Exemplo n.º 1
0
static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
{
	struct fq_sched_data *q = qdisc_priv(sch);
	struct fq_flow *f;

	if (unlikely(sch->q.qlen >= sch->limit))
		return qdisc_drop(skb, sch);

	f = fq_classify(skb, q);
	if (unlikely(f->qlen >= q->flow_plimit && f != &q->internal)) {
		q->stat_flows_plimit++;
		return qdisc_drop(skb, sch);
	}

	f->qlen++;
	if (skb_is_retransmit(skb))
		q->stat_tcp_retrans++;
	sch->qstats.backlog += qdisc_pkt_len(skb);
	if (fq_flow_is_detached(f)) {
		fq_flow_add_tail(&q->new_flows, f);
		if (time_after(jiffies, f->age + q->flow_refill_delay))
			f->credit = max_t(u32, f->credit, q->quantum);
		q->inactive_flows--;
		qdisc_unthrottled(sch);
	}

	/* Note: this overwrites f->age */
	flow_queue_add(f, skb);

	if (unlikely(f == &q->internal)) {
		q->stat_internal_packets++;
		qdisc_unthrottled(sch);
	}
	sch->q.qlen++;

	return NET_XMIT_SUCCESS;
}
static int gadc_thermal_tdiode_adc_to_temp(
		struct gadc_thermal_platform_data *pdata, int val, int val2)
{
	/*
	 * Series resistance cancellation using multi-current ADC measurement.
	 * diode temp = ((adc2 - k * adc1) - (b2 - k * b1)) / (m2 - k * m1)
	 * - adc1 : ADC raw with current source 400uA
	 * - m1, b1 : calculated with current source 400uA
	 * - adc2 : ADC raw with current source 800uA
	 * - m2, b2 : calculated with current source 800uA
	 * - k : 2 (= 800uA / 400uA)
	 */
	const s64 m1 = -0.00571005 * TDIODE_PRECISION_MULTIPLIER;
	const s64 b1 = 2524.29891 * TDIODE_PRECISION_MULTIPLIER;
	const s64 m2 = -0.005519811 * TDIODE_PRECISION_MULTIPLIER;
	const s64 b2 = 2579.354349 * TDIODE_PRECISION_MULTIPLIER;
	s64 temp = TDIODE_PRECISION_MULTIPLIER;

	temp *= (s64)((val2) - 2 * (val));
	temp -= (b2 - 2 * b1);
	temp = div64_s64(temp, (m2 - 2 * m1));
	temp = min_t(s64, max_t(s64, temp, TDIODE_MIN_TEMP), TDIODE_MAX_TEMP);
	return temp;
};
Exemplo n.º 3
0
/**
 * Create slab for scsi unmap command
 */
static VMK_ReturnStatus
CreateScsiUnmapSlab(struct NvmeCtrlr *ctrlr)
{
   VMK_ReturnStatus vmkStatus = VMK_OK;
   vmk_SlabCreateProps unmapSlabProps;
   vmk_Memset(&unmapSlabProps, 0, sizeof(vmk_SlabCreateProps));
   unmapSlabProps.type = VMK_SLAB_TYPE_SIMPLE;
   vmk_NameFormat(&unmapSlabProps.name, "unmap_slab_%s", Nvme_GetCtrlrName(ctrlr));
   unmapSlabProps.module = vmk_ModuleCurrentID;
   unmapSlabProps.objSize = max_t(vmk_ByteCountSmall, sizeof(nvme_ScsiUnmapParameterList), sizeof(struct nvme_dataset_mgmt_data)*NVME_MAX_DSM_RANGE);
   unmapSlabProps.alignment = VMK_L1_CACHELINE_SIZE;
   unmapSlabProps.ctrlOffset = 0;
   unmapSlabProps.minObj = max_scsi_unmap_requests;
   unmapSlabProps.maxObj = max_scsi_unmap_requests*2;

   vmkStatus = vmk_SlabCreate(&unmapSlabProps, &ctrlr->scsiUnmapSlabId);
   if (vmkStatus != VMK_OK) {
      EPRINT("Unable to create slab for scsi unmap. vmkStatus: 0x%x.", vmkStatus);
      return vmkStatus;
   }
   vmk_AtomicWrite64(&ctrlr->activeUnmaps, 0);
   vmk_AtomicWrite64(&ctrlr->maxUnmaps, 0);
   return vmkStatus;
}
Exemplo n.º 4
0
static int __read_je_header(struct super_block *sb, u64 ofs,
		struct logfs_journal_header *jh)
{
	struct logfs_super *super = logfs_super(sb);
	size_t bufsize = max_t(size_t, sb->s_blocksize, super->s_writesize)
		+ MAX_JOURNAL_HEADER;
	u16 type, len, datalen;
	int err;

	
	err = wbuf_read(sb, ofs, sizeof(*jh), jh);
	if (err)
		return err;
	type = be16_to_cpu(jh->h_type);
	len = be16_to_cpu(jh->h_len);
	datalen = be16_to_cpu(jh->h_datalen);
	if (len > sb->s_blocksize)
		return -EIO;
	if ((type < JE_FIRST) || (type > JE_LAST))
		return -EIO;
	if (datalen > bufsize)
		return -EIO;
	return 0;
}
Exemplo n.º 5
0
Arquivo: file.c Projeto: cilynx/dd-wrt
int jffs2_commit_write (struct file *filp, struct page *pg, unsigned start, unsigned end)
{
	/* Actually commit the write from the page cache page we're looking at.
	 * For now, we write the full page out each time. It sucks, but it's simple
	 */
	struct inode *inode = pg->mapping->host;
	struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);
	struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb);
	__u32 newsize = max_t(__u32, filp->f_dentry->d_inode->i_size, (pg->index << PAGE_CACHE_SHIFT) + end);
	__u32 file_ofs = (pg->index << PAGE_CACHE_SHIFT);
	__u32 writelen = min((__u32)PAGE_CACHE_SIZE, newsize - file_ofs);
	struct jffs2_raw_inode *ri;
	int ret = 0;
	ssize_t writtenlen = 0;

	D1(printk(KERN_DEBUG "jffs2_commit_write(): ino #%lu, page at 0x%lx, range %d-%d, flags %lx\n", inode->i_ino, pg->index << PAGE_CACHE_SHIFT, start, end, pg->flags));

	if (!start && end == PAGE_CACHE_SIZE) {
		/* We need to avoid deadlock with page_cache_read() in
		   jffs2_garbage_collect_pass(). So we have to mark the
		   page up to date, to prevent page_cache_read() from 
		   trying to re-lock it. */
		SetPageUptodate(pg);
	}

	ri = jffs2_alloc_raw_inode();
	if (!ri)
		return -ENOMEM;

	while(writelen) {
		struct jffs2_full_dnode *fn;
		unsigned char *comprbuf = NULL;
		unsigned char comprtype = JFFS2_COMPR_NONE;
		__u32 phys_ofs, alloclen;
		__u32 datalen, cdatalen;

		D2(printk(KERN_DEBUG "jffs2_commit_write() loop: 0x%x to write to 0x%x\n", writelen, file_ofs));

		ret = jffs2_reserve_space(c, sizeof(*ri) + JFFS2_MIN_DATA_LEN, &phys_ofs, &alloclen, ALLOC_NORMAL);
		if (ret) {
			SetPageError(pg);
			D1(printk(KERN_DEBUG "jffs2_reserve_space returned %d\n", ret));
			break;
		}
		down(&f->sem);
		datalen = writelen;
		cdatalen = min(alloclen - sizeof(*ri), writelen);

		comprbuf = kmalloc(cdatalen, GFP_KERNEL);
		if (comprbuf) {
//			jffs2_bbc_model_set_act_sb(c); /**BBC**/
			comprtype = jffs2_compress(page_address(pg)+ (file_ofs & (PAGE_CACHE_SIZE-1)), comprbuf, &datalen, &cdatalen);
		}
		if (comprtype == JFFS2_COMPR_NONE) {
			/* Either compression failed, or the allocation of comprbuf failed */
			if (comprbuf)
				kfree(comprbuf);
			comprbuf = page_address(pg) + (file_ofs & (PAGE_CACHE_SIZE -1));
			datalen = cdatalen;
		}
		/* Now comprbuf points to the data to be written, be it compressed or not.
		   comprtype holds the compression type, and comprtype == JFFS2_COMPR_NONE means
		   that the comprbuf doesn't need to be kfree()d. 
		*/

		ri->magic = JFFS2_MAGIC_BITMASK;
		ri->nodetype = JFFS2_NODETYPE_INODE;
		ri->totlen = sizeof(*ri) + cdatalen;
		ri->hdr_crc = crc32(0, ri, sizeof(struct jffs2_unknown_node)-4);

		ri->ino = inode->i_ino;
		ri->version = ++f->highest_version;
		ri->mode = inode->i_mode;
		ri->uid = inode->i_uid;
		ri->gid = inode->i_gid;
		ri->isize = max((__u32)inode->i_size, file_ofs + datalen);
		ri->atime = ri->ctime = ri->mtime = CURRENT_TIME;
		ri->offset = file_ofs;
		ri->csize = cdatalen;
		ri->dsize = datalen;
		ri->compr = comprtype;
		ri->node_crc = crc32(0, ri, sizeof(*ri)-8);
		ri->data_crc = crc32(0, comprbuf, cdatalen);

		fn = jffs2_write_dnode(inode, ri, comprbuf, cdatalen, phys_ofs, NULL);

		jffs2_complete_reservation(c);

		if (comprtype != JFFS2_COMPR_NONE)
			kfree(comprbuf);

		if (IS_ERR(fn)) {
			ret = PTR_ERR(fn);
			up(&f->sem);
			SetPageError(pg);
			break;
		}
		ret = jffs2_add_full_dnode_to_inode(c, f, fn);
		if (f->metadata) {
			jffs2_mark_node_obsolete(c, f->metadata->raw);
			jffs2_free_full_dnode(f->metadata);
			f->metadata = NULL;
		}
		up(&f->sem);
		if (ret) {
			/* Eep */
			D1(printk(KERN_DEBUG "Eep. add_full_dnode_to_inode() failed in commit_write, returned %d\n", ret));
			jffs2_mark_node_obsolete(c, fn->raw);
			jffs2_free_full_dnode(fn);
			SetPageError(pg);
			break;
		}
		inode->i_size = ri->isize;
		inode->i_blocks = (inode->i_size + 511) >> 9;
		inode->i_ctime = inode->i_mtime = ri->ctime;
		if (!datalen) {
			printk(KERN_WARNING "Eep. We didn't actually write any bloody data\n");
			ret = -EIO;
			SetPageError(pg);
			break;
		}
		D1(printk(KERN_DEBUG "increasing writtenlen by %d\n", datalen));
		writtenlen += datalen;
		file_ofs += datalen;
		writelen -= datalen;
	}

	jffs2_free_raw_inode(ri);

	if (writtenlen < end) {
		/* generic_file_write has written more to the page cache than we've
		   actually written to the medium. Mark the page !Uptodate so that 
		   it gets reread */
		D1(printk(KERN_DEBUG "jffs2_commit_write(): Not all bytes written. Marking page !uptodate\n"));
		SetPageError(pg);
		ClearPageUptodate(pg);
	}
	if (writtenlen <= start) {
		/* We didn't even get to the start of the affected part */
		ret = ret?ret:-ENOSPC;
		D1(printk(KERN_DEBUG "jffs2_commit_write(): Only %x bytes written to page. start (%x) not reached, returning %d\n", writtenlen, start, ret));
	}
	writtenlen = min(end-start, writtenlen-start);

	D1(printk(KERN_DEBUG "jffs2_commit_write() returning %d. nrpages is %ld\n",writtenlen?writtenlen:ret, inode->i_mapping->nrpages));
	return writtenlen?writtenlen:ret;
}
Exemplo n.º 6
0
u64 ufs_new_fragments(struct inode *inode, void *p, u64 fragment,
			   u64 goal, unsigned count, int *err,
			   struct page *locked_page)
{
	struct super_block * sb;
	struct ufs_sb_private_info * uspi;
	struct ufs_super_block_first * usb1;
	unsigned cgno, oldcount, newcount;
	u64 tmp, request, result;
	
	UFSD("ENTER, ino %lu, fragment %llu, goal %llu, count %u\n",
	     inode->i_ino, (unsigned long long)fragment,
	     (unsigned long long)goal, count);
	
	sb = inode->i_sb;
	uspi = UFS_SB(sb)->s_uspi;
	usb1 = ubh_get_usb_first(uspi);
	*err = -ENOSPC;

	lock_super (sb);
	tmp = ufs_data_ptr_to_cpu(sb, p);

	if (count + ufs_fragnum(fragment) > uspi->s_fpb) {
		ufs_warning(sb, "ufs_new_fragments", "internal warning"
			    " fragment %llu, count %u",
			    (unsigned long long)fragment, count);
		count = uspi->s_fpb - ufs_fragnum(fragment); 
	}
	oldcount = ufs_fragnum (fragment);
	newcount = oldcount + count;

	/*
	 * Somebody else has just allocated our fragments
	 */
	if (oldcount) {
		if (!tmp) {
			ufs_error(sb, "ufs_new_fragments", "internal error, "
				  "fragment %llu, tmp %llu\n",
				  (unsigned long long)fragment,
				  (unsigned long long)tmp);
			unlock_super(sb);
			return INVBLOCK;
		}
		if (fragment < UFS_I(inode)->i_lastfrag) {
			UFSD("EXIT (ALREADY ALLOCATED)\n");
			unlock_super (sb);
			return 0;
		}
	}
	else {
		if (tmp) {
			UFSD("EXIT (ALREADY ALLOCATED)\n");
			unlock_super(sb);
			return 0;
		}
	}

