Exemplo n.º 1
0
Node::Node(ros::NodeHandle* nh,
        const cv::Mat& visual, const cv::Mat& depth,
        image_geometry::PinholeCameraModel cam_model,
        cv::Ptr<cv::FeatureDetector> detector,
        cv::Ptr<cv::DescriptorExtractor> extractor,
        cv::Ptr<cv::DescriptorMatcher> matcher,
        const sensor_msgs::PointCloud2ConstPtr& point_cloud,
        unsigned int msg_id,
        unsigned int id,
        const cv::Mat& detection_mask):
        nh_(nh),
        msg_id_(msg_id),
        id_(id),
        cloudMessage_(*point_cloud),
        cam_model_(cam_model),
        matcher_(matcher)
{
    std::clock_t starttime=std::clock();

    ROS_FATAL_COND(detector.empty(), "No valid detector!");
    detector->detect( visual, feature_locations_2d_, detection_mask);// fill 2d locations
    ROS_INFO_STREAM_COND_NAMED(( (std::clock()-starttime) / (double)CLOCKS_PER_SEC) > 0.01, "timings", "Feature detection runtime: " << ( std::clock() - starttime ) / (double)CLOCKS_PER_SEC );
    ROS_INFO("Found %d Keypoints", (int)feature_locations_2d_.size());

    cloud_pub = nh_->advertise<sensor_msgs::PointCloud2>("/rgbdslam/batch_clouds",20);
    cloud_pub2 = nh_->advertise<sensor_msgs::PointCloud2>("/rgbdslam/my_clouds",20);

    // get pcl::Pointcloud to extract depthValues a pixel positions
    std::clock_t starttime5=std::clock();
    // TODO: This takes 0.1 seconds and is not strictly necessary
    //pcl::fromROSMsg(*point_cloud,pc);
    pcl::fromROSMsg(*point_cloud,pc_col);
    ROS_INFO_STREAM_COND_NAMED(( (std::clock()-starttime5) / (double)CLOCKS_PER_SEC) > 0.01, "timings", "projection runtime: " << ( std::clock() - starttime5 ) / (double)CLOCKS_PER_SEC );

    // project pixels to 3dPositions and create search structures for the gicp
    projectTo3D(depth, feature_locations_2d_, feature_locations_3d_,pc_col); //takes less than 0.01 sec

    std::clock_t starttime4=std::clock();
    // projectTo3d need a dense cloud to use the points.at(px.x,px.y)-Call
    ROS_INFO_STREAM_COND_NAMED(( (std::clock()-starttime4) / (double)CLOCKS_PER_SEC) > 0.01, "timings", "projection runtime: " << ( std::clock() - starttime4 ) / (double)CLOCKS_PER_SEC );

    std::clock_t starttime2=std::clock();
    extractor->compute(visual, feature_locations_2d_, feature_descriptors_); //fill feature_descriptors_ with information 
    assert(feature_locations_2d_.size() == feature_locations_3d_.size());
    ROS_INFO_STREAM_COND_NAMED(( (std::clock()-starttime2) / (double)CLOCKS_PER_SEC) > 0.01, "timings", "Feature extraction runtime: " << ( std::clock() - starttime2 ) / (double)CLOCKS_PER_SEC );
    flannIndex = NULL;

    ROS_INFO_STREAM_COND_NAMED(( (std::clock()-starttime) / (double)CLOCKS_PER_SEC) > 0.01, "timings", "constructor runtime: "<< ( std::clock() - starttime ) / (double)CLOCKS_PER_SEC  <<"sec");


}
Exemplo n.º 2
0
void GraphManager::sendAllClouds() {
    std::clock_t starttime=std::clock();
    ROS_WARN("Sending out all clouds");
    batch_processing_runs_ = true;
    tf::Transform  world2cam;
    //fill message
    rgbdslam::CloudTransforms msg;
    for (unsigned int i = 0; i < optimizer_->vertices().size(); ++i) {
        AIS::PoseGraph3D::Vertex* v = optimizer_->vertex(i);
        if(!v) {
            ROS_FATAL("Nullpointer im Graph an Position %i!", i);
            continue;
        }
        tf::Transform transform = hogman2TF(v->transformation);

        tf::Transform cam2rgb;
        cam2rgb.setRotation(tf::createQuaternionFromRPY(-1.57,0,-1.57));
        cam2rgb.setOrigin(tf::Point(0,-0.04,0));

        world2cam = cam2rgb*transform;
        ros::Time time_of_transform = ros::Time::now();
        ROS_WARN("Sending out transform %i", i);
        br_.sendTransform(tf::StampedTransform(world2cam, time_of_transform,
                                               "/openni_camera", "/batch_transform"));
        ROS_WARN("Sending out cloud %i", i);
        graph_[i].publish("/batch_transform", time_of_transform);


        graph_[i].publish2("/my_transform", time_of_transform,world2cam);
    }

    batch_processing_runs_ = false;
    emit sendFinished();
    ROS_INFO_STREAM_COND_NAMED(( (std::clock()-starttime) / (double)CLOCKS_PER_SEC) > 0.01, "timings", "function runtime: "<< ( std::clock() - starttime ) / (double)CLOCKS_PER_SEC  <<"sec");
}
Exemplo n.º 3
0
void Node::computeInliersAndError(const std::vector<cv::DMatch>& matches,
                                  const Eigen::Matrix4f& transformation,
                                  const std::vector<Eigen::Vector4f, Eigen::aligned_allocator<Eigen::Vector4f> >& origins,
                                  const std::vector<Eigen::Vector4f, Eigen::aligned_allocator<Eigen::Vector4f> >& earlier,
                                  std::vector<cv::DMatch>& inliers, //output var
                                  double& mean_error,
                                  vector<double>& errors,
                                  double squaredMaxInlierDistInM) const{ //output var

  std::clock_t starttime=std::clock();

  inliers.clear();
  errors.clear();

  vector<pair<float,int> > dists;
  std::vector<cv::DMatch> inliers_temp;

  assert(matches.size() > 0);
  mean_error = 0.0;
  for (unsigned int j = 0; j < matches.size(); j++){ //compute new error and inliers

    unsigned int this_id = matches[j].queryIdx;
    unsigned int earlier_id = matches[j].trainIdx;

    Eigen::Vector4f vec = (transformation * origins[this_id]) - earlier[earlier_id];

    double error = vec.dot(vec);

    if(error > squaredMaxInlierDistInM)
      continue; //ignore outliers
    if(!(error >= 0.0)){
      ROS_ERROR_STREAM("Transformation for error !> 0: " << transformation);
      ROS_ERROR_STREAM(error << " " << matches.size());
    }
    error = sqrt(error);
    dists.push_back(pair<float,int>(error,j));
    inliers_temp.push_back(matches[j]); //include inlier

    mean_error += error;
    errors.push_back(error);
  }

  if (inliers_temp.size()<3){ //at least the samples should be inliers
    ROS_WARN_COND(inliers_temp.size() > 3, "No inliers at all in %d matches!", matches.size()); // only warn if this checks for all initial matches
    mean_error = 1e9;
  } else {
    mean_error /= inliers_temp.size();

    // sort inlier ascending according to their error
    sort(dists.begin(),dists.end());

    inliers.resize(inliers_temp.size());
    for (unsigned int i=0; i<inliers_temp.size(); i++){
      inliers[i] = matches[dists[i].second];
    }
  }
  if(!(mean_error>0)) ROS_ERROR_STREAM("Transformation for mean error !> 0: " << transformation);
  if(!(mean_error>0)) ROS_ERROR_STREAM(mean_error << " " << inliers_temp.size());
  ROS_INFO_STREAM_COND_NAMED(( (std::clock()-starttime) / (double)CLOCKS_PER_SEC) > global_min_time_reported, "timings", __FUNCTION__ << " runtime: "<< ( std::clock() - starttime ) / (double)CLOCKS_PER_SEC  <<"sec");
}
Exemplo n.º 4
0
bool GraphManager::addEdgeToHogman(AIS::LoadedEdge3D edge, bool largeEdge) {
    std::clock_t starttime=std::clock();
    freshlyOptimized_ = false;


    AIS::PoseGraph3D::Vertex* v1 = optimizer_->vertex(edge.id1);
    AIS::PoseGraph3D::Vertex* v2 = optimizer_->vertex(edge.id2);


    // at least one vertex has to be created, assert that the transformation
    // is large enough to avoid to many vertices on the same spot
    if (!v1 || !v2) {
        if (!largeEdge) {
            ROS_INFO("edge to new vertex is to short, vertex will not be inserted");
            //return false;
        }
    }

    if (!v1) {
        v1 = optimizer_->addVertex(edge.id1, Transformation3(), Matrix6::eye(1.0));
        assert(v1);
    }
    if (!v2) {
        v2 = optimizer_->addVertex(edge.id2, Transformation3(), Matrix6::eye(1.0));
        assert(v2);
    }
    optimizer_->addEdge(v1, v2, edge.mean, edge.informationMatrix);
    ROS_INFO_STREAM_COND_NAMED(( (std::clock()-starttime) / (double)CLOCKS_PER_SEC) > 0.01, "timings", "function runtime: "<< ( std::clock() - starttime ) / (double)CLOCKS_PER_SEC  <<"sec");

    return true;

