Exemplo n.º 1
0
  int AbsoluteQuantitation::residualOutlierCandidate_(
    const std::vector<AbsoluteQuantitationStandards::featureConcentration>& component_concentrations,
    const String & feature_name,
    const String & transformation_model,
    const Param & transformation_model_params)
  {
    // Returns candidate outlier: A linear regression and residuals are calculated for
    // the data points. The one with highest residual error is selected as the outlier candidate. The
    // corresponding iterator position is then returned.

    // fit the model
    Param optimized_params = fitCalibration(component_concentrations,
      feature_name,
      transformation_model,
      transformation_model_params);

    // calculate the R2 and bias
    std::vector<double> biases;
    double correlation_coefficient = 0.0;
    calculateBiasAndR(
      component_concentrations,
      feature_name,
      transformation_model,
      optimized_params,
      biases,
      correlation_coefficient);

    return max_element(biases.begin(), biases.end()) - biases.begin();
  }
Exemplo n.º 2
0
  void AbsoluteQuantitation::optimizeCalibrationCurves(
    std::map<String, std::vector<AbsoluteQuantitationStandards::featureConcentration>> & components_concentrations)
  {

    for (auto& quant_method : quant_methods_)
    {
      // DEBUGGING
      // std::cout << "optimizing calibration curves for " << quant_method.first << "." << std::endl;

      if (components_concentrations.count(quant_method.first)>0 && optimization_method_ == "iterative")
      { 
        // optimize the calibraiton curve for the component
        Param optimized_params;
        optimizeCalibrationCurveIterative(
          components_concentrations[quant_method.first],
          quant_method.second.getFeatureName(),
          quant_method.second.getTransformationModel(),
          quant_method.second.getTransformationModelParams(),
          optimized_params);

        // calculate the R2 and bias
        std::vector<double> biases;
        double correlation_coefficient = 0.0;
        calculateBiasAndR(
          components_concentrations[quant_method.first],
          quant_method.second.getFeatureName(),
          quant_method.second.getTransformationModel(),
          optimized_params,
          biases,
          correlation_coefficient);

        // record the updated information
        quant_method.second.setCorrelationCoefficient(correlation_coefficient);
        quant_method.second.setLLOQ(components_concentrations[quant_method.first][0].actual_concentration); //due to ascending sort
        quant_method.second.setULOQ(components_concentrations[quant_method.first][components_concentrations[quant_method.first].size()-1].actual_concentration); //due to ascending sort
        quant_method.second.setTransformationModelParams(optimized_params);
        quant_method.second.setNPoints(components_concentrations[quant_method.first].size());
      }
      else if (optimization_method_ != "iterative")
      {
        throw Exception::IllegalArgument(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION,
          "Unsupported calibration curve optimization method '" + optimization_method_ + "'.");
      }
      else
      {
        LOG_INFO << "Warning: Standards not found for component " << quant_method.first << ".";
      }
    }
  } 
Exemplo n.º 3
0
  int AbsoluteQuantitation::jackknifeOutlierCandidate_(
    const std::vector<AbsoluteQuantitationStandards::featureConcentration>& component_concentrations,
    const String & feature_name,
    const String & transformation_model,
    const Param & transformation_model_params)
  {
    // Returns candidate outlier: A linear regression and rsq is calculated for
    // the data points with one removed pair. The combination resulting in
    // highest rsq is considered corresponding to the outlier candidate. The
    // corresponding iterator position is then returned.
    std::vector<double> rsq_tmp;
    Param optimized_params = transformation_model_params;

    for (Size i = 0; i < component_concentrations.size(); i++)
    {
      std::vector<AbsoluteQuantitationStandards::featureConcentration> component_concentrations_tmp = component_concentrations;
      component_concentrations_tmp.erase(component_concentrations_tmp.begin() + i);

      // debugging:
      // std::cout << "jackknifeOutlierCandidate_: size of component_concentrations: " << std::to_string(component_concentrations_tmp.size()) << std::endl;

      // fit the model
      optimized_params = fitCalibration(component_concentrations_tmp,
        feature_name,
        transformation_model,
        optimized_params);
      
      // calculate the R2 and bias
      std::vector<double> biases;
      double correlation_coefficient = 0.0;
      calculateBiasAndR(
        component_concentrations_tmp,
        feature_name,
        transformation_model,
        optimized_params,
        biases,
        correlation_coefficient);

      rsq_tmp.push_back(correlation_coefficient);
    }
    return max_element(rsq_tmp.begin(), rsq_tmp.end()) - rsq_tmp.begin();
  }
Exemplo n.º 4
0
  void AbsoluteQuantitation::optimizeCalibrationCurves(
    std::map<String, std::vector<AbsoluteQuantitationStandards::featureConcentration>> & components_concentrations)
  {
    std::map<String, std::vector<AbsoluteQuantitationStandards::featureConcentration>>& cc = components_concentrations;
    for (std::pair<const String, AbsoluteQuantitationMethod>& quant_method : quant_methods_)
    {
      const String& component_name = quant_method.first;
      AbsoluteQuantitationMethod& component_aqm = quant_method.second;
      if (cc.count(component_name) && optimization_method_ == "iterative")
      {
        // optimize the calibration curve for the component
        Param optimized_params;
        bool optimal_calibration_found = optimizeCalibrationCurveIterative(
          cc[component_name],
          component_aqm.getFeatureName(),
          component_aqm.getTransformationModel(),
          component_aqm.getTransformationModelParams(),
          optimized_params);