	/*
	 * There is not enough space for user on the device
	 */
	if (!capable(CAP_SYS_RESOURCE) && ufs_freespace(uspi, UFS_MINFREE) <= 0) {
		unlock_super (sb);
		UFSD("EXIT (FAILED)\n");
		return 0;
	}

	if (goal >= uspi->s_size) 
		goal = 0;
	if (goal == 0) 
		cgno = ufs_inotocg (inode->i_ino);
	else
		cgno = ufs_dtog(uspi, goal);
	 
	/*
	 * allocate new fragment
	 */
	if (oldcount == 0) {
		result = ufs_alloc_fragments (inode, cgno, goal, count, err);
		if (result) {
			ufs_cpu_to_data_ptr(sb, p, result);
			*err = 0;
			UFS_I(inode)->i_lastfrag =
				max_t(u32, UFS_I(inode)->i_lastfrag,
				      fragment + count);
			ufs_clear_frags(inode, result + oldcount,
					newcount - oldcount, locked_page != NULL);
		}
		unlock_super(sb);
		UFSD("EXIT, result %llu\n", (unsigned long long)result);
		return result;
	}

	/*
	 * resize block
	 */
	result = ufs_add_fragments (inode, tmp, oldcount, newcount, err);
	if (result) {
		*err = 0;
		UFS_I(inode)->i_lastfrag = max_t(u32, UFS_I(inode)->i_lastfrag, fragment + count);
		ufs_clear_frags(inode, result + oldcount, newcount - oldcount,
				locked_page != NULL);
		unlock_super(sb);
		UFSD("EXIT, result %llu\n", (unsigned long long)result);
		return result;
	}

	/*
	 * allocate new block and move data
	 */
	switch (fs32_to_cpu(sb, usb1->fs_optim)) {
	    case UFS_OPTSPACE:
		request = newcount;
		if (uspi->s_minfree < 5 || uspi->cs_total.cs_nffree
		    > uspi->s_dsize * uspi->s_minfree / (2 * 100))
			break;
		usb1->fs_optim = cpu_to_fs32(sb, UFS_OPTTIME);
		break;
	    default:
		usb1->fs_optim = cpu_to_fs32(sb, UFS_OPTTIME);
	
	    case UFS_OPTTIME:
		request = uspi->s_fpb;
		if (uspi->cs_total.cs_nffree < uspi->s_dsize *
		    (uspi->s_minfree - 2) / 100)
			break;
		usb1->fs_optim = cpu_to_fs32(sb, UFS_OPTTIME);
		break;
	}
	result = ufs_alloc_fragments (inode, cgno, goal, request, err);
	if (result) {
		ufs_clear_frags(inode, result + oldcount, newcount - oldcount,
				locked_page != NULL);
		ufs_change_blocknr(inode, fragment - oldcount, oldcount,
				   uspi->s_sbbase + tmp,
				   uspi->s_sbbase + result, locked_page);
		ufs_cpu_to_data_ptr(sb, p, result);
		*err = 0;
		UFS_I(inode)->i_lastfrag = max_t(u32, UFS_I(inode)->i_lastfrag, fragment + count);
		unlock_super(sb);
		if (newcount < request)
			ufs_free_fragments (inode, result + newcount, request - newcount);
		ufs_free_fragments (inode, tmp, oldcount);
		UFSD("EXIT, result %llu\n", (unsigned long long)result);
		return result;
	}

	unlock_super(sb);
	UFSD("EXIT (FAILED)\n");
	return 0;
}		
Exemplo n.º 7
0
static int atmel_lcdfb_check_var(struct fb_info *info)
{
	struct device_d *dev = &info->dev;
	struct atmel_lcdfb_info *sinfo = info->priv;
	struct atmel_lcdfb_platform_data *pdata = sinfo->pdata;
	struct fb_videomode *mode = info->mode;
	unsigned long clk_value_khz;

	clk_value_khz = clk_get_rate(sinfo->lcdc_clk) / 1000;

	dev_dbg(dev, "%s:\n", __func__);

	if (!(mode->pixclock && info->bits_per_pixel)) {
		dev_err(dev, "needed value not specified\n");
		return -EINVAL;
	}

	dev_dbg(dev, "  resolution: %ux%u\n", mode->xres, mode->yres);
	dev_dbg(dev, "  pixclk:     %lu KHz\n", PICOS2KHZ(mode->pixclock));
	dev_dbg(dev, "  bpp:        %u\n", info->bits_per_pixel);
	dev_dbg(dev, "  clk:        %lu KHz\n", clk_value_khz);

	if (PICOS2KHZ(mode->pixclock) > clk_value_khz) {
		dev_err(dev, "%lu KHz pixel clock is too fast\n", PICOS2KHZ(mode->pixclock));
		return -EINVAL;
	}

	/* Saturate vertical and horizontal timings at maximum values */
	if (sinfo->dev_data->limit_screeninfo)
		sinfo->dev_data->limit_screeninfo(mode);

	mode->vsync_len = min_t(u32, mode->vsync_len,
			(ATMEL_LCDC_VPW >> ATMEL_LCDC_VPW_OFFSET) + 1);
	mode->upper_margin = min_t(u32, mode->upper_margin,
			ATMEL_LCDC_VBP >> ATMEL_LCDC_VBP_OFFSET);
	mode->lower_margin = min_t(u32, mode->lower_margin,
			ATMEL_LCDC_VFP);
	mode->right_margin = min_t(u32, mode->right_margin,
			(ATMEL_LCDC_HFP >> ATMEL_LCDC_HFP_OFFSET) + 1);
	mode->hsync_len = min_t(u32, mode->hsync_len,
			(ATMEL_LCDC_HPW >> ATMEL_LCDC_HPW_OFFSET) + 1);
	mode->left_margin = min_t(u32, mode->left_margin,
			ATMEL_LCDC_HBP + 1);

	/* Some parameters can't be zero */
	mode->vsync_len = max_t(u32, mode->vsync_len, 1);
	mode->right_margin = max_t(u32, mode->right_margin, 1);
	mode->hsync_len = max_t(u32, mode->hsync_len, 1);
	mode->left_margin = max_t(u32, mode->left_margin, 1);

	switch (info->bits_per_pixel) {
	case 1:
	case 2:
	case 4:
	case 8:
		info->red.offset = info->green.offset = info->blue.offset = 0;
		info->red.length = info->green.length = info->blue.length
			= info->bits_per_pixel;
		break;
	case 16:
		/* Older SOCs use IBGR:555 rather than BGR:565. */
		if (pdata->have_intensity_bit)
			info->green.length = 5;
		else
			info->green.length = 6;
		if (pdata->lcd_wiring_mode == ATMEL_LCDC_WIRING_RGB) {
			/* RGB:5X5 mode */
			info->red.offset = info->green.length + 5;
			info->blue.offset = 0;
		} else {
			/* BGR:5X5 mode */
			info->red.offset = 0;
			info->blue.offset = info->green.length + 5;
		}
		info->green.offset = 5;
		info->red.length = info->blue.length = 5;
		break;
	case 32:
		info->transp.offset = 24;
		info->transp.length = 8;
		/* fall through */
	case 24:
		if (pdata->lcd_wiring_mode == ATMEL_LCDC_WIRING_RGB) {
			/* RGB:888 mode */
			info->red.offset = 16;
			info->blue.offset = 0;
		} else {
			/* BGR:888 mode */
			info->red.offset = 0;
			info->blue.offset = 16;
		}
		info->green.offset = 8;
		info->red.length = info->green.length = info->blue.length = 8;
		break;
	default:
		dev_err(dev, "color depth %d not supported\n",
					info->bits_per_pixel);
		return -EINVAL;
	}

	return 0;
}
Exemplo n.º 8
0
int enic_get_vnic_config(struct enic *enic)
{
	struct vnic_enet_config *c = &enic->config;
	int err;

	err = vnic_dev_get_mac_addr(enic->vdev, enic->mac_addr);
	if (err) {
		dev_err(enic_get_dev(enic),
			"Error getting MAC addr, %d\n", err);
		return err;
	}


#define GET_CONFIG(m) \
	do { \
		err = vnic_dev_spec(enic->vdev, \
			offsetof(struct vnic_enet_config, m), \
			sizeof(c->m), &c->m); \
		if (err) { \
			dev_err(enic_get_dev(enic), \
				"Error getting %s, %d\n", #m, err); \
			return err; \
		} \
	} while (0)

	GET_CONFIG(flags);
	GET_CONFIG(wq_desc_count);
	GET_CONFIG(rq_desc_count);
	GET_CONFIG(mtu);
	GET_CONFIG(intr_timer_type);
	GET_CONFIG(intr_mode);
	GET_CONFIG(intr_timer_usec);
	GET_CONFIG(loop_tag);
	GET_CONFIG(num_arfs);
	GET_CONFIG(max_pkt_size);

	/* max packet size is only defined in newer VIC firmware
	 * and will be 0 for legacy firmware and VICs
	 */
	if (c->max_pkt_size > ENIC_DEFAULT_MAX_PKT_SIZE)
		enic->max_mtu = c->max_pkt_size - (ETHER_HDR_LEN + 4);
	else
		enic->max_mtu = ENIC_DEFAULT_MAX_PKT_SIZE - (ETHER_HDR_LEN + 4);
	if (c->mtu == 0)
		c->mtu = 1500;

	enic->rte_dev->data->mtu = min_t(u16, enic->max_mtu,
					 max_t(u16, ENIC_MIN_MTU, c->mtu));

	enic->adv_filters = vnic_dev_capable_adv_filters(enic->vdev);
	dev_info(enic, "Advanced Filters %savailable\n", ((enic->adv_filters)
		 ? "" : "not "));

	c->wq_desc_count =
		min_t(u32, ENIC_MAX_WQ_DESCS,
		max_t(u32, ENIC_MIN_WQ_DESCS,
		c->wq_desc_count));
	c->wq_desc_count &= 0xffffffe0; /* must be aligned to groups of 32 */

	c->rq_desc_count =
		min_t(u32, ENIC_MAX_RQ_DESCS,
		max_t(u32, ENIC_MIN_RQ_DESCS,
		c->rq_desc_count));
	c->rq_desc_count &= 0xffffffe0; /* must be aligned to groups of 32 */

	c->intr_timer_usec = min_t(u32, c->intr_timer_usec,
		vnic_dev_get_intr_coal_timer_max(enic->vdev));

	dev_info(enic_get_dev(enic),
		"vNIC MAC addr %02x:%02x:%02x:%02x:%02x:%02x "
		"wq/rq %d/%d mtu %d, max mtu:%d\n",
		enic->mac_addr[0], enic->mac_addr[1], enic->mac_addr[2],
		enic->mac_addr[3], enic->mac_addr[4], enic->mac_addr[5],
		c->wq_desc_count, c->rq_desc_count,
		enic->rte_dev->data->mtu, enic->max_mtu);
	dev_info(enic_get_dev(enic), "vNIC csum tx/rx %s/%s "
		"rss %s intr mode %s type %s timer %d usec "
		"loopback tag 0x%04x\n",
		ENIC_SETTING(enic, TXCSUM) ? "yes" : "no",
		ENIC_SETTING(enic, RXCSUM) ? "yes" : "no",
		ENIC_SETTING(enic, RSS) ? "yes" : "no",
		c->intr_mode == VENET_INTR_MODE_INTX ? "INTx" :
		c->intr_mode == VENET_INTR_MODE_MSI ? "MSI" :
		c->intr_mode == VENET_INTR_MODE_ANY ? "any" :
		"unknown",
		c->intr_timer_type == VENET_INTR_TYPE_MIN ? "min" :
		c->intr_timer_type == VENET_INTR_TYPE_IDLE ? "idle" :
		"unknown",
		c->intr_timer_usec,
		c->loop_tag);

	return 0;
}
Exemplo n.º 9
0
static int bcm203x_probe(struct usb_interface *intf, const struct usb_device_id *id)
{
	const struct firmware *firmware;
	struct usb_device *udev = interface_to_usbdev(intf);
	struct bcm203x_data *data;
	int size;

	BT_DBG("intf %p id %p", intf, id);

	if (intf->cur_altsetting->desc.bInterfaceNumber != 0)
		return -ENODEV;

	data = devm_kzalloc(&intf->dev, sizeof(*data), GFP_KERNEL);
	if (!data) {
		BT_ERR("Can't allocate memory for data structure");
		return -ENOMEM;
	}

	data->udev  = udev;
	data->state = BCM203X_LOAD_MINIDRV;

	data->urb = usb_alloc_urb(0, GFP_KERNEL);
	if (!data->urb) {
		BT_ERR("Can't allocate URB");
		return -ENOMEM;
	}

	if (request_firmware(&firmware, "BCM2033-MD.hex", &udev->dev) < 0) {
		BT_ERR("Mini driver request failed");
		usb_free_urb(data->urb);
		return -EIO;
	}

	BT_DBG("minidrv data %p size %zu", firmware->data, firmware->size);

	size = max_t(uint, firmware->size, 4096);

	data->buffer = kmalloc(size, GFP_KERNEL);
	if (!data->buffer) {
		BT_ERR("Can't allocate memory for mini driver");
		release_firmware(firmware);
		usb_free_urb(data->urb);
		return -ENOMEM;
	}

	memcpy(data->buffer, firmware->data, firmware->size);

	usb_fill_bulk_urb(data->urb, udev, usb_sndbulkpipe(udev, BCM203X_OUT_EP),
			data->buffer, firmware->size, bcm203x_complete, data);

	release_firmware(firmware);

	if (request_firmware(&firmware, "BCM2033-FW.bin", &udev->dev) < 0) {
		BT_ERR("Firmware request failed");
		usb_free_urb(data->urb);
		kfree(data->buffer);
		return -EIO;
	}