}
Exemplo n.º 5
0
std::vector<cv::DMatch> GraphManager::processNodePair(Node& new_node, Node& old_node, bool& edge_added,Eigen::Matrix4f& ransac_transform, Eigen::Matrix4f& final_trafo) {

    std::clock_t starttime=std::clock();
    const unsigned int hit_threshold = 50; // minimal number of hits to be a valid candidate for a link
    std::vector<cv::DMatch> initial_matches;
    Eigen::Matrix4f icp_trafo;
    Eigen::Matrix4f icp_trafo2;

    AIS::LoadedEdge3D edge;
    float rmse;
    new_node.findPairsFlann(old_node, &initial_matches);
    ROS_DEBUG("found %i inital matches",(int) initial_matches.size());
    if (initial_matches.size() >= hit_threshold) {
        bool valid_trafo = new_node.getRelativeTransformationTo(old_node,&initial_matches, ransac_transform, rmse, matches_);
        if (!valid_trafo) {
            ROS_INFO("GraphManager: Found no valid trafo, but had initially %d hits",(int) initial_matches.size());
            edge_added = false;
        }
        else  {


            // improve transformation by using the generalized ICP
            // std::clock_t starttime_gicp = std::clock();
            //  new_node.getRelativeTransformationTo_ICP(old_node,icp_trafo, &ransac_transform);
            //  cout << "complete time for ICP: " << ((std::clock()-starttime_gicp*1.0) / (double)CLOCKS_PER_SEC) << endl;


            //   cout << "old icp " << icp_trafo << endl;
            //   starttime_gicp = std::clock();
            //new_node.getRelativeTransformationTo_ICP2(old_node,icp_trafo2, &ransac_transform);
            //   cout << "complete time for ICP2: " << ((std::clock()-starttime_gicp*1.0) / (double)CLOCKS_PER_SEC) << endl;


            //cout << "new icp " << icp_trafo2 << endl;


            //  ROS_INFO_STREAM("zzz  icp trafo: " << endl << icp_trafo << endl);
            //  ROS_INFO_STREAM("zzz  icp trafo2: " << endl << icp_trafo2 << endl);


            final_trafo = ransac_transform ; //*icp_trafo2;


            edge.id1 = old_node.id_;//and we have a valid transformation
            edge.id2 = new_node.id_; //since there are enough matching features,
            edge.mean = eigen2Hogman(final_trafo);//we insert an edge between the frames
            edge.informationMatrix = Matrix6::eye(1.0); //TODO: What do we do about the information matrix? Scale with rmse? inlier_count)

            edge_added = addEdgeToHogman(edge, isBigTrafo(final_trafo));

            if (edge_added) {
                ROS_DEBUG("Adding Edge between %i and %i. Inlier: %i, error: %f",edge.id1,edge.id2,(int) matches_.size(),rmse);
            }
        }
    }
    ROS_INFO_STREAM_COND_NAMED(( (std::clock()-starttime) / (double)CLOCKS_PER_SEC) > 0.01, "timings", "function runtime: "<< ( std::clock() - starttime ) / (double)CLOCKS_PER_SEC  <<"sec");
    return initial_matches;
}
Exemplo n.º 6
0
// build search structure for descriptor matching
void Node::buildFlannIndex() {

    std::clock_t starttime=std::clock();

    // use same type as in http://opencv-cocoa.googlecode.com/svn/trunk/samples/c/find_obj.cpp
    flannIndex = new cv_flannIndex(feature_descriptors_,
            cv::flann::KDTreeIndexParams(4));
    ROS_INFO_STREAM_COND_NAMED(( (std::clock()-starttime) / (double)CLOCKS_PER_SEC) > 0.01, "timings", "function runtime: "<< ( std::clock() - starttime ) / (double)CLOCKS_PER_SEC  <<"sec");
}
Exemplo n.º 7
0
void Node::computeInliersAndError(const std::vector<cv::DMatch>& matches,
        const Eigen::Matrix4f& transformation,
        const std::vector<Eigen::Vector4f>& origins,
        const std::vector<Eigen::Vector4f>& earlier,
        std::vector<cv::DMatch>& inliers, //output var
        double& mean_error,vector<double>& errors,
        double squaredMaxInlierDistInM) const{ //output var

    std::clock_t starttime=std::clock();

    inliers.clear();

    vector<pair<float,int> > dists;
    std::vector<cv::DMatch> inliers_temp;

    mean_error = 0.0;
    for (unsigned int j = 0; j < matches.size(); j++){ //compute new error and inliers

        unsigned int this_id = matches[j].queryIdx;
        unsigned int earlier_id = matches[j].trainIdx;

        Eigen::Vector4f vec = (transformation * origins[this_id]) - earlier[earlier_id];
        double error = vec.dot(vec);

        if(error > squaredMaxInlierDistInM)
            continue; //ignore outliers


        error = sqrt(error);
        dists.push_back(pair<float,int>(error,j));
        inliers_temp.push_back(matches[j]); //include inlier

        mean_error += error;
        errors.push_back(error);
    }

    if (inliers_temp.size()==0){
        mean_error = -1;
        inliers = inliers_temp;
    }
    else
    {
        mean_error /= inliers_temp.size();

        // sort inlier ascending according to their error
        sort(dists.begin(),dists.end());

        inliers.resize(inliers_temp.size());
        for (unsigned int i=0; i<inliers_temp.size(); i++){
            inliers[i] = matches[dists[i].second];
        }
    }


    ROS_INFO_STREAM_COND_NAMED(( (std::clock()-starttime) / (double)CLOCKS_PER_SEC) > 0.01, "timings", "function runtime: "<< ( std::clock() - starttime ) / (double)CLOCKS_PER_SEC  <<"sec");

}
Exemplo n.º 8
0
void Node::projectTo3DSiftGPU(std::vector<cv::KeyPoint>& feature_locations_2d,
    std::vector<Eigen::Vector4f, Eigen::aligned_allocator<Eigen::Vector4f> >& feature_locations_3d,
    const pointcloud_type& point_cloud, float* descriptors_in, cv::Mat& descriptors_out){

  std::clock_t starttime=std::clock();

  cv::Point2f p2d;

  if(feature_locations_3d.size()){
    ROS_INFO("There is already 3D Information in the FrameInfo, clearing it");
    feature_locations_3d.clear();
  }

  std::list<int> featuresUsed;

  int index = -1;
  for(unsigned int i = 0; i < feature_locations_2d.size(); /*increment at end of loop*/){
    ++index;

    p2d = feature_locations_2d[i].pt;
    if (p2d.x >= point_cloud.width || p2d.x < 0 ||
        p2d.y >= point_cloud.height || p2d.y < 0 ||
        std::isnan(p2d.x) || std::isnan(p2d.y)){ //TODO: Unclear why points should be outside the image or be NaN
      ROS_WARN_STREAM("Ignoring invalid keypoint: " << p2d); //Does it happen at all? If not, remove this code block
      feature_locations_2d.erase(feature_locations_2d.begin()+i);
      continue;
    }

    point_type p3d = point_cloud.at((int) p2d.x,(int) p2d.y);

    if ( isnan(p3d.x) || isnan(p3d.y) || isnan(p3d.z)){
      feature_locations_2d.erase(feature_locations_2d.begin()+i);
      continue;
    }

    featuresUsed.push_back(index);  //save id for constructing the descriptor matrix
    feature_locations_3d.push_back(Eigen::Vector4f(p3d.x, p3d.y, p3d.z, 1.0));
    i++; //Only increment if no element is removed from vector
  }

  //create descriptor matrix
  int size = feature_locations_3d.size();
  descriptors_out = cv::Mat(size, 128, CV_32F);
  for (int y = 0; y < size && featuresUsed.size() > 0; ++y) {
    int id = featuresUsed.front();
    featuresUsed.pop_front();

    for (int x = 0; x < 128; ++x) {
      descriptors_out.at<float>(y, x) = descriptors_in[id * 128 + x];
    }
  }

