Exemplo n.º 1
0
uint16
cpu_get_src_reg (sim_cpu* cpu, uint8 reg)
{
  switch (reg)
    {
    case 0:
      return cpu_get_a (cpu);

    case 1:
      return cpu_get_b (cpu);

    case 2:
      return cpu_get_ccr (cpu);

    case 3:
      return cpu_get_tmp3 (cpu);

    case 4:
      return cpu_get_d (cpu);

    case 5:
      return cpu_get_x (cpu);

    case 6:
      return cpu_get_y (cpu);

    case 7:
      return cpu_get_sp (cpu);

    default:
      return 0;
    }
}
Exemplo n.º 2
0
void cpu_dump_state(CPUSPARCState *env, FILE *f, fprintf_function cpu_fprintf,
                    int flags)
{
    int i, x;

    cpu_fprintf(f, "pc: " TARGET_FMT_lx "  npc: " TARGET_FMT_lx "\n", env->pc,
                env->npc);

    for (i = 0; i < 8; i++) {
        if (i % REGS_PER_LINE == 0) {
            cpu_fprintf(f, "%%g%d-%d:", i, i + REGS_PER_LINE - 1);
        }
        cpu_fprintf(f, " " TARGET_FMT_lx, env->gregs[i]);
        if (i % REGS_PER_LINE == REGS_PER_LINE - 1) {
            cpu_fprintf(f, "\n");
        }
    }
    for (x = 0; x < 3; x++) {
        for (i = 0; i < 8; i++) {
            if (i % REGS_PER_LINE == 0) {
                cpu_fprintf(f, "%%%c%d-%d: ",
                            x == 0 ? 'o' : (x == 1 ? 'l' : 'i'),
                            i, i + REGS_PER_LINE - 1);
            }
            cpu_fprintf(f, TARGET_FMT_lx " ", env->regwptr[i + x * 8]);
            if (i % REGS_PER_LINE == REGS_PER_LINE - 1) {
                cpu_fprintf(f, "\n");
            }
        }
    }

    for (i = 0; i < TARGET_DPREGS; i++) {
        if ((i & 3) == 0) {
            cpu_fprintf(f, "%%f%02d: ", i * 2);
        }
        cpu_fprintf(f, " %016" PRIx64, env->fpr[i].ll);
        if ((i & 3) == 3) {
            cpu_fprintf(f, "\n");
        }
    }
#ifdef TARGET_SPARC64
    cpu_fprintf(f, "pstate: %08x ccr: %02x (icc: ", env->pstate,
                (unsigned)cpu_get_ccr(env));
    cpu_print_cc(f, cpu_fprintf, cpu_get_ccr(env) << PSR_CARRY_SHIFT);
    cpu_fprintf(f, " xcc: ");
    cpu_print_cc(f, cpu_fprintf, cpu_get_ccr(env) << (PSR_CARRY_SHIFT - 4));
    cpu_fprintf(f, ") asi: %02x tl: %d pil: %x\n", env->asi, env->tl,
                env->psrpil);
    cpu_fprintf(f, "cansave: %d canrestore: %d otherwin: %d wstate: %d "
                "cleanwin: %d cwp: %d\n",
                env->cansave, env->canrestore, env->otherwin, env->wstate,
                env->cleanwin, env->nwindows - 1 - env->cwp);
    cpu_fprintf(f, "fsr: " TARGET_FMT_lx " y: " TARGET_FMT_lx " fprs: "
                TARGET_FMT_lx "\n", env->fsr, env->y, env->fprs);
#else
    cpu_fprintf(f, "psr: %08x (icc: ", cpu_get_psr(env));
    cpu_print_cc(f, cpu_fprintf, cpu_get_psr(env));
    cpu_fprintf(f, " SPE: %c%c%c) wim: %08x\n", env->psrs ? 'S' : '-',
                env->psrps ? 'P' : '-', env->psret ? 'E' : '-',
                env->wim);
    cpu_fprintf(f, "fsr: " TARGET_FMT_lx " y: " TARGET_FMT_lx "\n",
                env->fsr, env->y);
#endif
    cpu_fprintf(f, "\n");
}
Exemplo n.º 3
0
void sparc_cpu_do_interrupt(CPUState *cs)
{
    SPARCCPU *cpu = SPARC_CPU(cs);
    CPUSPARCState *env = &cpu->env;
    int intno = cs->exception_index;
    trap_state *tsptr;