	BT_DBG("firmware data %p size %zu", firmware->data, firmware->size);

	data->fw_data = kmemdup(firmware->data, firmware->size, GFP_KERNEL);
	if (!data->fw_data) {
		BT_ERR("Can't allocate memory for firmware image");
		release_firmware(firmware);
		usb_free_urb(data->urb);
		kfree(data->buffer);
		return -ENOMEM;
	}

	data->fw_size = firmware->size;
	data->fw_sent = 0;

	release_firmware(firmware);

	INIT_WORK(&data->work, bcm203x_work);

	usb_set_intfdata(intf, data);

	/* use workqueue to have a small delay */
	schedule_work(&data->work);

	return 0;
}
Exemplo n.º 10
0
int enic_get_vnic_config(struct enic *enic)
{
	struct vnic_enet_config *c = &enic->config;
	int err;

	err = vnic_dev_get_mac_addr(enic->vdev, enic->mac_addr);
	if (err) {
		dev_err(enic_get_dev(enic),
			"Error getting MAC addr, %d\n", err);
		return err;
	}

#define GET_CONFIG(m) \
	do { \
		err = vnic_dev_spec(enic->vdev, \
			offsetof(struct vnic_enet_config, m), \
			sizeof(c->m), &c->m); \
		if (err) { \
			dev_err(enic_get_dev(enic), \
				"Error getting %s, %d\n", #m, err); \
			return err; \
		} \
	} while (0)

	GET_CONFIG(flags);
	GET_CONFIG(wq_desc_count);
	GET_CONFIG(rq_desc_count);
	GET_CONFIG(mtu);
	GET_CONFIG(intr_timer_type);
	GET_CONFIG(intr_mode);
	GET_CONFIG(intr_timer_usec);
	GET_CONFIG(loop_tag);

	c->wq_desc_count =
		min_t(u32, ENIC_MAX_WQ_DESCS,
		max_t(u32, ENIC_MIN_WQ_DESCS,
		c->wq_desc_count));
	c->wq_desc_count &= 0xffffffe0; /* must be aligned to groups of 32 */

	c->rq_desc_count =
		min_t(u32, ENIC_MAX_RQ_DESCS,
		max_t(u32, ENIC_MIN_RQ_DESCS,
		c->rq_desc_count));
	c->rq_desc_count &= 0xffffffe0; /* must be aligned to groups of 32 */

	if (c->mtu == 0)
		c->mtu = 1500;
	c->mtu = min_t(u16, ENIC_MAX_MTU,
		max_t(u16, ENIC_MIN_MTU,
		c->mtu));

	c->intr_timer_usec = min_t(u32, c->intr_timer_usec,
		vnic_dev_get_intr_coal_timer_max(enic->vdev));

	dev_info(enic_get_dev(enic),
		"vNIC MAC addr %pM wq/rq %d/%d mtu %d\n",
		enic->mac_addr, c->wq_desc_count, c->rq_desc_count, c->mtu);

	dev_info(enic_get_dev(enic), "vNIC csum tx/rx %s/%s "
		"tso/lro %s/%s rss %s intr mode %s type %s timer %d usec "
		"loopback tag 0x%04x\n",
		ENIC_SETTING(enic, TXCSUM) ? "yes" : "no",
		ENIC_SETTING(enic, RXCSUM) ? "yes" : "no",
		ENIC_SETTING(enic, TSO) ? "yes" : "no",
		ENIC_SETTING(enic, LRO) ? "yes" : "no",
		ENIC_SETTING(enic, RSS) ? "yes" : "no",
		c->intr_mode == VENET_INTR_MODE_INTX ? "INTx" :
		c->intr_mode == VENET_INTR_MODE_MSI ? "MSI" :
		c->intr_mode == VENET_INTR_MODE_ANY ? "any" :
		"unknown",
		c->intr_timer_type == VENET_INTR_TYPE_MIN ? "min" :
		c->intr_timer_type == VENET_INTR_TYPE_IDLE ? "idle" :
		"unknown",
		c->intr_timer_usec,
		c->loop_tag);

	return 0;
}
Exemplo n.º 11
0
static int ft1000_probe(struct usb_interface *interface,
			const struct usb_device_id *id)
{
	struct usb_host_interface *iface_desc;
	struct usb_endpoint_descriptor *endpoint;
	struct usb_device *dev;
	unsigned numaltsetting;
	int i, ret = 0, size;

	struct ft1000_usb *ft1000dev;
	struct ft1000_info *pft1000info = NULL;
	const struct firmware *dsp_fw;

	ft1000dev = kzalloc(sizeof(struct ft1000_usb), GFP_KERNEL);
	if (!ft1000dev)
		return -ENOMEM;

	dev = interface_to_usbdev(interface);
	DEBUG("ft1000_probe: usb device descriptor info:\n");
	DEBUG("ft1000_probe: number of configuration is %d\n",
	      dev->descriptor.bNumConfigurations);

	ft1000dev->dev = dev;
	ft1000dev->status = 0;
	ft1000dev->net = NULL;
	ft1000dev->tx_urb = usb_alloc_urb(0, GFP_ATOMIC);
	ft1000dev->rx_urb = usb_alloc_urb(0, GFP_ATOMIC);

	DEBUG("ft1000_probe is called\n");
	numaltsetting = interface->num_altsetting;
	DEBUG("ft1000_probe: number of alt settings is :%d\n", numaltsetting);
	iface_desc = interface->cur_altsetting;
	DEBUG("ft1000_probe: number of endpoints is %d\n",
	      iface_desc->desc.bNumEndpoints);
	DEBUG("ft1000_probe: descriptor type is %d\n",
	      iface_desc->desc.bDescriptorType);
	DEBUG("ft1000_probe: interface number is %d\n",
	      iface_desc->desc.bInterfaceNumber);
	DEBUG("ft1000_probe: alternatesetting is %d\n",
	      iface_desc->desc.bAlternateSetting);
	DEBUG("ft1000_probe: interface class is %d\n",
	      iface_desc->desc.bInterfaceClass);
	DEBUG("ft1000_probe: control endpoint info:\n");
	DEBUG("ft1000_probe: descriptor0 type -- %d\n",
	      iface_desc->endpoint[0].desc.bmAttributes);
	DEBUG("ft1000_probe: descriptor1 type -- %d\n",
	      iface_desc->endpoint[1].desc.bmAttributes);
	DEBUG("ft1000_probe: descriptor2 type -- %d\n",
	      iface_desc->endpoint[2].desc.bmAttributes);

	for (i = 0; i < iface_desc->desc.bNumEndpoints; i++) {
		endpoint =
		    (struct usb_endpoint_descriptor *)&iface_desc->
		    endpoint[i].desc;
		DEBUG("endpoint %d\n", i);
		DEBUG("bEndpointAddress=%x, bmAttributes=%x\n",
		      endpoint->bEndpointAddress, endpoint->bmAttributes);
		if ((endpoint->bEndpointAddress & USB_DIR_IN)
		    && ((endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
			USB_ENDPOINT_XFER_BULK)) {
			ft1000dev->bulk_in_endpointAddr =
			    endpoint->bEndpointAddress;
			DEBUG("ft1000_probe: in: %d\n",
			      endpoint->bEndpointAddress);
		}

		if (!(endpoint->bEndpointAddress & USB_DIR_IN)
		    && ((endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
			USB_ENDPOINT_XFER_BULK)) {
			ft1000dev->bulk_out_endpointAddr =
			    endpoint->bEndpointAddress;
			DEBUG("ft1000_probe: out: %d\n",
			      endpoint->bEndpointAddress);
		}
	}

	DEBUG("bulk_in=%d, bulk_out=%d\n", ft1000dev->bulk_in_endpointAddr,
	      ft1000dev->bulk_out_endpointAddr);

	ret = request_firmware(&dsp_fw, "ft3000.img", &dev->dev);
	if (ret < 0) {
		pr_err("Error request_firmware().\n");
		goto err_fw;
	}

	size = max_t(uint, dsp_fw->size, 4096);
	pFileStart = kmalloc(size, GFP_KERNEL);

	if (!pFileStart) {
		release_firmware(dsp_fw);
		ret = -ENOMEM;
		goto err_fw;
	}

	memcpy(pFileStart, dsp_fw->data, dsp_fw->size);
	FileLength = dsp_fw->size;
	release_firmware(dsp_fw);

	DEBUG("ft1000_probe: start downloading dsp image...\n");

	ret = init_ft1000_netdev(ft1000dev);
	if (ret)
		goto err_load;

	pft1000info = netdev_priv(ft1000dev->net);

	DEBUG("In probe: pft1000info=%p\n", pft1000info);
	ret = dsp_reload(ft1000dev);
	if (ret) {
		pr_err("Problem with DSP image loading\n");
		goto err_load;
	}

	gPollingfailed = FALSE;
	ft1000dev->pPollThread =
	    kthread_run(ft1000_poll_thread, ft1000dev, "ft1000_poll");

	if (IS_ERR(ft1000dev->pPollThread)) {
		ret = PTR_ERR(ft1000dev->pPollThread);
		goto err_load;
	}

	msleep(500);

	while (!pft1000info->CardReady) {
		if (gPollingfailed) {
			ret = -EIO;
			goto err_thread;
		}
		msleep(100);
		DEBUG("ft1000_probe::Waiting for Card Ready\n");
	}

	DEBUG("ft1000_probe::Card Ready!!!! Registering network device\n");

	ret = reg_ft1000_netdev(ft1000dev, interface);
	if (ret)
		goto err_thread;

	ret = ft1000_init_proc(ft1000dev->net);
	if (ret)
		goto err_proc;

	ft1000dev->NetDevRegDone = 1;

	return 0;

err_proc:
	unregister_netdev(ft1000dev->net);
	free_netdev(ft1000dev->net);
err_thread:
	kthread_stop(ft1000dev->pPollThread);
err_load:
	kfree(pFileStart);
err_fw:
	kfree(ft1000dev);
	return ret;
}
Exemplo n.º 12
0
static struct fimc_fmt *fimc_capture_try_format(struct fimc_ctx *ctx,
						u32 *width, u32 *height,
						u32 *code, u32 *fourcc, int pad)
{
	bool rotation = ctx->rotation == 90 || ctx->rotation == 270;
	struct fimc_dev *fimc = ctx->fimc_dev;
	struct samsung_fimc_variant *var = fimc->variant;
	struct fimc_pix_limit *pl = var->pix_limit;
	struct fimc_frame *dst = &ctx->d_frame;
	u32 depth, min_w, max_w, min_h, align_h = 3;
	u32 mask = FMT_FLAGS_CAM;
	struct fimc_fmt *ffmt;

	/* Color conversion from/to JPEG is not supported */
	if (code && ctx->s_frame.fmt && pad == FIMC_SD_PAD_SOURCE &&
	    fimc_fmt_is_jpeg(ctx->s_frame.fmt->color))
		*code = V4L2_MBUS_FMT_JPEG_1X8;

	if (fourcc && *fourcc != V4L2_PIX_FMT_JPEG && pad != FIMC_SD_PAD_SINK)
		mask |= FMT_FLAGS_M2M;

	ffmt = fimc_find_format(fourcc, code, mask, 0);
	if (WARN_ON(!ffmt))
		return NULL;
	if (code)
		*code = ffmt->mbus_code;
	if (fourcc)
		*fourcc = ffmt->fourcc;

	if (pad == FIMC_SD_PAD_SINK) {
		max_w = fimc_fmt_is_jpeg(ffmt->color) ?
			pl->scaler_dis_w : pl->scaler_en_w;
		/* Apply the camera input interface pixel constraints */
		v4l_bound_align_image(width, max_t(u32, *width, 32), max_w, 4,
				      height, max_t(u32, *height, 32),
				      FIMC_CAMIF_MAX_HEIGHT,
				      fimc_fmt_is_jpeg(ffmt->color) ? 3 : 1,
				      0);
		return ffmt;
	}
	/* Can't scale or crop in transparent (JPEG) transfer mode */
	if (fimc_fmt_is_jpeg(ffmt->color)) {
		*width  = ctx->s_frame.f_width;
		*height = ctx->s_frame.f_height;
		return ffmt;
	}
	/* Apply the scaler and the output DMA constraints */
	max_w = rotation ? pl->out_rot_en_w : pl->out_rot_dis_w;
	min_w = ctx->state & FIMC_DST_CROP ? dst->width : var->min_out_pixsize;
	min_h = ctx->state & FIMC_DST_CROP ? dst->height : var->min_out_pixsize;
	if (var->min_vsize_align == 1 && !rotation)
		align_h = fimc_fmt_is_rgb(ffmt->color) ? 0 : 1;

	depth = fimc_get_format_depth(ffmt);
	v4l_bound_align_image(width, min_w, max_w,
			      ffs(var->min_out_pixsize) - 1,
			      height, min_h, FIMC_CAMIF_MAX_HEIGHT,
			      align_h,
			      64/(ALIGN(depth, 8)));

	dbg("pad%d: code: 0x%x, %dx%d. dst fmt: %dx%d",
	    pad, code ? *code : 0, *width, *height,
	    dst->f_width, dst->f_height);

	return ffmt;
}
Exemplo n.º 13
0
/*
 * TCP Westwood
 * Here limit is evaluated as Bw estimation*RTTmin (for obtaining it
 * in packets we use mss_cache). Rttmin is guaranteed to be >= 2
 * so avoids ever returning 0.
 */
static u32 tcp_westwood_bw_rttmin(const struct sock *sk)
{
	const struct tcp_sock *tp = tcp_sk(sk);
	const struct westwood *w = inet_csk_ca(sk);
	return max_t(u32, (w->bw_est * w->rtt_min) / tp->mss_cache, 2);
}
Exemplo n.º 14
0
static int cdns_pcie_ep_set_bar(struct pci_epc *epc, u8 fn,
				struct pci_epf_bar *epf_bar)
{
	struct cdns_pcie_ep *ep = epc_get_drvdata(epc);
	struct cdns_pcie *pcie = &ep->pcie;
	dma_addr_t bar_phys = epf_bar->phys_addr;
	enum pci_barno bar = epf_bar->barno;
	int flags = epf_bar->flags;
	u32 addr0, addr1, reg, cfg, b, aperture, ctrl;
	u64 sz;