  ROS_INFO_STREAM_COND_NAMED(( (std::clock()-starttime) / (double)CLOCKS_PER_SEC) > global_min_time_reported, "timings", __FUNCTION__ << " runtime: "<< ( std::clock() - starttime ) / (double)CLOCKS_PER_SEC  <<"sec");
}
Exemplo n.º 9
0
void GraphManager::visualizeGraphEdges() const {
    std::clock_t starttime=std::clock();

    if (marker_pub_.getNumSubscribers() > 0) { //no visualization for nobody
        visualization_msgs::Marker edges_marker;
        edges_marker.header.frame_id = "/openni_rgb_optical_frame"; //TODO: Should be a meaningfull fixed frame with known relative pose to the camera
        edges_marker.header.stamp = ros::Time::now();
        edges_marker.ns = "camera_pose_graph"; // Set the namespace and id for this marker.  This serves to create a unique ID
        edges_marker.id = 0;    // Any marker sent with the same namespace and id will overwrite the old one



        edges_marker.type = visualization_msgs::Marker::LINE_LIST;
        edges_marker.action = visualization_msgs::Marker::ADD; // Set the marker action.  Options are ADD and DELETE
        edges_marker.frame_locked = true; //rviz automatically retransforms the markers into the frame every update cycle
        // Set the scale of the marker -- 1x1x1 here means 1m on a side
        edges_marker.scale.x = 0.005; //line width
        //Global pose (used to transform all points)
        edges_marker.pose.position.x = 0;
        edges_marker.pose.position.y = 0;
        edges_marker.pose.position.z = 0;
        edges_marker.pose.orientation.x = 0.0;
        edges_marker.pose.orientation.y = 0.0;
        edges_marker.pose.orientation.z = 0.0;
        edges_marker.pose.orientation.w = 1.0;
        // Set the color -- be sure to set alpha to something non-zero!
        edges_marker.color.r = 1.0f;
        edges_marker.color.g = 1.0f;
        edges_marker.color.b = 1.0f;
        edges_marker.color.a = 0.5f;//looks smoother
        geometry_msgs::Point point; //start and endpoint for each line segment
        AISNavigation::PoseGraph3D::Vertex* v; //used in loop
        AISNavigation::PoseGraph3D::EdgeSet::iterator edge_iter = optimizer_->edges().begin();
        int counter = 0;
        for(; edge_iter != optimizer_->edges().end(); edge_iter++, counter++) {
            v = static_cast<AISNavigation::PoseGraph3D::Vertex*>((*edge_iter)->from());
            point.x = v->transformation.translation().x();
            point.y = v->transformation.translation().y();
            point.z = v->transformation.translation().z();
            edges_marker.points.push_back(point);
            v = static_cast<AISNavigation::PoseGraph3D::Vertex*>((*edge_iter)->to());
            point.x = v->transformation.translation().x();
            point.y = v->transformation.translation().y();
            point.z = v->transformation.translation().z();
            edges_marker.points.push_back(point);
        }

        marker_pub_.publish (edges_marker);
        ROS_INFO("published %d graph edges", counter);
    }

    ROS_INFO_STREAM_COND_NAMED(( (std::clock()-starttime) / (double)CLOCKS_PER_SEC) > 0.01, "timings", "function runtime: "<< ( std::clock() - starttime ) / (double)CLOCKS_PER_SEC  <<"sec");
}
Exemplo n.º 10
0
Transformation3 eigen2Hogman(const Eigen::Matrix4f eigen_mat) {
  std::clock_t starttime=std::clock();

  Eigen::Affine3f eigen_transform(eigen_mat);
  Eigen::Quaternionf eigen_quat(eigen_transform.rotation());
  Vector3 translation(eigen_mat(0, 3), eigen_mat(1, 3), eigen_mat(2, 3));
  Quaternion rotation(eigen_quat.x(), eigen_quat.y(), eigen_quat.z(),
      eigen_quat.w());
  Transformation3 result(translation, rotation);

  ROS_INFO_STREAM_COND_NAMED(( (std::clock()-starttime) / (double)CLOCKS_PER_SEC) > global_min_time_reported, "timings", __FUNCTION__ << " runtime: "<< ( std::clock() - starttime ) / (double)CLOCKS_PER_SEC  <<"sec");
  return result;
}
Exemplo n.º 11
0
/** Assumptions: No 3d Info available yet */
void Node::projectTo3D(const cv::Mat& depth,
        std::vector<cv::KeyPoint>& feature_locations_2d,
        std::vector<Eigen::Vector4f>& feature_locations_3d,
        const pcl::PointCloud<pcl::PointXYZRGB>& point_cloud){ //TODO: Use this instead of member "pc" or remove argument

    std::clock_t starttime=std::clock();

    cv::Point2f p2d;


    if(feature_locations_3d.size()){
        ROS_INFO("There is already 3D Information in the FrameInfo, clearing it");
        feature_locations_3d.clear();
    }


    for(unsigned int i = 0; i < feature_locations_2d.size(); /*increment at end of loop*/){
        p2d = feature_locations_2d[i].pt;
        if (p2d.x >= depth.cols || p2d.x < 0 ||  p2d.y >= depth.rows || p2d.y < 0 ||
                std::isnan(p2d.x) || std::isnan(p2d.y)){
            ROS_WARN_STREAM("Ignoring invalid keypoint: " << p2d); //Does it happen at all? If not, remove this code block
            feature_locations_2d.erase(feature_locations_2d.begin()+i);
            continue;
        }

        float depth_val = depth.at<float>((int)p2d.y, (int)p2d.x);
        if(std::isnan(depth_val) )  {//No 3d pose would be available
            ROS_DEBUG_STREAM("No depth for: " << p2d);
            feature_locations_2d.erase(feature_locations_2d.begin()+i);
            continue;
        }

        pcl::PointXYZRGB p3d = point_cloud.at((int) p2d.x,(int) p2d.y);

        // Todo: should not happen
        if ( isnan(p3d.x) || isnan(p3d.y) || isnan(p3d.z)){
            // ROS_INFO("nan in pointcloud! %f, %f",p2d.x, p2d.y);
            feature_locations_2d.erase(feature_locations_2d.begin()+i);
            continue;
        }


        feature_locations_3d.push_back(Eigen::Vector4f(p3d.x, p3d.y, p3d.z, 1.0));
        i++; //Only increment if no element is removed from vector
    }



    ROS_INFO_STREAM_COND_NAMED(( (std::clock()-starttime) / (double)CLOCKS_PER_SEC) > 0.01, "timings", "function runtime: "<< ( std::clock() - starttime ) / (double)CLOCKS_PER_SEC  <<"sec");

}
Exemplo n.º 12
0
void Node::createGICPStructures(unsigned int max_count){

  gicp_point_set = new dgc::gicp::GICPPointSet();

  dgc::gicp::GICPPoint g_p;
  g_p.range = -1;
  for(int k = 0; k < 3; k++) {
    for(int l = 0; l < 3; l++) {
      g_p.C[k][l] = (k == l)?1:0;
    }
  }

  int step = 1;
  if (pc_col.points.size()>max_count)
    step = ceil(pc_col.points.size()*1.0/max_count);

  int cnt = 0;
  for (unsigned int i=0; i<pc_col.points.size(); i++ ){
    point_type  p = pc_col.points.at(i);
    if (!(isnan(p.x) || isnan(p.y) || isnan(p.z))) {
      // add points to pointset for icp
      if (cnt++%step == 0){
        g_p.x=p.x;
        g_p.y=p.y;
        g_p.z=p.z;
        gicp_point_set->AppendPoint(g_p);
      }
    }
  }
  ROS_WARN("gicp_point_set.Size() %i", gicp_point_set->Size() );


  std::clock_t starttime_gicp = std::clock();
  // build search structure for gicp:
  gicp_point_set->SetDebug(false);
  gicp_point_set->SetGICPEpsilon(gicp_epsilon);
  gicp_point_set->BuildKDTree();
  gicp_point_set->ComputeMatrices();
  gicp_point_set->SetMaxIterationInner(8); // as in test_gicp->cpp
  gicp_point_set->SetMaxIteration(gicp_max_iterations);
  ROS_INFO_STREAM_COND_NAMED(( (std::clock()-starttime_gicp) / (double)CLOCKS_PER_SEC) > global_min_time_reported, "timings", __FUNCTION__ << " runtime to create gicp-Structures: "<< ( std::clock() - starttime_gicp ) / (double)CLOCKS_PER_SEC  <<"sec");

  ROS_INFO_STREAM("time for creating the structure: " << ((std::clock()-starttime_gicp*1.0) / (double)CLOCKS_PER_SEC));
  ROS_INFO_STREAM("current: " << std::clock() << " " << "start_time: " << starttime_gicp);

  gicp_initialized = true;

}
Exemplo n.º 13
0
//TODO: This function seems to be resistant to paralellization probably due to knnSearch
int Node::findPairsFlann(const Node* other, vector<cv::DMatch>* matches) const {
  std::clock_t starttime=std::clock();
  assert(matches->size()==0);

  if (other->flannIndex == NULL) {
    ROS_FATAL("Node %i in findPairsFlann: flann Index of Node %i was not initialized", this->id_, other->id_);
    return -1;
  }

  // number of neighbours found (has to be two, see l. 57)
  const int k = 2;

  // compare
  // http://opencv-cocoa.googlecode.com/svn/trunk/samples/c/find_obj.cpp
  cv::Mat indices(feature_descriptors_.rows, k, CV_32S);
  cv::Mat dists(feature_descriptors_.rows, k, CV_32F);

  //ROS_INFO("find flann pairs: feature_descriptor (rows): %i", feature_descriptors_.rows);

  // get the best two neighbours
  other->flannIndex->knnSearch(feature_descriptors_, indices, dists, k,
      cv::flann::SearchParams(64));

  int* indices_ptr = indices.ptr<int> (0);
  float* dists_ptr = dists.ptr<float> (0);

  cv::DMatch match;
  for (int i = 0; i < indices.rows; ++i) {
    if (dists_ptr[2 * i] < 0.6 * dists_ptr[2 * i + 1]) {
      match.queryIdx = i;
      match.trainIdx = indices_ptr[2 * i];
      match.distance = dists_ptr[2 * i];

      assert(match.trainIdx < other->feature_descriptors_.rows);
      assert(match.queryIdx < feature_descriptors_.rows);

      matches->push_back(match);
    }
  }

  //ROS_INFO("matches size: %i, rows: %i", (int) matches->size(), feature_descriptors_.rows);