    /* Compute PSR before exposing state.  */
    if (env->cc_op != CC_OP_FLAGS) {
        cpu_get_psr(env);
    }

#ifdef DEBUG_PCALL
    if (qemu_loglevel_mask(CPU_LOG_INT)) {
        static int count;
        const char *name;

        if (intno < 0 || intno >= 0x180) {
            name = "Unknown";
        } else if (intno >= 0x100) {
            name = "Trap Instruction";
        } else if (intno >= 0xc0) {
            name = "Window Fill";
        } else if (intno >= 0x80) {
            name = "Window Spill";
        } else {
            name = excp_names[intno];
            if (!name) {
                name = "Unknown";
            }
        }

        qemu_log("%6d: %s (v=%04x)\n", count, name, intno);
        log_cpu_state(cs, 0);
#if 0
        {
            int i;
            uint8_t *ptr;

            qemu_log("       code=");
            ptr = (uint8_t *)env->pc;
            for (i = 0; i < 16; i++) {
                qemu_log(" %02x", ldub(ptr + i));
            }
            qemu_log("\n");
        }
#endif
        count++;
    }
#endif
#if !defined(CONFIG_USER_ONLY)
    if (env->tl >= env->maxtl) {
        cpu_abort(cs, "Trap 0x%04x while trap level (%d) >= MAXTL (%d),"
                  " Error state", cs->exception_index, env->tl, env->maxtl);
        return;
    }
#endif
    if (env->tl < env->maxtl - 1) {
        env->tl++;
    } else {
        env->pstate |= PS_RED;
        if (env->tl < env->maxtl) {
            env->tl++;
        }
    }
    tsptr = cpu_tsptr(env);

    tsptr->tstate = (cpu_get_ccr(env) << 32) |
        ((env->asi & 0xff) << 24) | ((env->pstate & 0xf3f) << 8) |
        cpu_get_cwp64(env);
    tsptr->tpc = env->pc;
    tsptr->tnpc = env->npc;
    tsptr->tt = intno;

    switch (intno) {
    case TT_IVEC:
        cpu_change_pstate(env, PS_PEF | PS_PRIV | PS_IG);
        break;
    case TT_TFAULT:
    case TT_DFAULT:
    case TT_TMISS ... TT_TMISS + 3:
    case TT_DMISS ... TT_DMISS + 3:
    case TT_DPROT ... TT_DPROT + 3:
        cpu_change_pstate(env, PS_PEF | PS_PRIV | PS_MG);
        break;
    default:
        cpu_change_pstate(env, PS_PEF | PS_PRIV | PS_AG);
        break;
    }

    if (intno == TT_CLRWIN) {
        cpu_set_cwp(env, cpu_cwp_dec(env, env->cwp - 1));
    } else if ((intno & 0x1c0) == TT_SPILL) {
        cpu_set_cwp(env, cpu_cwp_dec(env, env->cwp - env->cansave - 2));
    } else if ((intno & 0x1c0) == TT_FILL) {
        cpu_set_cwp(env, cpu_cwp_inc(env, env->cwp + 1));
    }
    env->tbr &= ~0x7fffULL;
    env->tbr |= ((env->tl > 1) ? 1 << 14 : 0) | (intno << 5);
    env->pc = env->tbr;
    env->npc = env->pc + 4;
    cs->exception_index = -1;
}
/* Process the current interrupt if there is one.  This operation must
   be called after each instruction to handle the interrupts.  If interrupts
   are masked, it does nothing.  */
int
interrupts_process (struct interrupts *interrupts)
{
  int id;
  uint8 ccr;