	/* BAR size is 2^(aperture + 7) */
	sz = max_t(size_t, epf_bar->size, CDNS_PCIE_EP_MIN_APERTURE);
	/*
	 * roundup_pow_of_two() returns an unsigned long, which is not suited
	 * for 64bit values.
	 */
	sz = 1ULL << fls64(sz - 1);
	aperture = ilog2(sz) - 7; /* 128B -> 0, 256B -> 1, 512B -> 2, ... */

	if ((flags & PCI_BASE_ADDRESS_SPACE) == PCI_BASE_ADDRESS_SPACE_IO) {
		ctrl = CDNS_PCIE_LM_BAR_CFG_CTRL_IO_32BITS;
	} else {
		bool is_prefetch = !!(flags & PCI_BASE_ADDRESS_MEM_PREFETCH);
		bool is_64bits = sz > SZ_2G;

		if (is_64bits && (bar & 1))
			return -EINVAL;

		if (is_64bits && !(flags & PCI_BASE_ADDRESS_MEM_TYPE_64))
			epf_bar->flags |= PCI_BASE_ADDRESS_MEM_TYPE_64;

		if (is_64bits && is_prefetch)
			ctrl = CDNS_PCIE_LM_BAR_CFG_CTRL_PREFETCH_MEM_64BITS;
		else if (is_prefetch)
			ctrl = CDNS_PCIE_LM_BAR_CFG_CTRL_PREFETCH_MEM_32BITS;
		else if (is_64bits)
			ctrl = CDNS_PCIE_LM_BAR_CFG_CTRL_MEM_64BITS;
		else
			ctrl = CDNS_PCIE_LM_BAR_CFG_CTRL_MEM_32BITS;
	}

	addr0 = lower_32_bits(bar_phys);
	addr1 = upper_32_bits(bar_phys);
	cdns_pcie_writel(pcie, CDNS_PCIE_AT_IB_EP_FUNC_BAR_ADDR0(fn, bar),
			 addr0);
	cdns_pcie_writel(pcie, CDNS_PCIE_AT_IB_EP_FUNC_BAR_ADDR1(fn, bar),
			 addr1);

	if (bar < BAR_4) {
		reg = CDNS_PCIE_LM_EP_FUNC_BAR_CFG0(fn);
		b = bar;
	} else {
		reg = CDNS_PCIE_LM_EP_FUNC_BAR_CFG1(fn);
		b = bar - BAR_4;
	}

	cfg = cdns_pcie_readl(pcie, reg);
	cfg &= ~(CDNS_PCIE_LM_EP_FUNC_BAR_CFG_BAR_APERTURE_MASK(b) |
		 CDNS_PCIE_LM_EP_FUNC_BAR_CFG_BAR_CTRL_MASK(b));
	cfg |= (CDNS_PCIE_LM_EP_FUNC_BAR_CFG_BAR_APERTURE(b, aperture) |
		CDNS_PCIE_LM_EP_FUNC_BAR_CFG_BAR_CTRL(b, ctrl));
	cdns_pcie_writel(pcie, reg, cfg);

	return 0;
}
Exemplo n.º 15
0
/**
 *      atmel_lcdfb_check_var - Validates a var passed in.
 *      @var: frame buffer variable screen structure
 *      @info: frame buffer structure that represents a single frame buffer
 *
 *	Checks to see if the hardware supports the state requested by
 *	var passed in. This function does not alter the hardware
 *	state!!!  This means the data stored in struct fb_info and
 *	struct atmel_lcdfb_info do not change. This includes the var
 *	inside of struct fb_info.  Do NOT change these. This function
 *	can be called on its own if we intent to only test a mode and
 *	not actually set it. The stuff in modedb.c is a example of
 *	this. If the var passed in is slightly off by what the
 *	hardware can support then we alter the var PASSED in to what
 *	we can do. If the hardware doesn't support mode change a
 *	-EINVAL will be returned by the upper layers. You don't need
 *	to implement this function then. If you hardware doesn't
 *	support changing the resolution then this function is not
 *	needed. In this case the driver would just provide a var that
 *	represents the static state the screen is in.
 *
 *	Returns negative errno on error, or zero on success.
 */
static int atmel_lcdfb_check_var(struct fb_var_screeninfo *var,
			     struct fb_info *info)
{
	struct device *dev = info->device;
	struct atmel_lcdfb_info *sinfo = info->par;
	unsigned long clk_value_khz;

	clk_value_khz = clk_get_rate(sinfo->lcdc_clk) / 1000;

	dev_dbg(dev, "%s:\n", __func__);
	dev_dbg(dev, "  resolution: %ux%u\n", var->xres, var->yres);
	dev_dbg(dev, "  pixclk:     %lu KHz\n", PICOS2KHZ(var->pixclock));
	dev_dbg(dev, "  bpp:        %u\n", var->bits_per_pixel);
	dev_dbg(dev, "  clk:        %lu KHz\n", clk_value_khz);

	if ((PICOS2KHZ(var->pixclock) * var->bits_per_pixel / 8) > clk_value_khz) {
		dev_err(dev, "%lu KHz pixel clock is too fast\n", PICOS2KHZ(var->pixclock));
		return -EINVAL;
	}

	/* Force same alignment for each line */
	var->xres = (var->xres + 3) & ~3UL;
	var->xres_virtual = (var->xres_virtual + 3) & ~3UL;

	var->red.msb_right = var->green.msb_right = var->blue.msb_right = 0;
	var->transp.msb_right = 0;
	var->transp.offset = var->transp.length = 0;
	var->xoffset = var->yoffset = 0;

	/* Saturate vertical and horizontal timings at maximum values */
	var->vsync_len = min_t(u32, var->vsync_len,
			(ATMEL_LCDC_VPW >> ATMEL_LCDC_VPW_OFFSET) + 1);
	var->upper_margin = min_t(u32, var->upper_margin,
			ATMEL_LCDC_VBP >> ATMEL_LCDC_VBP_OFFSET);
	var->lower_margin = min_t(u32, var->lower_margin,
			ATMEL_LCDC_VFP);
	var->right_margin = min_t(u32, var->right_margin,
			(ATMEL_LCDC_HFP >> ATMEL_LCDC_HFP_OFFSET) + 1);
	var->hsync_len = min_t(u32, var->hsync_len,
			(ATMEL_LCDC_HPW >> ATMEL_LCDC_HPW_OFFSET) + 1);
	var->left_margin = min_t(u32, var->left_margin,
			ATMEL_LCDC_HBP + 1);

	/* Some parameters can't be zero */
	var->vsync_len = max_t(u32, var->vsync_len, 1);
	var->right_margin = max_t(u32, var->right_margin, 1);
	var->hsync_len = max_t(u32, var->hsync_len, 1);
	var->left_margin = max_t(u32, var->left_margin, 1);

	switch (var->bits_per_pixel) {
	case 1:
	case 2:
	case 4:
	case 8:
		var->red.offset = var->green.offset = var->blue.offset = 0;
		var->red.length = var->green.length = var->blue.length
			= var->bits_per_pixel;
		break;
	case 15:
	case 16:
		if (sinfo->lcd_wiring_mode == ATMEL_LCDC_WIRING_RGB) {
			/* RGB:565 mode */
			var->red.offset = 11;
			var->blue.offset = 0;
			var->green.length = 6;
		} else {
			/* BGR:555 mode */
			var->red.offset = 0;
			var->blue.offset = 10;
			var->green.length = 5;
		}
		var->green.offset = 5;
		var->red.length = var->blue.length = 5;
		break;
	case 32:
		var->transp.offset = 24;
		var->transp.length = 8;
		/* fall through */
	case 24:
		if (sinfo->lcd_wiring_mode == ATMEL_LCDC_WIRING_RGB) {
			/* RGB:888 mode */
			var->red.offset = 16;
			var->blue.offset = 0;
		} else {
			/* BGR:888 mode */
			var->red.offset = 0;
			var->blue.offset = 16;
		}
		var->green.offset = 8;
		var->red.length = var->green.length = var->blue.length = 8;
		break;
	default:
		dev_err(dev, "color depth %d not supported\n",
					var->bits_per_pixel);
		return -EINVAL;
	}

	return 0;
}
Exemplo n.º 16
0
static int tcf_gact_init(struct net *net, struct nlattr *nla,
			 struct nlattr *est, struct tc_action *a,
			 int ovr, int bind)
{
	struct tc_action_net *tn = net_generic(net, gact_net_id);
	struct nlattr *tb[TCA_GACT_MAX + 1];
	struct tc_gact *parm;
	struct tcf_gact *gact;
	int ret = 0;
	int err;
#ifdef CONFIG_GACT_PROB
	struct tc_gact_p *p_parm = NULL;
#endif

	if (nla == NULL)
		return -EINVAL;

	err = nla_parse_nested(tb, TCA_GACT_MAX, nla, gact_policy);
	if (err < 0)
		return err;

	if (tb[TCA_GACT_PARMS] == NULL)
		return -EINVAL;
	parm = nla_data(tb[TCA_GACT_PARMS]);

#ifndef CONFIG_GACT_PROB
	if (tb[TCA_GACT_PROB] != NULL)
		return -EOPNOTSUPP;
#else
	if (tb[TCA_GACT_PROB]) {
		p_parm = nla_data(tb[TCA_GACT_PROB]);
		if (p_parm->ptype >= MAX_RAND)
			return -EINVAL;
	}
#endif

	if (!tcf_hash_check(tn, parm->index, a, bind)) {
		ret = tcf_hash_create(tn, parm->index, est, a,
				      sizeof(*gact), bind, true);
		if (ret)
			return ret;
		ret = ACT_P_CREATED;
	} else {
		if (bind)/* dont override defaults */
			return 0;
		tcf_hash_release(a, bind);
		if (!ovr)
			return -EEXIST;
	}

	gact = to_gact(a);

	ASSERT_RTNL();
	gact->tcf_action = parm->action;
#ifdef CONFIG_GACT_PROB
	if (p_parm) {
		gact->tcfg_paction = p_parm->paction;
		gact->tcfg_pval    = max_t(u16, 1, p_parm->pval);
		/* Make sure tcfg_pval is written before tcfg_ptype
		 * coupled with smp_rmb() in gact_net_rand() & gact_determ()
		 */
		smp_wmb();
		gact->tcfg_ptype   = p_parm->ptype;
	}
#endif
	if (ret == ACT_P_CREATED)
		tcf_hash_insert(tn, a);
	return ret;
}
Exemplo n.º 17
0
int jbd2_journal_stop(handle_t *handle)
{
	transaction_t *transaction = handle->h_transaction;
	journal_t *journal = transaction->t_journal;
	int err, wait_for_commit = 0;
	tid_t tid;
	pid_t pid;

	J_ASSERT(journal_current_handle() == handle);

	if (is_handle_aborted(handle))
		err = -EIO;
	else {
		J_ASSERT(atomic_read(&transaction->t_updates) > 0);
		err = 0;
	}

	if (--handle->h_ref > 0) {
		jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
			  handle->h_ref);
		return err;
	}

	jbd_debug(4, "Handle %p going down\n", handle);

	pid = current->pid;
	if (handle->h_sync && journal->j_last_sync_writer != pid) {
		u64 commit_time, trans_time;

		journal->j_last_sync_writer = pid;

		read_lock(&journal->j_state_lock);
		commit_time = journal->j_average_commit_time;
		read_unlock(&journal->j_state_lock);

		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
						   transaction->t_start_time));

		commit_time = max_t(u64, commit_time,
				    1000*journal->j_min_batch_time);
		commit_time = min_t(u64, commit_time,
				    1000*journal->j_max_batch_time);

		if (trans_time < commit_time) {
			ktime_t expires = ktime_add_ns(ktime_get(),
						       commit_time);
			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
		}
	}

	if (handle->h_sync)
		transaction->t_synchronous_commit = 1;
	current->journal_info = NULL;
	atomic_sub(handle->h_buffer_credits,
		   &transaction->t_outstanding_credits);

	if (handle->h_sync ||
	    (atomic_read(&transaction->t_outstanding_credits) >
	     journal->j_max_transaction_buffers) ||
	    time_after_eq(jiffies, transaction->t_expires)) {

		jbd_debug(2, "transaction too old, requesting commit for "
					"handle %p\n", handle);
		
		jbd2_log_start_commit(journal, transaction->t_tid);