  ROS_INFO_STREAM_COND_NAMED(( (std::clock()-starttime) / (double)CLOCKS_PER_SEC) > global_min_time_reported, "timings", "findPairsFlann runtime: "<< ( std::clock() - starttime ) / (double)CLOCKS_PER_SEC  <<"sec");
  return matches->size();
}
Exemplo n.º 14
0
int Node::findPairsFlann(Node& other, vector<cv::DMatch>* matches) {

    std::clock_t starttime=std::clock();

    assert(matches->size()==0);

    if (other.flannIndex == NULL) {
        ROS_FATAL("Node::findpairs: flann Index was not initialized");
        return -1;
    }

    // number of neighbours found (has to be two, see l. 57)
    int k = 2;

    // compare
    // http://opencv-cocoa.googlecode.com/svn/trunk/samples/c/find_obj.cpp
    cv::Mat indices(feature_descriptors_.rows, k, CV_32S);
    cv::Mat dists(feature_descriptors_.rows, k, CV_32F);


    // get the best two neighbours
    other.flannIndex->knnSearch(feature_descriptors_, indices, dists, k,
            cv::flann::SearchParams(64));

    int* indices_ptr = indices.ptr<int> (0);
    float* dists_ptr = dists.ptr<float> (0);

    cv::DMatch match;
    for (int i = 0; i < indices.rows; ++i) {

        if (dists_ptr[2 * i] < 0.6 * dists_ptr[2 * i + 1]) {
// && abs(feature_locations_2d_[i].pt.y-other.feature_locations_2d_[indices_ptr[2 * i]].pt.y)<10000000) {
//        std::cerr<<feature_locations_2d_[i].pt.y<<","<<other.feature_locations_2d_[indices_ptr[2 * i]].pt.y <<endl;
            match.queryIdx = i;
            match.trainIdx = indices_ptr[2 * i];
            match.distance = dists_ptr[2 * i];

            matches->push_back(match);
        }
    }

    ROS_INFO_STREAM_COND_NAMED(( (std::clock()-starttime) / (double)CLOCKS_PER_SEC) > 0.01, "timings", "function runtime: "<< ( std::clock() - starttime ) / (double)CLOCKS_PER_SEC  <<"sec");

    return matches->size();
}
Exemplo n.º 15
0
/**
 * Publish the updated transforms for the graph node resp. clouds
 */
void GraphManager::publishCorrectedTransforms() {
    std::clock_t starttime=std::clock();
    //fill message
    rgbdslam::CloudTransforms msg;
    for (unsigned int i = 0; i < optimizer_->vertices().size(); ++i) {
        AIS::PoseGraph3D::Vertex* v = optimizer_->vertex(i);
        tf::Transform trans = hogman2TF(v->transformation);
        geometry_msgs::Transform trans_msg;
        tf::transformTFToMsg(trans,trans_msg);
        msg.transforms.push_back(trans_msg);
        msg.ids.push_back(graph_[i].msg_id_);
    }
    msg.header.stamp = ros::Time::now();

    if (transform_pub_.getNumSubscribers() > 0)
        transform_pub_.publish(msg);
    ROS_INFO_STREAM_COND_NAMED(( (std::clock()-starttime) / (double)CLOCKS_PER_SEC) > 0.01, "timings", "function runtime: "<< ( std::clock() - starttime ) / (double)CLOCKS_PER_SEC  <<"sec");
}
Exemplo n.º 16
0
void GraphManager::drawFeatureFlow(cv::Mat& canvas,
                                   cv::Scalar line_color,
                                   cv::Scalar circle_color) {
    std::clock_t starttime=std::clock();
    ROS_DEBUG("Number of features to draw: %d", (int)matches_.size());

    const double pi_fourth = 3.14159265358979323846 / 4.0;
    const int line_thickness = 1;
    const int circle_radius = 6;
    if(graph_.size() < 2) return; //feature flow is only available between at least two nodes

    Node& earliernode = graph_[0];//graph_.size()-2; //compare current to previous
    Node& newernode = graph_[graph_.size()-1];

    for(unsigned int mtch = 0; mtch < matches_.size(); mtch++) {
        cv::Point2f p,q; //TODO: Use sub-pixel-accuracy
        unsigned int newer_idx = matches_[mtch].queryIdx;
        unsigned int earlier_idx = matches_[mtch].trainIdx;
        q = newernode.feature_locations_2d_[newer_idx].pt;
        p = earliernode.feature_locations_2d_[earlier_idx].pt;

        double angle;
        angle = atan2( (double) p.y - q.y, (double) p.x - q.x );
        double hypotenuse;
        hypotenuse = cv::norm(p-q);
        if(hypotenuse < 1.5) { //encircle near-stationary points
            cv::line(canvas, p, q, line_color, line_thickness, 8);
            cv::circle(canvas, p, circle_radius, circle_color, line_thickness, 8);
        } else { /* Connect the points */
            cv::line( canvas, p, q, line_color, line_thickness, 8 );
            /* Now draw the tips of the arrow.  */
            p.x =  (q.x + 4 * cos(angle + pi_fourth));
            p.y =  (q.y + 4 * sin(angle + pi_fourth));
            cv::line( canvas, p, q, line_color, line_thickness, 8 );
            p.x =  (q.x + 4 * cos(angle - pi_fourth));
            p.y =  (q.y + 4 * sin(angle - pi_fourth));
            cv::line( canvas, p, q, line_color, line_thickness, 8 );
        }
    }
    ROS_INFO_STREAM_COND_NAMED(( (std::clock()-starttime) / (double)CLOCKS_PER_SEC) > 0.01, "timings", "function runtime: "<< ( std::clock() - starttime ) / (double)CLOCKS_PER_SEC  <<"sec");
}
Exemplo n.º 17
0
void Node::projectTo3D(std::vector<cv::KeyPoint>& feature_locations_2d,
    std::vector<Eigen::Vector4f, Eigen::aligned_allocator<Eigen::Vector4f> >& feature_locations_3d,
    const pointcloud_type& point_cloud){

  std::clock_t starttime=std::clock();

  cv::Point2f p2d;

  if(feature_locations_3d.size()){
    ROS_INFO("There is already 3D Information in the FrameInfo, clearing it");
    feature_locations_3d.clear();
  }

  for(unsigned int i = 0; i < feature_locations_2d.size(); /*increment at end of loop*/){
    p2d = feature_locations_2d[i].pt;
    if (p2d.x >= point_cloud.width || p2d.x < 0 ||
        p2d.y >= point_cloud.height || p2d.y < 0 ||
        std::isnan(p2d.x) || std::isnan(p2d.y)){ //TODO: Unclear why points should be outside the image or be NaN
      ROS_WARN_STREAM("Ignoring invalid keypoint: " << p2d); //Does it happen at all? If not, remove this code block
      feature_locations_2d.erase(feature_locations_2d.begin()+i);
      continue;
    }

    point_type p3d = point_cloud.at((int) p2d.x,(int) p2d.y);

    //ROS_INFO("3d: %f, %f, %f, 2d: %f, %f", p3d.x, p3d.y, p3d.z, p2d.x, p2d.y);

    if ( isnan(p3d.x) || isnan(p3d.y) || isnan(p3d.z)){
      feature_locations_2d.erase(feature_locations_2d.begin()+i);
      continue;
    }

    feature_locations_3d.push_back(Eigen::Vector4f(p3d.x, p3d.y, p3d.z, 1.0));
    i++; //Only increment if no element is removed from vector
  }



  ROS_INFO_STREAM_COND_NAMED(( (std::clock()-starttime) / (double)CLOCKS_PER_SEC) > global_min_time_reported, "timings", __FUNCTION__ << " runtime: "<< ( std::clock() - starttime ) / (double)CLOCKS_PER_SEC  <<"sec");
}
Exemplo n.º 18
0
tf::Transform hogman2TF(const Transformation3 hogman_trans) {
    std::clock_t starttime=std::clock();

    tf::Transform result;
    tf::Vector3 translation;
    translation.setX(hogman_trans.translation().x());
    translation.setY(hogman_trans.translation().y());
    translation.setZ(hogman_trans.translation().z());

    tf::Quaternion rotation;
    rotation.setX(hogman_trans.rotation().x());
    rotation.setY(hogman_trans.rotation().y());
    rotation.setZ(hogman_trans.rotation().z());
    rotation.setW(hogman_trans.rotation().w());

    result.setOrigin(translation);
    result.setRotation(rotation);
    return result;

    ROS_INFO_STREAM_COND_NAMED(( (std::clock()-starttime) / (double)CLOCKS_PER_SEC) > 0.01, "timings", "function runtime: "<< ( std::clock() - starttime ) / (double)CLOCKS_PER_SEC  <<"sec");