  /* See if interrupts are enabled/disabled and keep track of the
     number of cycles the interrupts are masked.  Such information is
     then reported by the info command.  */
  ccr = cpu_get_ccr (interrupts->cpu);
  if (ccr & M6811_I_BIT)
    {
      if (interrupts->start_mask_cycle < 0)
        interrupts->start_mask_cycle = cpu_current_cycle (interrupts->cpu);
    }
  else if (interrupts->start_mask_cycle >= 0
           && (ccr & M6811_I_BIT) == 0)
    {
      signed64 t = cpu_current_cycle (interrupts->cpu);

      t -= interrupts->start_mask_cycle;
      if (t < interrupts->min_mask_cycles)
        interrupts->min_mask_cycles = t;
      if (t > interrupts->max_mask_cycles)
        interrupts->max_mask_cycles = t;
      interrupts->start_mask_cycle = -1;
      interrupts->last_mask_cycles = t;
    }
  if (ccr & M6811_X_BIT)
    {
      if (interrupts->xirq_start_mask_cycle < 0)
        interrupts->xirq_start_mask_cycle
	  = cpu_current_cycle (interrupts->cpu);
    }
  else if (interrupts->xirq_start_mask_cycle >= 0
           && (ccr & M6811_X_BIT) == 0)
    {
      signed64 t = cpu_current_cycle (interrupts->cpu);

      t -= interrupts->xirq_start_mask_cycle;
      if (t < interrupts->xirq_min_mask_cycles)
        interrupts->xirq_min_mask_cycles = t;
      if (t > interrupts->xirq_max_mask_cycles)
        interrupts->xirq_max_mask_cycles = t;
      interrupts->xirq_start_mask_cycle = -1;
      interrupts->xirq_last_mask_cycles = t;
    }

  id = interrupts_get_current (interrupts);
  if (id >= 0)
    {
      uint16 addr;
      struct interrupt_history *h;

      /* Implement the breakpoint-on-interrupt.  */
      if (interrupts->interrupts[id].stop_mode & SIM_STOP_WHEN_TAKEN)
        {
          sim_io_printf (CPU_STATE (interrupts->cpu),
                         "Interrupt %s will be handled\n",
                         interrupt_names[id]);
          sim_engine_halt (CPU_STATE (interrupts->cpu),
                           interrupts->cpu,
                           0, cpu_get_pc (interrupts->cpu),
                           sim_stopped,
                           SIM_SIGTRAP);
        }

      cpu_push_all (interrupts->cpu);
      addr = memory_read16 (interrupts->cpu,
                            interrupts->vectors_addr + id * 2);
      cpu_call (interrupts->cpu, addr);

      /* Now, protect from nested interrupts.  */
      if (id == M6811_INT_XIRQ)
	{
	  cpu_set_ccr_X (interrupts->cpu, 1);
	}
      else
	{
	  cpu_set_ccr_I (interrupts->cpu, 1);
	}

      /* Update the interrupt history table.  */
      h = &interrupts->interrupts_history[interrupts->history_index];
      h->type = id;
      h->taken_cycle = cpu_current_cycle (interrupts->cpu);
      h->raised_cycle = interrupts->interrupts[id].cpu_cycle;
      
      if (interrupts->history_index >= MAX_INT_HISTORY-1)
        interrupts->history_index = 0;
      else
        interrupts->history_index++;

      interrupts->nb_interrupts_raised++;
      cpu_add_cycles (interrupts->cpu, 14);
      return 1;
    }
  return 0;
}
Exemplo n.º 5
0
int
sim_fetch_register (SIM_DESC sd, int rn, unsigned char *memory, int length)
{
  sim_cpu *cpu;
  uint16 val;
  int size = 2;

  cpu = STATE_CPU (sd, 0);
  switch (rn)
    {
    case A_REGNUM:
      val = cpu_get_a (cpu);
      size = 1;
      break;

    case B_REGNUM:
      val = cpu_get_b (cpu);
      size = 1;
      break;

    case D_REGNUM:
      val = cpu_get_d (cpu);
      break;

    case X_REGNUM:
      val = cpu_get_x (cpu);
      break;

    case Y_REGNUM:
      val = cpu_get_y (cpu);
      break;

    case SP_REGNUM:
      val = cpu_get_sp (cpu);
      break;

    case PC_REGNUM:
      val = cpu_get_pc (cpu);
      break;

    case PSW_REGNUM:
      val = cpu_get_ccr (cpu);
      size = 1;
      break;

    case PAGE_REGNUM:
      val = cpu_get_page (cpu);
      size = 1;
      break;