		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
			wait_for_commit = 1;
	}

	tid = transaction->t_tid;
	if (atomic_dec_and_test(&transaction->t_updates)) {
		wake_up(&journal->j_wait_updates);
		if (journal->j_barrier_count)
			wake_up(&journal->j_wait_transaction_locked);
	}

	if (wait_for_commit)
		err = jbd2_log_wait_commit(journal, tid);

	lock_map_release(&handle->h_lockdep_map);

	jbd2_free_handle(handle);
	return err;
}
Exemplo n.º 18
0
long ocfs2_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
	struct inode *inode = file_inode(filp);
	unsigned int flags;
	int new_clusters;
	int status;
	struct ocfs2_space_resv sr;
	struct ocfs2_new_group_input input;
	struct reflink_arguments args;
	const char __user *old_path;
	const char __user *new_path;
	bool preserve;
	struct ocfs2_info info;
	void __user *argp = (void __user *)arg;

	switch (cmd) {
	case OCFS2_IOC_GETFLAGS:
		status = ocfs2_get_inode_attr(inode, &flags);
		if (status < 0)
			return status;

		flags &= OCFS2_FL_VISIBLE;
		return put_user(flags, (int __user *) arg);
	case OCFS2_IOC_SETFLAGS:
		if (get_user(flags, (int __user *) arg))
			return -EFAULT;

		status = mnt_want_write_file(filp);
		if (status)
			return status;
		status = ocfs2_set_inode_attr(inode, flags,
			OCFS2_FL_MODIFIABLE);
		mnt_drop_write_file(filp);
		return status;
	case OCFS2_IOC_RESVSP:
	case OCFS2_IOC_RESVSP64:
	case OCFS2_IOC_UNRESVSP:
	case OCFS2_IOC_UNRESVSP64:
		if (copy_from_user(&sr, (int __user *) arg, sizeof(sr)))
			return -EFAULT;

		return ocfs2_change_file_space(filp, cmd, &sr);
	case OCFS2_IOC_GROUP_EXTEND:
		if (!capable(CAP_SYS_RESOURCE))
			return -EPERM;

		if (get_user(new_clusters, (int __user *)arg))
			return -EFAULT;

		status = mnt_want_write_file(filp);
		if (status)
			return status;
		status = ocfs2_group_extend(inode, new_clusters);
		mnt_drop_write_file(filp);
		return status;
	case OCFS2_IOC_GROUP_ADD:
	case OCFS2_IOC_GROUP_ADD64:
		if (!capable(CAP_SYS_RESOURCE))
			return -EPERM;

		if (copy_from_user(&input, (int __user *) arg, sizeof(input)))
			return -EFAULT;

		status = mnt_want_write_file(filp);
		if (status)
			return status;
		status = ocfs2_group_add(inode, &input);
		mnt_drop_write_file(filp);
		return status;
	case OCFS2_IOC_REFLINK:
		if (copy_from_user(&args, argp, sizeof(args)))
			return -EFAULT;
		old_path = (const char __user *)(unsigned long)args.old_path;
		new_path = (const char __user *)(unsigned long)args.new_path;
		preserve = (args.preserve != 0);

		return ocfs2_reflink_ioctl(inode, old_path, new_path, preserve);
	case OCFS2_IOC_INFO:
		if (copy_from_user(&info, argp, sizeof(struct ocfs2_info)))
			return -EFAULT;

		return ocfs2_info_handle(inode, &info, 0);
	case FITRIM:
	{
		struct super_block *sb = inode->i_sb;
		struct request_queue *q = bdev_get_queue(sb->s_bdev);
		struct fstrim_range range;
		int ret = 0;

		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;

		if (!blk_queue_discard(q))
			return -EOPNOTSUPP;

		if (copy_from_user(&range, argp, sizeof(range)))
			return -EFAULT;

		range.minlen = max_t(u64, q->limits.discard_granularity,
				     range.minlen);
		ret = ocfs2_trim_fs(sb, &range);
		if (ret < 0)
			return ret;

		if (copy_to_user(argp, &range, sizeof(range)))
			return -EFAULT;

		return 0;
	}
	case OCFS2_IOC_MOVE_EXT:
		return ocfs2_ioctl_move_extents(filp, argp);
	default:
		return -ENOTTY;
	}
}
Exemplo n.º 19
0
STATIC loff_t
xfs_seek_data(
	struct file		*file,
	loff_t			start,
	u32			type)
{
	struct inode		*inode = file->f_mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
	struct xfs_bmbt_irec	map[2];
	int			nmap = 2;
	loff_t			uninitialized_var(offset);
	xfs_fsize_t		isize;
	xfs_fileoff_t		fsbno;
	xfs_filblks_t		end;
	uint			lock;
	int			error;

	lock = xfs_ilock_map_shared(ip);

	isize = i_size_read(inode);
	if (start >= isize) {
		error = ENXIO;
		goto out_unlock;
	}

	fsbno = XFS_B_TO_FSBT(mp, start);

	/*
	 * Try to read extents from the first block indicated
	 * by fsbno to the end block of the file.
	 */
	end = XFS_B_TO_FSB(mp, isize);

	error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
			       XFS_BMAPI_ENTIRE);
	if (error)
		goto out_unlock;

	/*
	 * Treat unwritten extent as data extent since it might
	 * contains dirty data in page cache.
	 */
	if (map[0].br_startblock != HOLESTARTBLOCK) {
		offset = max_t(loff_t, start,
			       XFS_FSB_TO_B(mp, map[0].br_startoff));
	} else {
		if (nmap == 1) {
			error = ENXIO;
			goto out_unlock;
		}

		offset = max_t(loff_t, start,
			       XFS_FSB_TO_B(mp, map[1].br_startoff));
	}

	if (offset != file->f_pos)
		file->f_pos = offset;

out_unlock:
	xfs_iunlock_map_shared(ip, lock);

	if (error)
		return -error;
	return offset;
}
Exemplo n.º 20
0
static int fnic_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
	struct Scsi_Host *host;
	struct fc_lport *lp;
	struct fnic *fnic;
	mempool_t *pool;
	int err;
	int i;
	unsigned long flags;

	/*
	 * Allocate SCSI Host and set up association between host,
	 * local port, and fnic
	 */
	lp = libfc_host_alloc(&fnic_host_template, sizeof(struct fnic));
	if (!lp) {
		printk(KERN_ERR PFX "Unable to alloc libfc local port\n");
		err = -ENOMEM;
		goto err_out;
	}
	host = lp->host;
	fnic = lport_priv(lp);
	fnic->lport = lp;
	fnic->ctlr.lp = lp;

	snprintf(fnic->name, sizeof(fnic->name) - 1, "%s%d", DRV_NAME,
		 host->host_no);

	host->transportt = fnic_fc_transport;

	err = fnic_stats_debugfs_init(fnic);
	if (err) {
		shost_printk(KERN_ERR, fnic->lport->host,
				"Failed to initialize debugfs for stats\n");
		fnic_stats_debugfs_remove(fnic);
	}

	/* Setup PCI resources */
	pci_set_drvdata(pdev, fnic);

	fnic->pdev = pdev;

	err = pci_enable_device(pdev);
	if (err) {
		shost_printk(KERN_ERR, fnic->lport->host,
			     "Cannot enable PCI device, aborting.\n");
		goto err_out_free_hba;
	}

	err = pci_request_regions(pdev, DRV_NAME);
	if (err) {
		shost_printk(KERN_ERR, fnic->lport->host,
			     "Cannot enable PCI resources, aborting\n");
		goto err_out_disable_device;
	}

	pci_set_master(pdev);

	/* Query PCI controller on system for DMA addressing
	 * limitation for the device.  Try 64-bit first, and
	 * fail to 32-bit.
	 */
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
	if (err) {
		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
		if (err) {
			shost_printk(KERN_ERR, fnic->lport->host,
				     "No usable DMA configuration "
				     "aborting\n");
			goto err_out_release_regions;
		}
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
		if (err) {
			shost_printk(KERN_ERR, fnic->lport->host,
				     "Unable to obtain 32-bit DMA "
				     "for consistent allocations, aborting.\n");
			goto err_out_release_regions;
		}
	} else {
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
		if (err) {
			shost_printk(KERN_ERR, fnic->lport->host,
				     "Unable to obtain 64-bit DMA "
				     "for consistent allocations, aborting.\n");
			goto err_out_release_regions;
		}
	}

	/* Map vNIC resources from BAR0 */
	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
		shost_printk(KERN_ERR, fnic->lport->host,
			     "BAR0 not memory-map'able, aborting.\n");
		err = -ENODEV;
		goto err_out_release_regions;
	}

	fnic->bar0.vaddr = pci_iomap(pdev, 0, 0);
	fnic->bar0.bus_addr = pci_resource_start(pdev, 0);
	fnic->bar0.len = pci_resource_len(pdev, 0);

	if (!fnic->bar0.vaddr) {
		shost_printk(KERN_ERR, fnic->lport->host,
			     "Cannot memory-map BAR0 res hdr, "
			     "aborting.\n");
		err = -ENODEV;
		goto err_out_release_regions;
	}

	fnic->vdev = vnic_dev_register(NULL, fnic, pdev, &fnic->bar0);
	if (!fnic->vdev) {
		shost_printk(KERN_ERR, fnic->lport->host,
			     "vNIC registration failed, "
			     "aborting.\n");
		err = -ENODEV;
		goto err_out_iounmap;
	}

	err = fnic_dev_wait(fnic->vdev, vnic_dev_open,
			    vnic_dev_open_done, 0);
	if (err) {
		shost_printk(KERN_ERR, fnic->lport->host,
			     "vNIC dev open failed, aborting.\n");
		goto err_out_vnic_unregister;
	}

	err = vnic_dev_init(fnic->vdev, 0);
	if (err) {
		shost_printk(KERN_ERR, fnic->lport->host,
			     "vNIC dev init failed, aborting.\n");
		goto err_out_dev_close;
	}

	err = vnic_dev_mac_addr(fnic->vdev, fnic->ctlr.ctl_src_addr);
	if (err) {
		shost_printk(KERN_ERR, fnic->lport->host,
			     "vNIC get MAC addr failed \n");
		goto err_out_dev_close;
	}
	/* set data_src for point-to-point mode and to keep it non-zero */
	memcpy(fnic->data_src_addr, fnic->ctlr.ctl_src_addr, ETH_ALEN);

	/* Get vNIC configuration */
	err = fnic_get_vnic_config(fnic);
	if (err) {
		shost_printk(KERN_ERR, fnic->lport->host,
			     "Get vNIC configuration failed, "
			     "aborting.\n");
		goto err_out_dev_close;
	}

	/* Configure Maximum Outstanding IO reqs*/
	if (fnic->config.io_throttle_count != FNIC_UCSM_DFLT_THROTTLE_CNT_BLD) {
		host->can_queue = min_t(u32, FNIC_MAX_IO_REQ,
					max_t(u32, FNIC_MIN_IO_REQ,
					fnic->config.io_throttle_count));
	}
	fnic->fnic_max_tag_id = host->can_queue;

	err = scsi_init_shared_tag_map(host, fnic->fnic_max_tag_id);
	if (err) {
		shost_printk(KERN_ERR, fnic->lport->host,
			  "Unable to alloc shared tag map\n");
		goto err_out_dev_close;
	}

	host->max_lun = fnic->config.luns_per_tgt;
	host->max_id = FNIC_MAX_FCP_TARGET;
	host->max_cmd_len = FCOE_MAX_CMD_LEN;

	fnic_get_res_counts(fnic);

	err = fnic_set_intr_mode(fnic);
	if (err) {
		shost_printk(KERN_ERR, fnic->lport->host,
			     "Failed to set intr mode, "
			     "aborting.\n");
		goto err_out_dev_close;
	}

	err = fnic_alloc_vnic_resources(fnic);
	if (err) {
		shost_printk(KERN_ERR, fnic->lport->host,
			     "Failed to alloc vNIC resources, "
			     "aborting.\n");
		goto err_out_clear_intr;
	}


	/* initialize all fnic locks */
	spin_lock_init(&fnic->fnic_lock);

	for (i = 0; i < FNIC_WQ_MAX; i++)
		spin_lock_init(&fnic->wq_lock[i]);

	for (i = 0; i < FNIC_WQ_COPY_MAX; i++) {
		spin_lock_init(&fnic->wq_copy_lock[i]);
		fnic->wq_copy_desc_low[i] = DESC_CLEAN_LOW_WATERMARK;
		fnic->fw_ack_recd[i] = 0;
		fnic->fw_ack_index[i] = -1;
	}

	for (i = 0; i < FNIC_IO_LOCKS; i++)
		spin_lock_init(&fnic->io_req_lock[i]);

	fnic->io_req_pool = mempool_create_slab_pool(2, fnic_io_req_cache);
	if (!fnic->io_req_pool)
		goto err_out_free_resources;

	pool = mempool_create_slab_pool(2, fnic_sgl_cache[FNIC_SGL_CACHE_DFLT]);
	if (!pool)
		goto err_out_free_ioreq_pool;
	fnic->io_sgl_pool[FNIC_SGL_CACHE_DFLT] = pool;

	pool = mempool_create_slab_pool(2, fnic_sgl_cache[FNIC_SGL_CACHE_MAX]);
	if (!pool)
		goto err_out_free_dflt_pool;
	fnic->io_sgl_pool[FNIC_SGL_CACHE_MAX] = pool;

	/* setup vlan config, hw inserts vlan header */
	fnic->vlan_hw_insert = 1;
	fnic->vlan_id = 0;