}
Exemplo n.º 19
0
GraphManager::GraphManager(ros::NodeHandle nh) :
    freshlyOptimized_(false),
    nh_(nh), time_of_last_transform_(ros::Time()),
    optimizer_(0), reset_request_(false),
    last_batch_update_(std::clock()),
    marker_id(0),
    batch_processing_runs_(false)
{
    std::clock_t starttime=std::clock();

    int numLevels = 3;
    int nodeDistance = 2;
    optimizer_ = new AIS::HCholOptimizer3D(numLevels, nodeDistance);
    marker_pub_ = nh.advertise<visualization_msgs::Marker>("camera_pose_graph", 1);
    kinect_transform_.setRotation(tf::Quaternion::getIdentity());
    timer_ = nh.createTimer(ros::Duration(0.1), &GraphManager::broadcastTransform, this);
    transform_pub_ = nh.advertise<rgbdslam::CloudTransforms>("/rgbdslam/transforms", 1);

    ransac_marker_pub_ = nh.advertise<visualization_msgs::Marker>("visualization_marker", 10);

    ROS_INFO_STREAM_COND_NAMED(( (std::clock()-starttime) / (double)CLOCKS_PER_SEC) > 0.01, "timings", "function runtime: "<< ( std::clock() - starttime ) / (double)CLOCKS_PER_SEC  <<"sec");
}
Exemplo n.º 20
0
void GraphManager::optimizeGraph() {
    std::clock_t starttime=std::clock();
    const int iterations = 10;
    int currentIt = optimizer_->optimize(iterations, true);

    double chi2 = optimizer_->chi2();
    ROS_INFO_STREAM("nodes= " << optimizer_->vertices().size() << "\t edges= "
                    << optimizer_->edges().size() << "\t chi2= " << chi2
                    << "\t iterations= " << currentIt);

    freshlyOptimized_ = true;

    AISNavigation::PoseGraph3D::Vertex* v = optimizer_->vertex(optimizer_->vertices().size()-1);
    kinect_transform_ =  hogman2TF(v->transformation);

    //publish the corrected transforms to the visualization module every five seconds
    if( ((std::clock()-last_batch_update_) / (double)CLOCKS_PER_SEC) > 2) {
        publishCorrectedTransforms();
        last_batch_update_ = std::clock();
    }

    ROS_INFO_STREAM_COND_NAMED(( (std::clock()-starttime) / (double)CLOCKS_PER_SEC) > 0.01, "timings", "function runtime: "<< ( std::clock() - starttime ) / (double)CLOCKS_PER_SEC  <<"sec");
}
Exemplo n.º 21
0
// returns true, iff node could be added to the cloud
bool GraphManager::addNode(Node new_node) {


    std::clock_t starttime=std::clock();
    if(reset_request_) {
        int numLevels = 3;
        int nodeDistance = 2;
        marker_id =0;
        time_of_last_transform_= ros::Time();
        last_batch_update_=std::clock();
        delete optimizer_;
        optimizer_ = new AIS::HCholOptimizer3D(numLevels, nodeDistance);
        graph_.clear();
        matches_.clear();
        freshlyOptimized_= false;
        reset_request_ = false;
    }


    if (new_node.feature_locations_2d_.size() <= 5) {
        ROS_DEBUG("found only %i features on image, node is not included",(int)new_node.feature_locations_2d_.size());
        return false;
    }

    //set the node id only if the node is actually added to the graph
    //needs to be done here as the graph size can change inside this function
    new_node.id_ = graph_.size();

    //First Node, so only build its index, insert into storage and add a
    //vertex at the origin, of which the position is very certain
    if (graph_.size()==0) {
        new_node.buildFlannIndex(); // create index so that next nodes can use it

//        graph_.insert(make_pair(new_node.id_, new_node)); //store
        graph_[new_node.id_] = new_node;
        optimizer_->addVertex(0, Transformation3(), 1e9*Matrix6::eye(1.0)); //fix at origin
        return true;
    }


    unsigned int num_edges_before = optimizer_->edges().size();


    std::vector<cv::DMatch> initial_matches;
    ROS_DEBUG("Graphsize: %d", (int) graph_.size());
    marker_id = 0; //overdraw old markers


    Eigen::Matrix4f ransac_trafo, final_trafo;

    bool edge_added_to_base;
    std::vector<int> vertices_to_comp = getPotentialEdgeTargets(new_node, -1); //vernetzungsgrad
    int id_of_id = vertices_to_comp.size() -1;
    for (; id_of_id >=0; id_of_id--) { //go from the back, so the last comparison is with the first node. The last comparison is visualized.
        initial_matches = processNodePair(new_node, graph_[vertices_to_comp[id_of_id]],edge_added_to_base,ransac_trafo, final_trafo);
        //initial_matches = processNodePair(new_node, graph_rit->second);
        //What if the node has not been added? visualizeFeatureFlow3D(graph_rit->second, new_node, initial_matches, matches_, marker_id++);
    }
    id_of_id++;//set back to last valid id

    if (optimizer_->edges().size() > num_edges_before) {

        new_node.buildFlannIndex();
        graph_[new_node.id_] = new_node;

        ROS_DEBUG("Added Node, new Graphsize: %i", (int) graph_.size());

        optimizeGraph();
        //make the transform of the last node known
        ros::TimerEvent unused;
        broadcastTransform(unused);
        visualizeGraphEdges();
        visualizeGraphNodes();
        visualizeFeatureFlow3D(graph_[vertices_to_comp[id_of_id]], new_node, initial_matches, matches_, marker_id++);
    } else {
        ROS_WARN("##### could not find link for PointCloud!");
        matches_.clear();
    }
    ROS_INFO_STREAM_COND_NAMED(( (std::clock()-starttime) / (double)CLOCKS_PER_SEC) > 0.01, "timings", "function runtime: "<< ( std::clock() - starttime ) / (double)CLOCKS_PER_SEC  <<"sec");
    return (optimizer_->edges().size() > num_edges_before);
}
Exemplo n.º 22
0
///Find transformation with largest support, RANSAC style.
///Return false if no transformation can be found
bool Node::getRelativeTransformationTo(const Node& earlier_node,
        std::vector<cv::DMatch>* initial_matches,
        Eigen::Matrix4f& resulting_transformation,
        float& rmse,
        std::vector<cv::DMatch>& matches, //for visualization?
        unsigned int min_inlier_threshold,
        unsigned int ransac_iterations) const{

    std::clock_t starttime=std::clock();

    assert(initial_matches != NULL);



    matches.clear();
    std::vector<cv::DMatch> inlier; //holds those feature correspondences that support the transformation
    if(initial_matches->size() <= min_inlier_threshold){
        ROS_DEBUG("Only %d feature matches between frames %d and %d",(int)initial_matches->size() , this->id_, earlier_node.id_);
        return false;
    }

    double inlier_error; //all squared errors
    srand((long)std::clock());
    pcl::TransformationFromCorrespondences tfc;

    // a point is an inlier if it's no more than max_dist_m m from its partner apart
    float max_dist_m = 0.02;

    unsigned int n_iter = 0;

    vector<double> errors;
    vector<double> temp_errorsA;

    double best_error = 1e6;

    int valid_iterations = 0;

    unsigned int good_inlier_cnt = min(20,int(initial_matches->size()*0.2));

    for (; n_iter < ransac_iterations; n_iter++) {
        tfc.reset();

        // chose randomly from the correspondences:
        int sample_size = 3;

        // TODO: assert that no point is drawn twice
        for (int k = 0; k < sample_size; k++) {
            int id = rand() % initial_matches->size();

            int this_id = initial_matches->at(id).queryIdx;
            int earlier_id = initial_matches->at(id).trainIdx;

            Eigen::Vector3f from(this->feature_locations_3d_[this_id][0],
                    this->feature_locations_3d_[this_id][1],
                    this->feature_locations_3d_[this_id][2]);
            Eigen::Vector3f  to (earlier_node.feature_locations_3d_[earlier_id][0],
                    earlier_node.feature_locations_3d_[earlier_id][1],
                    earlier_node.feature_locations_3d_[earlier_id][2]);
            tfc.add(from, to);
        }

        // get relative movement from samples
        Eigen::Matrix4f transformation = tfc.getTransformation().matrix();

        computeInliersAndError(*initial_matches, transformation,
                this->feature_locations_3d_,
                earlier_node.feature_locations_3d_,
                inlier, inlier_error, temp_errorsA, max_dist_m*max_dist_m);


        if (inlier.size() < good_inlier_cnt || inlier_error > max_dist_m)
            continue;
        ///Iterations with more than half of the initial_matches inlying, count twice
        if (inlier.size() > initial_matches->size()*0.5)
            n_iter++;
        ///Iterations with more than 80% of the initial_matches inlying, count threefold
        if (inlier.size() > initial_matches->size()*0.8)
            n_iter++;


        valid_iterations++;

        assert(inlier_error>0);

        if (inlier_error < best_error  )
        {

            resulting_transformation = transformation;
            matches = inlier;
            assert(matches.size()>= good_inlier_cnt);

            rmse = inlier_error;
            errors = temp_errorsA;

            best_error = inlier_error;
        }


        int max_ndx = min((int) good_inlier_cnt,30);

        double new_inlier_error;