    default:
      val = 0;
      break;
    }
  if (size == 1)
    {
      memory[0] = val;
    }
  else
    {
      memory[0] = val >> 8;
      memory[1] = val & 0x0FF;
    }
  return size;
}
Exemplo n.º 6
0
static int
m68hc11_reg_fetch (SIM_CPU *cpu, int rn, unsigned char *memory, int length)
{
  uint16 val;
  int size = 2;

  switch (rn)
    {
    case A_REGNUM:
      val = cpu_get_a (cpu);
      size = 1;
      break;

    case B_REGNUM:
      val = cpu_get_b (cpu);
      size = 1;
      break;

    case D_REGNUM:
      val = cpu_get_d (cpu);
      break;

    case X_REGNUM:
      val = cpu_get_x (cpu);
      break;

    case Y_REGNUM:
      val = cpu_get_y (cpu);
      break;

    case SP_REGNUM:
      val = cpu_get_sp (cpu);
      break;

    case PC_REGNUM:
      val = cpu_get_pc (cpu);
      break;

    case PSW_REGNUM:
      val = cpu_get_ccr (cpu);
      size = 1;
      break;

    case PAGE_REGNUM:
      val = cpu_get_page (cpu);
      size = 1;
      break;

    default:
      val = 0;
      break;
    }
  if (size == 1)
    {
      memory[0] = val;
    }
  else
    {
      memory[0] = val >> 8;
      memory[1] = val & 0x0FF;
    }
  return size;
}
Exemplo n.º 7
0
/* Process the current interrupt if there is one.  This operation must
   be called after each instruction to handle the interrupts.  If interrupts
   are masked, it does nothing.  */
int
interrupts_process (struct interrupts *interrupts)
{
  int id;
  uint8 ccr;

  /* See if interrupts are enabled/disabled and keep track of the
     number of cycles the interrupts are masked.  Such information is
     then reported by the info command.  */
  ccr = cpu_get_ccr (interrupts->cpu);
  if (ccr & M6811_I_BIT)
    {
      if (interrupts->start_mask_cycle < 0)
        interrupts->start_mask_cycle = cpu_current_cycle (interrupts->cpu);
    }
  else if (interrupts->start_mask_cycle >= 0
           && (ccr & M6811_I_BIT) == 0)
    {
      signed64 t = cpu_current_cycle (interrupts->cpu);

      t -= interrupts->start_mask_cycle;
      if (t < interrupts->min_mask_cycles)
        interrupts->min_mask_cycles = t;
      if (t > interrupts->max_mask_cycles)
        interrupts->max_mask_cycles = t;
      interrupts->start_mask_cycle = -1;
      interrupts->last_mask_cycles = t;
    }
  if (ccr & M6811_X_BIT)
    {
      if (interrupts->xirq_start_mask_cycle < 0)
        interrupts->xirq_start_mask_cycle
	  = cpu_current_cycle (interrupts->cpu);
    }
  else if (interrupts->xirq_start_mask_cycle >= 0
           && (ccr & M6811_X_BIT) == 0)
    {
      signed64 t = cpu_current_cycle (interrupts->cpu);

      t -= interrupts->xirq_start_mask_cycle;
      if (t < interrupts->xirq_min_mask_cycles)
        interrupts->xirq_min_mask_cycles = t;
      if (t > interrupts->xirq_max_mask_cycles)
        interrupts->xirq_max_mask_cycles = t;
      interrupts->xirq_start_mask_cycle = -1;
      interrupts->xirq_last_mask_cycles = t;
    }

  id = interrupts_get_current (interrupts);
  if (id >= 0)
    {
      uint16 addr;
      
      cpu_push_all (interrupts->cpu);
      addr = memory_read16 (interrupts->cpu,
                            interrupts->vectors_addr + id * 2);
      cpu_call (interrupts->cpu, addr);

      /* Now, protect from nested interrupts.  */
      if (id == M6811_INT_XIRQ)
	{
	  cpu_set_ccr_X (interrupts->cpu, 1);
	}
      else
	{
	  cpu_set_ccr_I (interrupts->cpu, 1);
	}

      interrupts->nb_interrupts_raised++;
      cpu_add_cycles (interrupts->cpu, 14);
      return 1;
    }
  return 0;
}