	/* Initialize the FIP fcoe_ctrl struct */
	fnic->ctlr.send = fnic_eth_send;
	fnic->ctlr.update_mac = fnic_update_mac;
	fnic->ctlr.get_src_addr = fnic_get_mac;
	if (fnic->config.flags & VFCF_FIP_CAPABLE) {
		shost_printk(KERN_INFO, fnic->lport->host,
			     "firmware supports FIP\n");
		/* enable directed and multicast */
		vnic_dev_packet_filter(fnic->vdev, 1, 1, 0, 0, 0);
		vnic_dev_add_addr(fnic->vdev, FIP_ALL_ENODE_MACS);
		vnic_dev_add_addr(fnic->vdev, fnic->ctlr.ctl_src_addr);
		fnic->set_vlan = fnic_set_vlan;
		fcoe_ctlr_init(&fnic->ctlr, FIP_MODE_AUTO);
		setup_timer(&fnic->fip_timer, fnic_fip_notify_timer,
							(unsigned long)fnic);
		spin_lock_init(&fnic->vlans_lock);
		INIT_WORK(&fnic->fip_frame_work, fnic_handle_fip_frame);
		INIT_WORK(&fnic->event_work, fnic_handle_event);
		skb_queue_head_init(&fnic->fip_frame_queue);
		INIT_LIST_HEAD(&fnic->evlist);
		INIT_LIST_HEAD(&fnic->vlans);
	} else {
		shost_printk(KERN_INFO, fnic->lport->host,
			     "firmware uses non-FIP mode\n");
		fcoe_ctlr_init(&fnic->ctlr, FIP_MODE_NON_FIP);
	}
	fnic->state = FNIC_IN_FC_MODE;

	atomic_set(&fnic->in_flight, 0);
	fnic->state_flags = FNIC_FLAGS_NONE;

	/* Enable hardware stripping of vlan header on ingress */
	fnic_set_nic_config(fnic, 0, 0, 0, 0, 0, 0, 1);

	/* Setup notification buffer area */
	err = fnic_notify_set(fnic);
	if (err) {
		shost_printk(KERN_ERR, fnic->lport->host,
			     "Failed to alloc notify buffer, aborting.\n");
		goto err_out_free_max_pool;
	}

	/* Setup notify timer when using MSI interrupts */
	if (vnic_dev_get_intr_mode(fnic->vdev) == VNIC_DEV_INTR_MODE_MSI)
		setup_timer(&fnic->notify_timer,
			    fnic_notify_timer, (unsigned long)fnic);

	/* allocate RQ buffers and post them to RQ*/
	for (i = 0; i < fnic->rq_count; i++) {
		err = vnic_rq_fill(&fnic->rq[i], fnic_alloc_rq_frame);
		if (err) {
			shost_printk(KERN_ERR, fnic->lport->host,
				     "fnic_alloc_rq_frame can't alloc "
				     "frame\n");
			goto err_out_free_rq_buf;
		}
	}

	/*
	 * Initialization done with PCI system, hardware, firmware.
	 * Add host to SCSI
	 */
	err = scsi_add_host(lp->host, &pdev->dev);
	if (err) {
		shost_printk(KERN_ERR, fnic->lport->host,
			     "fnic: scsi_add_host failed...exiting\n");
		goto err_out_free_rq_buf;
	}

	/* Start local port initiatialization */

	lp->link_up = 0;

	lp->max_retry_count = fnic->config.flogi_retries;
	lp->max_rport_retry_count = fnic->config.plogi_retries;
	lp->service_params = (FCP_SPPF_INIT_FCN | FCP_SPPF_RD_XRDY_DIS |
			      FCP_SPPF_CONF_COMPL);
	if (fnic->config.flags & VFCF_FCP_SEQ_LVL_ERR)
		lp->service_params |= FCP_SPPF_RETRY;

	lp->boot_time = jiffies;
	lp->e_d_tov = fnic->config.ed_tov;
	lp->r_a_tov = fnic->config.ra_tov;
	lp->link_supported_speeds = FC_PORTSPEED_10GBIT;
	fc_set_wwnn(lp, fnic->config.node_wwn);
	fc_set_wwpn(lp, fnic->config.port_wwn);

	fcoe_libfc_config(lp, &fnic->ctlr, &fnic_transport_template, 0);

	if (!fc_exch_mgr_alloc(lp, FC_CLASS_3, FCPIO_HOST_EXCH_RANGE_START,
			       FCPIO_HOST_EXCH_RANGE_END, NULL)) {
		err = -ENOMEM;
		goto err_out_remove_scsi_host;
	}

	fc_lport_init_stats(lp);
	fnic->stats_reset_time = jiffies;

	fc_lport_config(lp);

	if (fc_set_mfs(lp, fnic->config.maxdatafieldsize +
		       sizeof(struct fc_frame_header))) {
		err = -EINVAL;
		goto err_out_free_exch_mgr;
	}
	fc_host_maxframe_size(lp->host) = lp->mfs;
	fc_host_dev_loss_tmo(lp->host) = fnic->config.port_down_timeout / 1000;

	sprintf(fc_host_symbolic_name(lp->host),
		DRV_NAME " v" DRV_VERSION " over %s", fnic->name);

	spin_lock_irqsave(&fnic_list_lock, flags);
	list_add_tail(&fnic->list, &fnic_list);
	spin_unlock_irqrestore(&fnic_list_lock, flags);

	INIT_WORK(&fnic->link_work, fnic_handle_link);
	INIT_WORK(&fnic->frame_work, fnic_handle_frame);
	skb_queue_head_init(&fnic->frame_queue);
	skb_queue_head_init(&fnic->tx_queue);

	/* Enable all queues */
	for (i = 0; i < fnic->raw_wq_count; i++)
		vnic_wq_enable(&fnic->wq[i]);
	for (i = 0; i < fnic->rq_count; i++)
		vnic_rq_enable(&fnic->rq[i]);
	for (i = 0; i < fnic->wq_copy_count; i++)
		vnic_wq_copy_enable(&fnic->wq_copy[i]);

	fc_fabric_login(lp);

	vnic_dev_enable(fnic->vdev);

	err = fnic_request_intr(fnic);
	if (err) {
		shost_printk(KERN_ERR, fnic->lport->host,
			     "Unable to request irq.\n");
		goto err_out_free_exch_mgr;
	}

	for (i = 0; i < fnic->intr_count; i++)
		vnic_intr_unmask(&fnic->intr[i]);

	fnic_notify_timer_start(fnic);

	return 0;

err_out_free_exch_mgr:
	fc_exch_mgr_free(lp);
err_out_remove_scsi_host:
	fc_remove_host(lp->host);
	scsi_remove_host(lp->host);
err_out_free_rq_buf:
	for (i = 0; i < fnic->rq_count; i++)
		vnic_rq_clean(&fnic->rq[i], fnic_free_rq_buf);
	vnic_dev_notify_unset(fnic->vdev);
err_out_free_max_pool:
	mempool_destroy(fnic->io_sgl_pool[FNIC_SGL_CACHE_MAX]);
err_out_free_dflt_pool:
	mempool_destroy(fnic->io_sgl_pool[FNIC_SGL_CACHE_DFLT]);
err_out_free_ioreq_pool:
	mempool_destroy(fnic->io_req_pool);
err_out_free_resources:
	fnic_free_vnic_resources(fnic);
err_out_clear_intr:
	fnic_clear_intr_mode(fnic);
err_out_dev_close:
	vnic_dev_close(fnic->vdev);
err_out_vnic_unregister:
	vnic_dev_unregister(fnic->vdev);
err_out_iounmap:
	fnic_iounmap(fnic);
err_out_release_regions:
	pci_release_regions(pdev);
err_out_disable_device:
	pci_disable_device(pdev);
err_out_free_hba:
	fnic_stats_debugfs_remove(fnic);
	scsi_host_put(lp->host);
err_out:
	return err;
}
Exemplo n.º 21
0
/*
 * Divide and limit the result to res >= 1
 *
 * This is necessary to prevent signal delivery starvation, when the result of
 * the division would be rounded down to 0.
 */
static inline cputime_t cputime_div_non_zero(cputime_t time, unsigned long div)
{
	cputime_t res = cputime_div(time, div);

	return max_t(cputime_t, res, 1);
}
Exemplo n.º 22
0
/*
 * Get inode's extents as described in bmv, and format for output.
 * Calls formatter to fill the user's buffer until all extents
 * are mapped, until the passed-in bmv->bmv_count slots have
 * been filled, or until the formatter short-circuits the loop,
 * if it is tracking filled-in extents on its own.
 */
int						/* error code */
xfs_getbmap(
	xfs_inode_t		*ip,
	struct getbmapx		*bmv,		/* user bmap structure */
	xfs_bmap_format_t	formatter,	/* format to user */
	void			*arg)		/* formatter arg */
{
	__int64_t		bmvend;		/* last block requested */
	int			error = 0;	/* return value */
	__int64_t		fixlen;		/* length for -1 case */
	int			i;		/* extent number */
	int			lock;		/* lock state */
	xfs_bmbt_irec_t		*map;		/* buffer for user's data */
	xfs_mount_t		*mp;		/* file system mount point */
	int			nex;		/* # of user extents can do */
	int			nexleft;	/* # of user extents left */
	int			subnex;		/* # of bmapi's can do */
	int			nmap;		/* number of map entries */
	struct getbmapx		*out;		/* output structure */
	int			whichfork;	/* data or attr fork */
	int			prealloced;	/* this is a file with
						 * preallocated data space */
	int			iflags;		/* interface flags */
	int			bmapi_flags;	/* flags for xfs_bmapi */
	int			cur_ext = 0;

	mp = ip->i_mount;
	iflags = bmv->bmv_iflags;
	whichfork = iflags & BMV_IF_ATTRFORK ? XFS_ATTR_FORK : XFS_DATA_FORK;

	if (whichfork == XFS_ATTR_FORK) {
		if (XFS_IFORK_Q(ip)) {
			if (ip->i_d.di_aformat != XFS_DINODE_FMT_EXTENTS &&
			    ip->i_d.di_aformat != XFS_DINODE_FMT_BTREE &&
			    ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)
				return XFS_ERROR(EINVAL);
		} else if (unlikely(
			   ip->i_d.di_aformat != 0 &&
			   ip->i_d.di_aformat != XFS_DINODE_FMT_EXTENTS)) {
			XFS_ERROR_REPORT("xfs_getbmap", XFS_ERRLEVEL_LOW,
					 ip->i_mount);
			return XFS_ERROR(EFSCORRUPTED);
		}

		prealloced = 0;
		fixlen = 1LL << 32;
	} else {
		if (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS &&
		    ip->i_d.di_format != XFS_DINODE_FMT_BTREE &&
		    ip->i_d.di_format != XFS_DINODE_FMT_LOCAL)
			return XFS_ERROR(EINVAL);

		if (xfs_get_extsz_hint(ip) ||
		    ip->i_d.di_flags & (XFS_DIFLAG_PREALLOC|XFS_DIFLAG_APPEND)){
			prealloced = 1;
			fixlen = mp->m_super->s_maxbytes;
		} else {
			prealloced = 0;
			fixlen = XFS_ISIZE(ip);
		}
	}

	if (bmv->bmv_length == -1) {
		fixlen = XFS_FSB_TO_BB(mp, XFS_B_TO_FSB(mp, fixlen));
		bmv->bmv_length =
			max_t(__int64_t, fixlen - bmv->bmv_offset, 0);
	} else if (bmv->bmv_length == 0) {
		bmv->bmv_entries = 0;
		return 0;
	} else if (bmv->bmv_length < 0) {
		return XFS_ERROR(EINVAL);
	}

	nex = bmv->bmv_count - 1;
	if (nex <= 0)
		return XFS_ERROR(EINVAL);
	bmvend = bmv->bmv_offset + bmv->bmv_length;


	if (bmv->bmv_count > ULONG_MAX / sizeof(struct getbmapx))
		return XFS_ERROR(ENOMEM);
	out = kmem_zalloc_large(bmv->bmv_count * sizeof(struct getbmapx), 0);
	if (!out)
		return XFS_ERROR(ENOMEM);

	xfs_ilock(ip, XFS_IOLOCK_SHARED);
	if (whichfork == XFS_DATA_FORK) {
		if (!(iflags & BMV_IF_DELALLOC) &&
		    (ip->i_delayed_blks || XFS_ISIZE(ip) > ip->i_d.di_size)) {
			error = -filemap_write_and_wait(VFS_I(ip)->i_mapping);
			if (error)
				goto out_unlock_iolock;

			/*
			 * Even after flushing the inode, there can still be
			 * delalloc blocks on the inode beyond EOF due to
			 * speculative preallocation.  These are not removed
			 * until the release function is called or the inode
			 * is inactivated.  Hence we cannot assert here that
			 * ip->i_delayed_blks == 0.
			 */
		}

		lock = xfs_ilock_data_map_shared(ip);
	} else {
		lock = xfs_ilock_attr_map_shared(ip);
	}

	/*
	 * Don't let nex be bigger than the number of extents
	 * we can have assuming alternating holes and real extents.
	 */
	if (nex > XFS_IFORK_NEXTENTS(ip, whichfork) * 2 + 1)
		nex = XFS_IFORK_NEXTENTS(ip, whichfork) * 2 + 1;

	bmapi_flags = xfs_bmapi_aflag(whichfork);
	if (!(iflags & BMV_IF_PREALLOC))
		bmapi_flags |= XFS_BMAPI_IGSTATE;