        // compute new trafo from inliers:
        for (int k = 0; k < sample_size; k++) {
            int id = rand() % max_ndx;

            int this_id = inlier[id].queryIdx;
            int earlier_id = inlier[id].trainIdx;

            Eigen::Vector3f from(this->feature_locations_3d_[this_id][0],
                    this->feature_locations_3d_[this_id][1],
                    this->feature_locations_3d_[this_id][2]);
            Eigen::Vector3f  to (earlier_node.feature_locations_3d_[earlier_id][0],
                    earlier_node.feature_locations_3d_[earlier_id][1],
                    earlier_node.feature_locations_3d_[earlier_id][2]);
            tfc.add(from, to);
        }

        // get relative movement from samples
        transformation = tfc.getTransformation().matrix();

        computeInliersAndError(*initial_matches, transformation,
                this->feature_locations_3d_,
                earlier_node.feature_locations_3d_,
                inlier, new_inlier_error, temp_errorsA, max_dist_m*max_dist_m);

        if (inlier.size() < good_inlier_cnt || new_inlier_error > max_dist_m)
            continue;

        assert(new_inlier_error>0);

        if (new_inlier_error < best_error  )
        {
            resulting_transformation = transformation;
            matches = inlier;

            assert(matches.size()>= good_inlier_cnt);
            rmse = new_inlier_error;
            errors = temp_errorsA;

            best_error = new_inlier_error;
        }

    } //iterations


    ROS_DEBUG("asd %i good iterations, inlier percentage %i, inlier cnt: %i ",valid_iterations, (int) (matches.size()*1.0/initial_matches->size()*100),(int) matches.size());
    ROS_DEBUG("asd time: %.2f, error: %.3f cm",( std::clock() - starttime ) / (double)CLOCKS_PER_SEC, rmse*100 );

    for (unsigned int i=0; i < errors.size(); i++){
        // ROS_INFO("asd error(%i) = %.4f cm",i,errors.at(i)*100);
    }


    ROS_INFO_STREAM_COND_NAMED(( (std::clock()-starttime) / (double)CLOCKS_PER_SEC) > 0.01, "timings", "function runtime: "<< ( std::clock() - starttime ) / (double)CLOCKS_PER_SEC  <<"sec");


    return (matches.size() > 0);
}
Exemplo n.º 23
0
void GraphManager::visualizeFeatureFlow3D(const Node& earlier_node,
        const Node& newer_node,
        const std::vector<cv::DMatch>& all_matches,
        const std::vector<cv::DMatch>& inlier_matches,
        unsigned int marker_id,
        bool draw_outlier) const {
    std::clock_t starttime=std::clock();
    if (ransac_marker_pub_.getNumSubscribers() > 0) { //don't visualize, if nobody's looking

        visualization_msgs::Marker marker_lines;

        marker_lines.header.frame_id = "/openni_rgb_optical_frame";
        marker_lines.ns = "ransac_markers";
        marker_lines.header.stamp = ros::Time::now();
        marker_lines.action = visualization_msgs::Marker::ADD;
        marker_lines.pose.orientation.w = 1.0;
        marker_lines.id = marker_id;
        marker_lines.type = visualization_msgs::Marker::LINE_LIST;
        marker_lines.scale.x = 0.002;

        std_msgs::ColorRGBA color_red  ;  //red outlier
        color_red.r = 1.0;
        color_red.a = 1.0;
        std_msgs::ColorRGBA color_green;  //green inlier, newer endpoint
        color_green.g = 1.0;
        color_green.a = 1.0;
        std_msgs::ColorRGBA color_yellow;  //yellow inlier, earlier endpoint
        color_yellow.r = 1.0;
        color_yellow.g = 1.0;
        color_yellow.a = 1.0;
        std_msgs::ColorRGBA color_blue  ;  //red-blue outlier
        color_blue.b = 1.0;
        color_blue.a = 1.0;

        marker_lines.color = color_green; //just to set the alpha channel to non-zero

        AISNavigation::PoseGraph3D::Vertex* earlier_v; //used to get the transform
        AISNavigation::PoseGraph3D::Vertex* newer_v; //used to get the transform
        AISNavigation::PoseGraph3D::VertexIDMap v_idmap = optimizer_->vertices();
        // end of initialization
        ROS_DEBUG("Matches Visualization start");

        // write all inital matches to the line_list
        marker_lines.points.clear();//necessary?

        if (draw_outlier)
        {
            for (unsigned int i=0; i<all_matches.size(); i++) {
                int newer_id = all_matches.at(i).queryIdx; //feature id in newer node
                int earlier_id = all_matches.at(i).trainIdx; //feature id in earlier node

                earlier_v = static_cast<AISNavigation::PoseGraph3D::Vertex*>(v_idmap[earlier_node.id_]);
                newer_v = static_cast<AISNavigation::PoseGraph3D::Vertex*>(v_idmap[newer_node.id_]);

                //Outliers are red (newer) to blue (older)
                marker_lines.colors.push_back(color_red);
                marker_lines.colors.push_back(color_blue);

                marker_lines.points.push_back(
                    pointInWorldFrame(newer_node.feature_locations_3d_[newer_id],
                                      newer_v->transformation));
                marker_lines.points.push_back(
                    pointInWorldFrame(earlier_node.feature_locations_3d_[earlier_id],
                                      earlier_v->transformation));
            }
        }


        for (unsigned int i=0; i<inlier_matches.size(); i++) {
            int newer_id = inlier_matches.at(i).queryIdx; //feature id in newer node
            int earlier_id = inlier_matches.at(i).trainIdx; //feature id in earlier node

            earlier_v = static_cast<AISNavigation::PoseGraph3D::Vertex*>(v_idmap[earlier_node.id_]);
            newer_v = static_cast<AISNavigation::PoseGraph3D::Vertex*>(v_idmap[newer_node.id_]);


            //inliers are green (newer) to blue (older)
            marker_lines.colors.push_back(color_green);
            marker_lines.colors.push_back(color_blue);

            marker_lines.points.push_back(
                pointInWorldFrame(newer_node.feature_locations_3d_[newer_id],
                                  newer_v->transformation));
            marker_lines.points.push_back(
                pointInWorldFrame(earlier_node.feature_locations_3d_[earlier_id],
                                  earlier_v->transformation));
        }



        ransac_marker_pub_.publish(marker_lines);
        ROS_DEBUG_STREAM("Published  " << marker_lines.points.size()/2 << " lines");
    }
    ROS_INFO_STREAM_COND_NAMED(( (std::clock()-starttime) / (double)CLOCKS_PER_SEC) > 0.01, "timings", "function runtime: "<< ( std::clock() - starttime ) / (double)CLOCKS_PER_SEC  <<"sec");
}
Exemplo n.º 24
0
void GraphManager::visualizeGraphNodes() const {
    std::clock_t starttime=std::clock();

    if (marker_pub_.getNumSubscribers() > 0) { //don't visualize, if nobody's looking
        visualization_msgs::Marker nodes_marker;
        nodes_marker.header.frame_id = "/openni_rgb_optical_frame"; //TODO: Should be a meaningfull fixed frame with known relative pose to the camera
        nodes_marker.header.stamp = ros::Time::now();
        nodes_marker.ns = "camera_pose_graph"; // Set the namespace and id for this marker.  This serves to create a unique ID
        nodes_marker.id = 1;    // Any marker sent with the same namespace and id will overwrite the old one


        nodes_marker.type = visualization_msgs::Marker::LINE_LIST;
        nodes_marker.action = visualization_msgs::Marker::ADD; // Set the marker action.  Options are ADD and DELETE
        nodes_marker.frame_locked = true; //rviz automatically retransforms the markers into the frame every update cycle
        // Set the scale of the marker -- 1x1x1 here means 1m on a side
        nodes_marker.scale.x = 0.002;
        //Global pose (used to transform all points) //TODO: is this the default pose anyway?
        nodes_marker.pose.position.x = 0;
        nodes_marker.pose.position.y = 0;
        nodes_marker.pose.position.z = 0;
        nodes_marker.pose.orientation.x = 0.0;
        nodes_marker.pose.orientation.y = 0.0;
        nodes_marker.pose.orientation.z = 0.0;
        nodes_marker.pose.orientation.w = 1.0;
        // Set the color -- be sure to set alpha to something non-zero!
        nodes_marker.color.r = 1.0f;
        nodes_marker.color.g = 0.0f;
        nodes_marker.color.b = 0.0f;
        nodes_marker.color.a = 1.0f;


