEGIN
    if (numHypothesesSrc != this->numDstRects)
    {
        bLoopVirgin = false;
    }
    else
    {
        std::vector<NcvRect32u> tmpRects(numHypothesesSrc);
        memcpy(&tmpRects[0], h_vecSrc.ptr(), numHypothesesSrc * sizeof(NcvRect32u));
        std::sort(tmpRects.begin(), tmpRects.end());
        for (Ncv32u i=0; i<numHypothesesSrc && bLoopVirgin; i++)
        {
            if (!compareRects(tmpRects[i], h_vecDst_groundTruth.ptr()[i], this->eps))
            {
                bLoopVirgin = false;
            }
        }
    }
    NCV_SKIP_COND_END

    if (bLoopVirgin)
    {
        rcode = true;
    }

    return rcode;
}