	/*
	 * Allocate enough space to handle "subnex" maps at a time.
	 */
	error = ENOMEM;
	subnex = 16;
	map = kmem_alloc(subnex * sizeof(*map), KM_MAYFAIL | KM_NOFS);
	if (!map)
		goto out_unlock_ilock;

	bmv->bmv_entries = 0;

	if (XFS_IFORK_NEXTENTS(ip, whichfork) == 0 &&
	    (whichfork == XFS_ATTR_FORK || !(iflags & BMV_IF_DELALLOC))) {
		error = 0;
		goto out_free_map;
	}

	nexleft = nex;

	do {
		nmap = (nexleft > subnex) ? subnex : nexleft;
		error = xfs_bmapi_read(ip, XFS_BB_TO_FSBT(mp, bmv->bmv_offset),
				       XFS_BB_TO_FSB(mp, bmv->bmv_length),
				       map, &nmap, bmapi_flags);
		if (error)
			goto out_free_map;
		ASSERT(nmap <= subnex);

		for (i = 0; i < nmap && nexleft && bmv->bmv_length; i++) {
			out[cur_ext].bmv_oflags = 0;
			if (map[i].br_state == XFS_EXT_UNWRITTEN)
				out[cur_ext].bmv_oflags |= BMV_OF_PREALLOC;
			else if (map[i].br_startblock == DELAYSTARTBLOCK)
				out[cur_ext].bmv_oflags |= BMV_OF_DELALLOC;
			out[cur_ext].bmv_offset =
				XFS_FSB_TO_BB(mp, map[i].br_startoff);
			out[cur_ext].bmv_length =
				XFS_FSB_TO_BB(mp, map[i].br_blockcount);
			out[cur_ext].bmv_unused1 = 0;
			out[cur_ext].bmv_unused2 = 0;

			/*
			 * delayed allocation extents that start beyond EOF can
			 * occur due to speculative EOF allocation when the
			 * delalloc extent is larger than the largest freespace
			 * extent at conversion time. These extents cannot be
			 * converted by data writeback, so can exist here even
			 * if we are not supposed to be finding delalloc
			 * extents.
			 */
			if (map[i].br_startblock == DELAYSTARTBLOCK &&
			    map[i].br_startoff <= XFS_B_TO_FSB(mp, XFS_ISIZE(ip)))
				ASSERT((iflags & BMV_IF_DELALLOC) != 0);

                        if (map[i].br_startblock == HOLESTARTBLOCK &&
			    whichfork == XFS_ATTR_FORK) {
				/* came to the end of attribute fork */
				out[cur_ext].bmv_oflags |= BMV_OF_LAST;
				goto out_free_map;
			}

			if (!xfs_getbmapx_fix_eof_hole(ip, &out[cur_ext],
					prealloced, bmvend,
					map[i].br_startblock))
				goto out_free_map;

			bmv->bmv_offset =
				out[cur_ext].bmv_offset +
				out[cur_ext].bmv_length;
			bmv->bmv_length =
				max_t(__int64_t, 0, bmvend - bmv->bmv_offset);

			/*
			 * In case we don't want to return the hole,
			 * don't increase cur_ext so that we can reuse
			 * it in the next loop.
			 */
			if ((iflags & BMV_IF_NO_HOLES) &&
			    map[i].br_startblock == HOLESTARTBLOCK) {
				memset(&out[cur_ext], 0, sizeof(out[cur_ext]));
				continue;
			}

			nexleft--;
			bmv->bmv_entries++;
			cur_ext++;
		}
	} while (nmap && nexleft && bmv->bmv_length);

 out_free_map:
	kmem_free(map);
 out_unlock_ilock:
	xfs_iunlock(ip, lock);
 out_unlock_iolock:
	xfs_iunlock(ip, XFS_IOLOCK_SHARED);

	for (i = 0; i < cur_ext; i++) {
		int full = 0;	/* user array is full */

		/* format results & advance arg */
		error = formatter(&arg, &out[i], &full);
		if (error || full)
			break;
	}

	kmem_free(out);
	return error;
}
Exemplo n.º 23
0
long ext2_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
	struct inode *inode = filp->f_dentry->d_inode;
	struct ext2_inode_info *ei = EXT2_I(inode);
	unsigned int flags;
	unsigned short rsv_window_size;
	int ret;

	ext2_debug ("cmd = %u, arg = %lu\n", cmd, arg);

	switch (cmd) {
  case EXT2_FAKE_B_ALLOC:
    /* Fake allocation for ext2 filesystem.
     * */
    {
      struct ext2_fake_b_alloc_arg config;
      struct buffer_head bh_result;
      sector_t iblock, off;
      int ret = 0;

      ret = copy_from_user(&config, (struct ext2_fake_b_alloc_arg __user *)arg,
                           sizeof(struct ext2_fake_b_alloc_arg));
      if (ret != 0) {
        printk (KERN_DEBUG "can't copy from user");
        return -EIO;
      } else ret = 0;

      /* Allocate blocks. */
      off = config.efba_off;
      iblock = config.efba_off >> inode->i_blkbits;
      while ((iblock << inode->i_blkbits) <
                  (config.efba_off + config.efba_size)) {
        memset(&bh_result, 0, sizeof(struct ext2_fake_b_alloc_arg));
        ret = ext2_get_block(inode, iblock, &bh_result, 1);
        if (ret < 0) {
          printk (KERN_DEBUG "get_block_error %d, escaping", ret);
          break;
        }
        iblock++;
      }

      /* Set metadata */
      write_lock(&EXT2_I(inode)->i_meta_lock);
      if (ret == 0) {
        printk (KERN_DEBUG "ok, set size");
        inode->i_size = max_t(loff_t, inode->i_size,
                            config.efba_off + config.efba_size);
      } else if(iblock != config.efba_off >> inode->i_blkbits) {
        /* Partially allocated, size must be fixed.           *
         * But `i_blocks` should containt actual information. */
        inode->i_size = inode->i_blocks << inode->i_blkbits;
      }
      inode->i_mtime = inode->i_atime = CURRENT_TIME_SEC;
      inode->i_version++;
      write_unlock(&EXT2_I(inode)->i_meta_lock);

      printk(KERN_DEBUG, "returning %d", ret);
      return ret;
    }

	case EXT2_IOC_GETFLAGS:
		ext2_get_inode_flags(ei);
		flags = ei->i_flags & EXT2_FL_USER_VISIBLE;
		return put_user(flags, (int __user *) arg);
	case EXT2_IOC_SETFLAGS: {
		unsigned int oldflags;

		ret = mnt_want_write(filp->f_path.mnt);
		if (ret)
			return ret;

		if (!is_owner_or_cap(inode)) {
			ret = -EACCES;
			goto setflags_out;
		}

		if (get_user(flags, (int __user *) arg)) {
			ret = -EFAULT;
			goto setflags_out;
		}

		flags = ext2_mask_flags(inode->i_mode, flags);

		mutex_lock(&inode->i_mutex);
		/* Is it quota file? Do not allow user to mess with it */
		if (IS_NOQUOTA(inode)) {
			mutex_unlock(&inode->i_mutex);
			ret = -EPERM;
			goto setflags_out;
		}
		oldflags = ei->i_flags;

		/*
		 * The IMMUTABLE and APPEND_ONLY flags can only be changed by
		 * the relevant capability.
		 *
		 * This test looks nicer. Thanks to Pauline Middelink
		 */
		if ((flags ^ oldflags) & (EXT2_APPEND_FL | EXT2_IMMUTABLE_FL)) {
			if (!capable(CAP_LINUX_IMMUTABLE)) {
				mutex_unlock(&inode->i_mutex);
				ret = -EPERM;
				goto setflags_out;
			}
		}

		flags = flags & EXT2_FL_USER_MODIFIABLE;
		flags |= oldflags & ~EXT2_FL_USER_MODIFIABLE;
		ei->i_flags = flags;
		mutex_unlock(&inode->i_mutex);

		ext2_set_inode_flags(inode);
		inode->i_ctime = CURRENT_TIME_SEC;
		mark_inode_dirty(inode);
setflags_out:
		mnt_drop_write(filp->f_path.mnt);
		return ret;
	}
	case EXT2_IOC_GETVERSION:
		return put_user(inode->i_generation, (int __user *) arg);
	case EXT2_IOC_SETVERSION:
		if (!is_owner_or_cap(inode))
			return -EPERM;
		ret = mnt_want_write(filp->f_path.mnt);
		if (ret)
			return ret;
		if (get_user(inode->i_generation, (int __user *) arg)) {
			ret = -EFAULT;
		} else {
			inode->i_ctime = CURRENT_TIME_SEC;
			mark_inode_dirty(inode);
		}
		mnt_drop_write(filp->f_path.mnt);
		return ret;
	case EXT2_IOC_GETRSVSZ:
		if (test_opt(inode->i_sb, RESERVATION)
			&& S_ISREG(inode->i_mode)
			&& ei->i_block_alloc_info) {
			rsv_window_size = ei->i_block_alloc_info->rsv_window_node.rsv_goal_size;
			return put_user(rsv_window_size, (int __user *)arg);
		}
		return -ENOTTY;
	case EXT2_IOC_SETRSVSZ: {

		if (!test_opt(inode->i_sb, RESERVATION) ||!S_ISREG(inode->i_mode))
			return -ENOTTY;

		if (!is_owner_or_cap(inode))
			return -EACCES;

		if (get_user(rsv_window_size, (int __user *)arg))
			return -EFAULT;

		ret = mnt_want_write(filp->f_path.mnt);
		if (ret)
			return ret;

		if (rsv_window_size > EXT2_MAX_RESERVE_BLOCKS)
			rsv_window_size = EXT2_MAX_RESERVE_BLOCKS;

		/*
		 * need to allocate reservation structure for this inode
		 * before set the window size
		 */
		/*
		 * XXX What lock should protect the rsv_goal_size?
		 * Accessed in ext2_get_block only.  ext3 uses i_truncate.
		 */
		mutex_lock(&ei->truncate_mutex);
		if (!ei->i_block_alloc_info)
			ext2_init_block_alloc_info(inode);

		if (ei->i_block_alloc_info){
			struct ext2_reserve_window_node *rsv = &ei->i_block_alloc_info->rsv_window_node;
			rsv->rsv_goal_size = rsv_window_size;
		}
		mutex_unlock(&ei->truncate_mutex);
		mnt_drop_write(filp->f_path.mnt);
		return 0;
	}
	default:
		return -ENOTTY;
	}
}
Exemplo n.º 24
0
/**
 * ixgbe_set_rss_queues - Allocate queues for RSS
 * @adapter: board private structure to initialize
 *
 * This is our "base" multiqueue mode.  RSS (Receive Side Scaling) will try
 * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
 *
 **/
static bool ixgbe_set_rss_queues(struct ixgbe_adapter *adapter)
{
	struct ixgbe_ring_feature *f;
	u16 rss_i;

	/* set mask for 16 queue limit of RSS */
	f = &adapter->ring_feature[RING_F_RSS];
	rss_i = f->limit;

	f->indices = rss_i;
	f->mask = IXGBE_RSS_16Q_MASK;

	/* disable ATR by default, it will be configured below */
	adapter->flags &= ~IXGBE_FLAG_FDIR_HASH_CAPABLE;

	/*
	 * Use Flow Director in addition to RSS to ensure the best
	 * distribution of flows across cores, even when an FDIR flow
	 * isn't matched.
	 */
	if (rss_i > 1 && adapter->atr_sample_rate) {
		f = &adapter->ring_feature[RING_F_FDIR];

		rss_i = f->indices = f->limit;

		if (!(adapter->flags & IXGBE_FLAG_FDIR_PERFECT_CAPABLE))
			ixgbe_set_fdir_flags(adapter, IXGBE_FLAG_FDIR_HASH_CAPABLE);
	}

#ifdef IXGBE_FCOE
	/*
	 * FCoE can exist on the same rings as standard network traffic
	 * however it is preferred to avoid that if possible.  In order
	 * to get the best performance we allocate as many FCoE queues
	 * as we can and we place them at the end of the ring array to
	 * avoid sharing queues with standard RSS on systems with 24 or
	 * more CPUs.
	 */
	if (adapter->flags & IXGBE_FLAG_FCOE_ENABLED) {
		struct net_device *dev = adapter->netdev;
		u16 fcoe_i;

		f = &adapter->ring_feature[RING_F_FCOE];

		/* merge FCoE queues with RSS queues */
		fcoe_i = min_t(u16, f->limit + rss_i, num_online_cpus());
		fcoe_i = min_t(u16, fcoe_i, dev->num_tx_queues);

		/* limit indices to rss_i if MSI-X is disabled */
		if (!(adapter->flags & IXGBE_FLAG_MSIX_ENABLED))
			fcoe_i = rss_i;

		/* attempt to reserve some queues for just FCoE */
		f->indices = min_t(u16, fcoe_i, f->limit);
		f->offset = fcoe_i - f->indices;
		rss_i = max_t(u16, fcoe_i, rss_i);
	}

#endif /* IXGBE_FCOE */
	adapter->num_rx_queues = rss_i;
	adapter->num_tx_queues = rss_i;

	return true;
}
Exemplo n.º 25
0
int
xfs_free_file_space(
	struct xfs_inode	*ip,
	xfs_off_t		offset,
	xfs_off_t		len)
{
	int			committed;
	int			done;
	xfs_fileoff_t		endoffset_fsb;
	int			error;
	xfs_fsblock_t		firstfsb;
	xfs_bmap_free_t		free_list;
	xfs_bmbt_irec_t		imap;
	xfs_off_t		ioffset;
	xfs_extlen_t		mod=0;
	xfs_mount_t		*mp;
	int			nimap;
	uint			resblks;
	xfs_off_t		rounding;
	int			rt;
	xfs_fileoff_t		startoffset_fsb;
	xfs_trans_t		*tp;

	mp = ip->i_mount;

	trace_xfs_free_file_space(ip);

	error = xfs_qm_dqattach(ip, 0);
	if (error)
		return error;

	error = 0;
	if (len <= 0)	/* if nothing being freed */
		return error;
	rt = XFS_IS_REALTIME_INODE(ip);
	startoffset_fsb	= XFS_B_TO_FSB(mp, offset);
	endoffset_fsb = XFS_B_TO_FSBT(mp, offset + len);

	/* wait for the completion of any pending DIOs */
	inode_dio_wait(VFS_I(ip));

	rounding = max_t(xfs_off_t, 1 << mp->m_sb.sb_blocklog, PAGE_CACHE_SIZE);
	ioffset = offset & ~(rounding - 1);
	error = -filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
					      ioffset, -1);
	if (error)
		goto out;
	truncate_pagecache_range(VFS_I(ip), ioffset, -1);