        geometry_msgs::Point tail; //same startpoint for each line segment
        geometry_msgs::Point tip;  //different endpoint for each line segment
        std_msgs::ColorRGBA arrow_color_red  ;  //red x axis
        arrow_color_red.r = 1.0;
        arrow_color_red.a = 1.0;
        std_msgs::ColorRGBA arrow_color_green;  //green y axis
        arrow_color_green.g = 1.0;
        arrow_color_green.a = 1.0;
        std_msgs::ColorRGBA arrow_color_blue ;  //blue z axis
        arrow_color_blue.b = 1.0;
        arrow_color_blue.a = 1.0;
        Vector3f origin(0.0,0.0,0.0);
        Vector3f x_axis(0.2,0.0,0.0); //20cm long axis for the first (almost fixed) node
        Vector3f y_axis(0.0,0.2,0.0);
        Vector3f z_axis(0.0,0.0,0.2);
        Vector3f tmp; //the transformed endpoints
        int counter = 0;
        AISNavigation::PoseGraph3D::Vertex* v; //used in loop
        AISNavigation::PoseGraph3D::VertexIDMap::iterator vertex_iter = optimizer_->vertices().begin();
        for(/*see above*/; vertex_iter != optimizer_->vertices().end(); vertex_iter++, counter++) {
            v = static_cast<AISNavigation::PoseGraph3D::Vertex*>((*vertex_iter).second);
            //v->transformation.rotation().x()+ v->transformation.rotation().y()+ v->transformation.rotation().z()+ v->transformation.rotation().w();
            tmp = v->transformation * origin;
            tail.x = tmp.x();
            tail.y = tmp.y();
            tail.z = tmp.z();
            //Endpoints X-Axis
            nodes_marker.points.push_back(tail);
            nodes_marker.colors.push_back(arrow_color_red);
            tmp = v->transformation * x_axis;
            tip.x  = tmp.x();
            tip.y  = tmp.y();
            tip.z  = tmp.z();
            nodes_marker.points.push_back(tip);
            nodes_marker.colors.push_back(arrow_color_red);
            //Endpoints Y-Axis
            nodes_marker.points.push_back(tail);
            nodes_marker.colors.push_back(arrow_color_green);
            tmp = v->transformation * y_axis;
            tip.x  = tmp.x();
            tip.y  = tmp.y();
            tip.z  = tmp.z();
            nodes_marker.points.push_back(tip);
            nodes_marker.colors.push_back(arrow_color_green);
            //Endpoints Z-Axis
            nodes_marker.points.push_back(tail);
            nodes_marker.colors.push_back(arrow_color_blue);
            tmp = v->transformation * z_axis;
            tip.x  = tmp.x();
            tip.y  = tmp.y();
            tip.z  = tmp.z();
            nodes_marker.points.push_back(tip);
            nodes_marker.colors.push_back(arrow_color_blue);
            //shorten all nodes after the first one
            x_axis.x() = 0.1;
            y_axis.y() = 0.1;
            z_axis.z() = 0.1;
        }

        marker_pub_.publish (nodes_marker);
        ROS_INFO("published %d graph nodes", counter);
    }

    ROS_INFO_STREAM_COND_NAMED(( (std::clock()-starttime) / (double)CLOCKS_PER_SEC) > 0.01, "timings", "function runtime: "<< ( std::clock() - starttime ) / (double)CLOCKS_PER_SEC  <<"sec");
}
Exemplo n.º 25
0
Node::Node(ros::NodeHandle& nh, const cv::Mat& visual,
    cv::Ptr<cv::FeatureDetector> detector,
    cv::Ptr<cv::DescriptorExtractor> extractor,
    cv::Ptr<cv::DescriptorMatcher> matcher,
    const sensor_msgs::PointCloud2ConstPtr point_cloud,
    const cv::Mat& detection_mask)
: id_(0), 
flannIndex(NULL),
matcher_(matcher)
{
#ifdef USE_ICP_CODE
  gicp_initialized = false;
#endif
  std::clock_t starttime=std::clock();

#ifdef USE_SIFT_GPU
  SiftGPUFeatureDetector* siftgpu = SiftGPUFeatureDetector::GetInstance();
  float* descriptors = siftgpu->detect(visual, feature_locations_2d_);
  if (descriptors == NULL) {
    ROS_FATAL("Can't run SiftGPU");
  }
#else
  ROS_FATAL_COND(detector.empty(), "No valid detector!");
  detector->detect( visual, feature_locations_2d_, detection_mask);// fill 2d locations
#endif

  ROS_INFO("Feature detection and descriptor extraction runtime: %f", ( std::clock() - starttime ) / (double)CLOCKS_PER_SEC);
  ROS_INFO_STREAM_COND_NAMED(( (std::clock()-starttime) / (double)CLOCKS_PER_SEC) > global_min_time_reported, "timings", "Feature detection runtime: " << ( std::clock() - starttime ) / (double)CLOCKS_PER_SEC );

  /*
    if (id_  == 0)
        cloud_pub_ = nh_->advertise<sensor_msgs::PointCloud2>("clouds_from_node_base",10);
    else{
   */
  cloud_pub_ = nh.advertise<sensor_msgs::PointCloud2>("/rgbdslam/batch_clouds",20);
  //   cloud_pub_ransac = nh_->advertise<sensor_msgs::PointCloud2>("clouds_from_node_current_ransac",10);
  //} */

  // get pcl::Pointcloud to extract depthValues a pixel positions
  std::clock_t starttime5=std::clock();
  // TODO: If batch sending/saving of clouds would be removed, the pointcloud wouldn't have to be saved
  // which would slim down the Memory requirements
  pcl::fromROSMsg(*point_cloud,pc_col);
  ROS_INFO_STREAM_COND_NAMED(( (std::clock()-starttime5) / (double)CLOCKS_PER_SEC) > global_min_time_reported, "timings", "pc2->pcl conversion runtime: " << ( std::clock() - starttime5 ) / (double)CLOCKS_PER_SEC );

  // project pixels to 3dPositions and create search structures for the gicp
#ifdef USE_SIFT_GPU
  // removes also unused descriptors from the descriptors matrix
  // build descriptor matrix
  projectTo3DSiftGPU(feature_locations_2d_, feature_locations_3d_, pc_col, descriptors, feature_descriptors_); //takes less than 0.01 sec

  if (descriptors != NULL) delete descriptors;

#else
  projectTo3D(feature_locations_2d_, feature_locations_3d_, pc_col); //takes less than 0.01 sec
#endif

  // projectTo3d need a dense cloud to use the points.at(px.x,px.y)-Call
#ifdef USE_ICP_CODE
  std::clock_t starttime4=std::clock();
  createGICPStructures(); 
  ROS_INFO_STREAM_COND_NAMED(( (std::clock()-starttime4) / (double)CLOCKS_PER_SEC) > global_min_time_reported, "timings", "gicp runtime: " << ( std::clock() - starttime4 ) / (double)CLOCKS_PER_SEC );
#endif

  std::clock_t starttime2=std::clock();
#ifndef USE_SIFT_GPU
//  ROS_INFO("Use extractor");
  //cv::Mat topleft, topright;
  //topleft = visual.colRange(0,visual.cols/2+50);
  //topright= visual.colRange(visual.cols/2+50, visual.cols-1);
	//std::vector<cv::KeyPoint> kp1, kp2; 
  //extractor->compute(topleft, kp1, feature_descriptors_); //fill feature_descriptors_ with information 
  extractor->compute(visual, feature_locations_2d_, feature_descriptors_); //fill feature_descriptors_ with information 
#endif
  assert(feature_locations_2d_.size() == feature_locations_3d_.size());
  ROS_INFO_STREAM_COND_NAMED(( (std::clock()-starttime2) / (double)CLOCKS_PER_SEC) > global_min_time_reported, "timings", "Feature extraction runtime: " << ( std::clock() - starttime2 ) / (double)CLOCKS_PER_SEC );

  ROS_INFO_STREAM_COND_NAMED(( (std::clock()-starttime) / (double)CLOCKS_PER_SEC) > global_min_time_reported, "timings", "constructor runtime: "<< ( std::clock() - starttime ) / (double)CLOCKS_PER_SEC  <<"sec");
}
Exemplo n.º 26
0
///Find transformation with largest support, RANSAC style.
///Return false if no transformation can be found
bool Node::getRelativeTransformationTo(const Node* earlier_node,
                                       std::vector<cv::DMatch>* initial_matches,
                                       Eigen::Matrix4f& resulting_transformation,
                                       float& rmse, 
                                       std::vector<cv::DMatch>& matches,
                                       unsigned int ransac_iterations) const
{
  std::clock_t starttime=std::clock();

  assert(initial_matches != NULL);
  matches.clear();
  
  if(initial_matches->size() <= global_min_feature_count){ 
    ROS_INFO("Only %d feature matches between %d and %d (minimal: %i)",(int)initial_matches->size() , this->id_, earlier_node->id_, global_min_feature_count);
    return false;
  }

  unsigned int min_inlier_threshold = int(initial_matches->size()*global_min_inlier_pct);
  std::vector<cv::DMatch> inlier; //holds those feature correspondences that support the transformation
  double inlier_error; //all squared errors
  srand((long)std::clock());
  
  // a point is an inlier if it's no more than max_dist_m m from its partner apart
  const float max_dist_m = global_max_dist_for_inliers;
  vector<double> dummy;

  // best values of all iterations (including invalids)
  double best_error = 1e6, best_error_invalid = 1e6;
  unsigned int best_inlier_invalid = 0, best_inlier_cnt = 0, valid_iterations = 0;