        // order component concentrations and update the lloq and uloq
        std::vector<AbsoluteQuantitationStandards::featureConcentration>::const_iterator it;
        it = std::min_element(cc[component_name].begin(), cc[component_name].end(), [](
            const AbsoluteQuantitationStandards::featureConcentration& lhs,
            const AbsoluteQuantitationStandards::featureConcentration& rhs
          )
          {
            return lhs.actual_concentration < rhs.actual_concentration;
          }
        );
        component_aqm.setLLOQ(it->actual_concentration);
        it = std::max_element(cc[component_name].begin(), cc[component_name].end(), [](
            const AbsoluteQuantitationStandards::featureConcentration& lhs,
            const AbsoluteQuantitationStandards::featureConcentration& rhs
          )
          {
            return lhs.actual_concentration < rhs.actual_concentration;
          }
        );
        component_aqm.setULOQ(it->actual_concentration);

        if (optimal_calibration_found)
        {
          // calculate the R2 and bias
          std::vector<double> biases;
          double correlation_coefficient = 0.0;
          calculateBiasAndR(
            cc[component_name],
            component_aqm.getFeatureName(),
            component_aqm.getTransformationModel(),
            optimized_params,
            biases,
            correlation_coefficient);

          // record the updated information
          component_aqm.setCorrelationCoefficient(correlation_coefficient);
          component_aqm.setTransformationModelParams(optimized_params);
          component_aqm.setNPoints(cc[component_name].size());
        }
        else 
        {
          component_aqm.setCorrelationCoefficient(0.0);
          component_aqm.setNPoints(0);
          component_aqm.setLLOQ(0.0);
          component_aqm.setULOQ(0.0);
        }
      }
      else if (optimization_method_ != "iterative")
      {
        throw Exception::IllegalArgument(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION,
          "Unsupported calibration curve optimization method '" + optimization_method_ + "'.");
      }
      else
      {
        LOG_DEBUG << "Warning: Standards not found for component " << component_name << ".";
      }
    }
  }
Exemplo n.º 5
0
  bool AbsoluteQuantitation::optimizeCalibrationCurveIterative(
    std::vector<AbsoluteQuantitationStandards::featureConcentration> & component_concentrations,
    const String & feature_name,
    const String & transformation_model,
    const Param & transformation_model_params,
    Param & optimized_params)
  {

    // sort from min to max concentration
    std::vector<AbsoluteQuantitationStandards::featureConcentration> component_concentrations_sorted = component_concentrations;
    std::sort(component_concentrations_sorted.begin(), component_concentrations_sorted.end(),
      [](AbsoluteQuantitationStandards::featureConcentration lhs, AbsoluteQuantitationStandards::featureConcentration rhs)
      {
        return lhs.actual_concentration < rhs.actual_concentration; //ascending order
      }
    );

    // indices of component_concentrations
    std::vector<size_t> component_concentrations_sorted_indices;// loop from all points to min_points
    for (size_t index = 0; index < component_concentrations_sorted.size(); ++index)
    {
      component_concentrations_sorted_indices.push_back(index);
    }

    // starting parameters
    optimized_params = transformation_model_params;

    // for (size_t n_iters = 0; n_iters < max_iters_; ++n_iters)
    for (size_t n_iters = 0; n_iters < component_concentrations_sorted.size(); ++n_iters)
    {

      // extract out components
      const std::vector<AbsoluteQuantitationStandards::featureConcentration> component_concentrations_sub = extractComponents_(
        component_concentrations_sorted, component_concentrations_sorted_indices);

      // check if the min number of calibration points has been broken
      if (component_concentrations_sorted_indices.size() < min_points_)
      {
        LOG_INFO << "No optimal calibration found for " << component_concentrations_sub[0].feature.getMetaValue("native_id") << " .";
        return false;  //no optimal calibration found
      }

      // fit the model
      optimized_params = fitCalibration(component_concentrations_sub,
        feature_name,
        transformation_model,
        optimized_params);

      // calculate the R2 and bias
      std::vector<double> biases; // not needed (method parameters)
      double correlation_coefficient = 0.0; // not needed (method parameters)
      calculateBiasAndR(
        component_concentrations_sub,
        feature_name,
        transformation_model,
        optimized_params,
        biases,
        correlation_coefficient);

      // check R2 and biases
      bool bias_check = true;
      for (size_t bias_it = 0; bias_it < biases.size(); ++bias_it)
      {
        if (biases[bias_it] > max_bias_)
        {
          bias_check = false;
        }
      }
      if (bias_check && correlation_coefficient > min_correlation_coefficient_)
      {
        LOG_INFO << "Valid calibration found for " << component_concentrations_sub[0].feature.getMetaValue("native_id") << " .";

        // copy over the final optimized points before exiting
        component_concentrations = component_concentrations_sub;
        return true;  //optimal calibration found
      }

      // R2 and biases check failed, determine potential outlier
      int pos;
      if (outlier_detection_method_ == "iter_jackknife")
      {
        // get candidate outlier: removal of which datapoint results in best rsq?
        pos = jackknifeOutlierCandidate_(
          component_concentrations_sub,
          feature_name,
          transformation_model,
          optimized_params);
      }
      else if (outlier_detection_method_ == "iter_residual")
      {
        // get candidate outlier: removal of datapoint with largest residual?
        pos = residualOutlierCandidate_(
          component_concentrations_sub,
          feature_name,
          transformation_model,
          optimized_params);
      }
      else
      {
        throw Exception::IllegalArgument(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION,
          String("Method ") + outlier_detection_method_ + " is not a valid method for optimizeCalibrationCurveIterative");
      }

      // remove if residual is an outlier according to Chauvenet's criterion
      // or if testing is turned off
      if (!use_chauvenet_ || MRMRTNormalizer::chauvenet(biases, pos))
      {
        component_concentrations_sorted_indices.erase(component_concentrations_sorted_indices.begin() + pos);
      }
      else
      {
        return false;  //no optimal calibration found
      }
    }
    return false;  //no optimal calibration found
  }