  Eigen::Matrix4f transformation;
  
  const unsigned int sample_size = 3;// chose this many randomly from the correspondences:
  for (uint n_iter = 0; n_iter < ransac_iterations; n_iter++) {
    //generate a map of samples. Using a map solves the problem of drawing a sample more than once
    std::set<cv::DMatch> sample_matches;
    std::vector<cv::DMatch> sample_matches_vector;
    while(sample_matches.size() < sample_size){
      int id = rand() % initial_matches->size();
      sample_matches.insert(initial_matches->at(id));
      sample_matches_vector.push_back(initial_matches->at(id));
    }

    bool valid; // valid is false iff the sampled points clearly aren't inliers themself 
    transformation = getTransformFromMatches(earlier_node, sample_matches.begin(), sample_matches.end(),valid,max_dist_m);
    if (!valid) continue; // valid is false iff the sampled points aren't inliers themself 
    if(transformation!=transformation) continue; //Contains NaN
    
    //test whether samples are inliers (more strict than before)
    computeInliersAndError(sample_matches_vector, transformation, this->feature_locations_3d_, 
                           earlier_node->feature_locations_3d_, inlier, inlier_error,  /*output*/
                           dummy, max_dist_m*max_dist_m); 
    if(inlier_error > 1000) continue; //most possibly a false match in the samples
    computeInliersAndError(*initial_matches, transformation, this->feature_locations_3d_, 
                           earlier_node->feature_locations_3d_, inlier, inlier_error,  /*output*/
                           dummy, max_dist_m*max_dist_m);

    // check also invalid iterations
    if (inlier.size() > best_inlier_invalid) {
      best_inlier_invalid = inlier.size();
      best_error_invalid = inlier_error;
    }
    // ROS_INFO("iteration %d  cnt: %d, best: %d,  error: %.2f",n_iter, inlier.size(), best_inlier_cnt, inlier_error*100);

    if(inlier.size() < min_inlier_threshold || inlier_error > max_dist_m){
      //inlier.size() < ((float)initial_matches->size())*min_inlier_ratio || 
      // ROS_INFO("Skipped iteration: inliers: %i (min %i), inlier_error: %.2f (max %.2f)", (int)inlier.size(), (int) min_inlier_threshold,  inlier_error*100, max_dist_m*100);
      continue;
    }
    // ROS_INFO("Refining iteration from %i samples: all matches: %i, inliers: %i, inlier_error: %f", (int)sample_size, (int)initial_matches->size(), (int)inlier.size(), inlier_error);
    valid_iterations++;
    //if (inlier_error > 0) ROS_ERROR("size: %i", (int)dummy.size());
    assert(inlier_error>0);

    //Performance hacks:
    ///Iterations with more than half of the initial_matches inlying, count twice
    if (inlier.size() > initial_matches->size()*0.5) n_iter++;
    ///Iterations with more than 80% of the initial_matches inlying, count threefold
    if (inlier.size() > initial_matches->size()*0.8) n_iter++;



    if (inlier_error < best_error) { //copy this to the result
      resulting_transformation = transformation;
      matches = inlier;
      assert(matches.size()>= min_inlier_threshold);
      best_inlier_cnt = inlier.size();
      //assert(matches.size()>= ((float)initial_matches->size())*min_inlier_ratio);
      rmse = inlier_error;
      best_error = inlier_error;
      // ROS_INFO("  new best iteration %d  cnt: %d, best_inlier: %d,  error: %.4f, bestError: %.4f",n_iter, inlier.size(), best_inlier_cnt, inlier_error, best_error);

    }else
    {
      // ROS_INFO("NO new best iteration %d  cnt: %d, best_inlier: %d,  error: %.4f, bestError: %.4f",n_iter, inlier.size(), best_inlier_cnt, inlier_error, best_error);
    }

    //int max_ndx = min((int) min_inlier_threshold,30); //? What is this 30?
    double new_inlier_error;

    transformation = getTransformFromMatches(earlier_node, matches.begin(), matches.end(), valid); // compute new trafo from all inliers:
    if(transformation!=transformation) continue; //Contains NaN
    computeInliersAndError(*initial_matches, transformation,
                           this->feature_locations_3d_, earlier_node->feature_locations_3d_,
                           inlier, new_inlier_error, dummy, max_dist_m*max_dist_m);

    // ROS_INFO("asd recomputed: inliersize: %i, inlier error: %f", (int) inlier.size(),100*new_inlier_error);


    // check also invalid iterations
    if (inlier.size() > best_inlier_invalid)
    {
      best_inlier_invalid = inlier.size();
      best_error_invalid = inlier_error;
    }

    if(inlier.size() < min_inlier_threshold || new_inlier_error > max_dist_m){
      //inlier.size() < ((float)initial_matches->size())*min_inlier_ratio || 
      // ROS_INFO("Skipped iteration: inliers: %i (min %i), inlier_error: %.2f (max %.2f)", (int)inlier.size(), (int) min_inlier_threshold,  inlier_error*100, max_dist_m*100);
      continue;
    }
    // ROS_INFO("Refined iteration from %i samples: all matches %i, inliers: %i, new_inlier_error: %f", (int)sample_size, (int)initial_matches->size(), (int)inlier.size(), new_inlier_error);

    assert(new_inlier_error>0);

    if (new_inlier_error < best_error) 
    {
      resulting_transformation = transformation;
      matches = inlier;
      assert(matches.size()>= min_inlier_threshold);
      //assert(matches.size()>= ((float)initial_matches->size())*min_inlier_ratio);
      rmse = new_inlier_error;
      best_error = new_inlier_error;
      // ROS_INFO("  improved: new best iteration %d  cnt: %d, best_inlier: %d,  error: %.2f, bestError: %.2f",n_iter, inlier.size(), best_inlier_cnt, inlier_error*100, best_error*100);
    }else
    {
      // ROS_INFO("improved: NO new best iteration %d  cnt: %d, best_inlier: %d,  error: %.2f, bestError: %.2f",n_iter, inlier.size(), best_inlier_cnt, inlier_error*100, best_error*100);
    }
  } //iterations
  ROS_INFO("%i good iterations (from %i), inlier pct %i, inlier cnt: %i, error: %.2f cm",valid_iterations, (int) ransac_iterations, (int) (matches.size()*1.0/initial_matches->size()*100),(int) matches.size(),rmse*100);
  // ROS_INFO("best overall: inlier: %i, error: %.2f",best_inlier_invalid, best_error_invalid*100);


  ROS_INFO_STREAM_COND_NAMED(( (std::clock()-starttime) / (double)CLOCKS_PER_SEC) > global_min_time_reported, "timings", "getRelativeTransformationTo runtime: "<< ( std::clock() - starttime ) / (double)CLOCKS_PER_SEC  <<"sec");

return matches.size() >= min_inlier_threshold;
}
Exemplo n.º 27
0
int main( int argc, char **argv )
{

  ros::init( argc, argv, "example2" );

  ros::NodeHandle n;

  const double val = 3.14;

  // Basic messages:
  ROS_INFO( "My INFO message." );
  ROS_INFO( "My INFO message with argument: %f", val );
  ROS_INFO_STREAM(
    "My INFO stream message with argument: " << val
  );

  // Named messages:
  ROS_INFO_STREAM_NAMED(
    "named_msg",
    "My named INFO stream message; val = " << val
  );

  // Conditional messages:
  ROS_INFO_STREAM_COND(
    val < 0.,
    "My conditional INFO stream message; val (" << val << ") < 0"
  );
  ROS_INFO_STREAM_COND(
    val >= 0.,
    "My conditional INFO stream message; val (" << val << ") >= 0"
  );

  // Conditional Named messages:
  ROS_INFO_STREAM_COND_NAMED(
    val < 0., "cond_named_msg",
    "My conditional INFO stream message; val (" << val << ") < 0"
  );
  ROS_INFO_STREAM_COND_NAMED(
    val >= 0., "cond_named_msg",
    "My conditional INFO stream message; val (" << val << ") >= 0"
  );

  // Filtered messages:
  struct MyLowerFilter : public ros::console::FilterBase {
    MyLowerFilter( const double& val ) : value( val ) {}

    inline virtual bool isEnabled()
    {
      return value < 0.;
    }

    double value;
  };

  struct MyGreaterEqualFilter : public ros::console::FilterBase {
    MyGreaterEqualFilter( const double& val ) : value( val ) {}

    inline virtual bool isEnabled()
    {
      return value >= 0.;
    }
  
    double value;
  };

  MyLowerFilter filter_lower( val );
  MyGreaterEqualFilter filter_greater_equal( val );

  ROS_INFO_STREAM_FILTER(
    &filter_lower,
    "My filter INFO stream message; val (" << val << ") < 0"
  );
  ROS_INFO_STREAM_FILTER(
    &filter_greater_equal,
    "My filter INFO stream message; val (" << val << ") >= 0"
  );

  // Once messages:
  for( int i = 0; i < 10; ++i ) {
    ROS_INFO_STREAM_ONCE(
      "My once INFO stream message; i = " << i
    );
  }

  // Throttle messages:
  for( int i = 0; i < 10; ++i ) {
    ROS_INFO_STREAM_THROTTLE(
      2,
      "My throttle INFO stream message; i = " << i
    );
    ros::Duration( 1 ).sleep();
  }

  ros::spinOnce();

  return EXIT_SUCCESS;

}