	/*
	 * Need to zero the stuff we're not freeing, on disk.
	 * If it's a realtime file & can't use unwritten extents then we
	 * actually need to zero the extent edges.  Otherwise xfs_bunmapi
	 * will take care of it for us.
	 */
	if (rt && !xfs_sb_version_hasextflgbit(&mp->m_sb)) {
		nimap = 1;
		error = xfs_bmapi_read(ip, startoffset_fsb, 1,
					&imap, &nimap, 0);
		if (error)
			goto out;
		ASSERT(nimap == 0 || nimap == 1);
		if (nimap && imap.br_startblock != HOLESTARTBLOCK) {
			xfs_daddr_t	block;

			ASSERT(imap.br_startblock != DELAYSTARTBLOCK);
			block = imap.br_startblock;
			mod = do_div(block, mp->m_sb.sb_rextsize);
			if (mod)
				startoffset_fsb += mp->m_sb.sb_rextsize - mod;
		}
		nimap = 1;
		error = xfs_bmapi_read(ip, endoffset_fsb - 1, 1,
					&imap, &nimap, 0);
		if (error)
			goto out;
		ASSERT(nimap == 0 || nimap == 1);
		if (nimap && imap.br_startblock != HOLESTARTBLOCK) {
			ASSERT(imap.br_startblock != DELAYSTARTBLOCK);
			mod++;
			if (mod && (mod != mp->m_sb.sb_rextsize))
				endoffset_fsb -= mod;
		}
	}
	if ((done = (endoffset_fsb <= startoffset_fsb)))
		/*
		 * One contiguous piece to clear
		 */
		error = xfs_zero_remaining_bytes(ip, offset, offset + len - 1);
	else {
		/*
		 * Some full blocks, possibly two pieces to clear
		 */
		if (offset < XFS_FSB_TO_B(mp, startoffset_fsb))
			error = xfs_zero_remaining_bytes(ip, offset,
				XFS_FSB_TO_B(mp, startoffset_fsb) - 1);
		if (!error &&
		    XFS_FSB_TO_B(mp, endoffset_fsb) < offset + len)
			error = xfs_zero_remaining_bytes(ip,
				XFS_FSB_TO_B(mp, endoffset_fsb),
				offset + len - 1);
	}

	/*
	 * free file space until done or until there is an error
	 */
	resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
	while (!error && !done) {

		/*
		 * allocate and setup the transaction. Allow this
		 * transaction to dip into the reserve blocks to ensure
		 * the freeing of the space succeeds at ENOSPC.
		 */
		tp = xfs_trans_alloc(mp, XFS_TRANS_DIOSTRAT);
		tp->t_flags |= XFS_TRANS_RESERVE;
		error = xfs_trans_reserve(tp, &M_RES(mp)->tr_write, resblks, 0);

		/*
		 * check for running out of space
		 */
		if (error) {
			/*
			 * Free the transaction structure.
			 */
			ASSERT(error == ENOSPC || XFS_FORCED_SHUTDOWN(mp));
			xfs_trans_cancel(tp, 0);
			break;
		}
		xfs_ilock(ip, XFS_ILOCK_EXCL);
		error = xfs_trans_reserve_quota(tp, mp,
				ip->i_udquot, ip->i_gdquot, ip->i_pdquot,
				resblks, 0, XFS_QMOPT_RES_REGBLKS);
		if (error)
			goto error1;

		xfs_trans_ijoin(tp, ip, 0);

		/*
		 * issue the bunmapi() call to free the blocks
		 */
		xfs_bmap_init(&free_list, &firstfsb);
		error = xfs_bunmapi(tp, ip, startoffset_fsb,
				  endoffset_fsb - startoffset_fsb,
				  0, 2, &firstfsb, &free_list, &done);
		if (error) {
			goto error0;
		}

		/*
		 * complete the transaction
		 */
		error = xfs_bmap_finish(&tp, &free_list, &committed);
		if (error) {
			goto error0;
		}

		error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
		xfs_iunlock(ip, XFS_ILOCK_EXCL);
	}

 out:
	return error;

 error0:
	xfs_bmap_cancel(&free_list);
 error1:
	xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES | XFS_TRANS_ABORT);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	goto out;
}
Exemplo n.º 26
0
static void uvc_fixup_video_ctrl(struct uvc_streaming *stream,
	struct uvc_streaming_control *ctrl)
{
	struct uvc_format *format = NULL;
	struct uvc_frame *frame = NULL;
	unsigned int i;

	for (i = 0; i < stream->nformats; ++i) {
		if (stream->format[i].index == ctrl->bFormatIndex) {
			format = &stream->format[i];
			break;
		}
	}

	if (format == NULL)
		return;

	for (i = 0; i < format->nframes; ++i) {
		if (format->frame[i].bFrameIndex == ctrl->bFrameIndex) {
			frame = &format->frame[i];
			break;
		}
	}

	if (frame == NULL)
		return;

	if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) ||
	     (ctrl->dwMaxVideoFrameSize == 0 &&
	      stream->dev->uvc_version < 0x0110))
		ctrl->dwMaxVideoFrameSize =
			frame->dwMaxVideoFrameBufferSize;

	if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) &&
	    stream->dev->quirks & UVC_QUIRK_FIX_BANDWIDTH &&
	    stream->intf->num_altsetting > 1) {
		u32 interval;
		u32 bandwidth;

		interval = (ctrl->dwFrameInterval > 100000)
			 ? ctrl->dwFrameInterval
			 : frame->dwFrameInterval[0];

		/* Compute a bandwidth estimation by multiplying the frame
		 * size by the number of video frames per second, divide the
		 * result by the number of USB frames (or micro-frames for
		 * high-speed devices) per second and add the UVC header size
		 * (assumed to be 12 bytes long).
		 */
		bandwidth = frame->wWidth * frame->wHeight / 8 * format->bpp;
		bandwidth *= 10000000 / interval + 1;
		bandwidth /= 1000;
		if (stream->dev->udev->speed == USB_SPEED_HIGH)
			bandwidth /= 8;
		bandwidth += 12;

		/* The bandwidth estimate is too low for many cameras. Don't use
		 * maximum packet sizes lower than 1024 bytes to try and work
		 * around the problem. According to measurements done on two
		 * different camera models, the value is high enough to get most
		 * resolutions working while not preventing two simultaneous
		 * VGA streams at 15 fps.
		 */
		bandwidth = max_t(u32, bandwidth, 1024);

		ctrl->dwMaxPayloadTransferSize = bandwidth;
	}
}
Exemplo n.º 27
0
Arquivo: fan.c Projeto: 020gzh/linux
static int
nvkm_fan_update(struct nvkm_fan *fan, bool immediate, int target)
{
	struct nvkm_therm *therm = fan->parent;
	struct nvkm_subdev *subdev = &therm->subdev;
	struct nvkm_timer *tmr = subdev->device->timer;
	unsigned long flags;
	int ret = 0;
	int duty;

	/* update target fan speed, restricting to allowed range */
	spin_lock_irqsave(&fan->lock, flags);
	if (target < 0)
		target = fan->percent;
	target = max_t(u8, target, fan->bios.min_duty);
	target = min_t(u8, target, fan->bios.max_duty);
	if (fan->percent != target) {
		nvkm_debug(subdev, "FAN target: %d\n", target);
		fan->percent = target;
	}

	/* check that we're not already at the target duty cycle */
	duty = fan->get(therm);
	if (duty == target) {
		spin_unlock_irqrestore(&fan->lock, flags);
		return 0;
	}

	/* smooth out the fanspeed increase/decrease */
	if (!immediate && duty >= 0) {
		/* the constant "3" is a rough approximation taken from
		 * nvidia's behaviour.
		 * it is meant to bump the fan speed more incrementally
		 */
		if (duty < target)
			duty = min(duty + 3, target);
		else if (duty > target)
			duty = max(duty - 3, target);
	} else {
		duty = target;
	}

	nvkm_debug(subdev, "FAN update: %d\n", duty);
	ret = fan->set(therm, duty);
	if (ret) {
		spin_unlock_irqrestore(&fan->lock, flags);
		return ret;
	}

	/* fan speed updated, drop the fan lock before grabbing the
	 * alarm-scheduling lock and risking a deadlock
	 */
	spin_unlock_irqrestore(&fan->lock, flags);

	/* schedule next fan update, if not at target speed already */
	if (list_empty(&fan->alarm.head) && target != duty) {
		u16 bump_period = fan->bios.bump_period;
		u16 slow_down_period = fan->bios.slow_down_period;
		u64 delay;

		if (duty > target)
			delay = slow_down_period;
		else if (duty == target)
			delay = min(bump_period, slow_down_period) ;
		else
			delay = bump_period;

		nvkm_timer_alarm(tmr, delay * 1000 * 1000, &fan->alarm);
	}

	return ret;
}
Exemplo n.º 28
0
static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
								int mode)
{
	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
	struct address_space *mapping = inode->i_mapping;
	pgoff_t index, pg_start, pg_end;
	loff_t new_size = i_size_read(inode);
	loff_t off_start, off_end;
	int ret = 0;

	if (!S_ISREG(inode->i_mode))
		return -EINVAL;

	ret = inode_newsize_ok(inode, (len + offset));
	if (ret)
		return ret;

	f2fs_balance_fs(sbi);

	if (f2fs_has_inline_data(inode)) {
		ret = f2fs_convert_inline_inode(inode);
		if (ret)
			return ret;
	}

	ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
	if (ret)
		return ret;

	truncate_pagecache_range(inode, offset, offset + len - 1);

	pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
	pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;

	off_start = offset & (PAGE_CACHE_SIZE - 1);
	off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);

	if (pg_start == pg_end) {
		ret = fill_zero(inode, pg_start, off_start,
						off_end - off_start);
		if (ret)
			return ret;

		if (offset + len > new_size)
			new_size = offset + len;
		new_size = max_t(loff_t, new_size, offset + len);
	} else {
		if (off_start) {
			ret = fill_zero(inode, pg_start++, off_start,
						PAGE_CACHE_SIZE - off_start);
			if (ret)
				return ret;

			new_size = max_t(loff_t, new_size,
						pg_start << PAGE_CACHE_SHIFT);
		}

		for (index = pg_start; index < pg_end; index++) {
			struct dnode_of_data dn;
			struct page *ipage;

			f2fs_lock_op(sbi);

			ipage = get_node_page(sbi, inode->i_ino);
			if (IS_ERR(ipage)) {
				ret = PTR_ERR(ipage);
				f2fs_unlock_op(sbi);
				goto out;
			}

			set_new_dnode(&dn, inode, ipage, NULL, 0);
			ret = f2fs_reserve_block(&dn, index);
			if (ret) {
				f2fs_unlock_op(sbi);
				goto out;
			}

			if (dn.data_blkaddr != NEW_ADDR) {
				invalidate_blocks(sbi, dn.data_blkaddr);

				dn.data_blkaddr = NEW_ADDR;
				set_data_blkaddr(&dn);

				dn.data_blkaddr = NULL_ADDR;
				f2fs_update_extent_cache(&dn);
			}
			f2fs_put_dnode(&dn);
			f2fs_unlock_op(sbi);

			new_size = max_t(loff_t, new_size,
					(index + 1) << PAGE_CACHE_SHIFT);
		}

		if (off_end) {
			ret = fill_zero(inode, pg_end, 0, off_end);
			if (ret)
				goto out;

			new_size = max_t(loff_t, new_size, offset + len);
		}
	}

out:
	if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size) {
		i_size_write(inode, new_size);
		mark_inode_dirty(inode);
		update_inode_page(inode);
	}

	return ret;
}
static int
rx_submit(struct eth_dev *dev, struct usb_request *req, gfp_t gfp_flags)
{
	struct sk_buff	*skb;
	int		retval = -ENOMEM;
	size_t		size = 0;
	struct usb_ep	*out;
	unsigned long	flags;

	spin_lock_irqsave(&dev->lock, flags);
	if (dev->port_usb)
		out = dev->port_usb->out_ep;
	else
		out = NULL;
	spin_unlock_irqrestore(&dev->lock, flags);

	if (!out)
		return -ENOTCONN;


	/* Padding up to RX_EXTRA handles minor disagreements with host.
	 * Normally we use the USB "terminate on short read" convention;
	 * so allow up to (N*maxpacket), since that memory is normally
	 * already allocated.  Some hardware doesn't deal well with short
	 * reads (e.g. DMA must be N*maxpacket), so for now don't trim a
	 * byte off the end (to force hardware errors on overflow).
	 *
	 * RNDIS uses internal framing, and explicitly allows senders to
	 * pad to end-of-packet.  That's potentially nice for speed, but
	 * means receivers can't recover lost synch on their own (because
	 * new packets don't only start after a short RX).
	 */
	size += sizeof(struct ethhdr) + dev->net->mtu + RX_EXTRA;
	size += dev->port_usb->header_len;
	size += out->maxpacket - 1;
	size -= size % out->maxpacket;

	if (dev->ul_max_pkts_per_xfer)
		size *= dev->ul_max_pkts_per_xfer;

	if (dev->port_usb->is_fixed)
		size = max_t(size_t, size, dev->port_usb->fixed_out_len);

	pr_debug("%s: size: %d", __func__, size);
	skb = alloc_skb(size + NET_IP_ALIGN, gfp_flags);
	if (skb == NULL) {
		DBG(dev, "no rx skb\n");
		goto enomem;
	}

	/* Some platforms perform better when IP packets are aligned,
	 * but on at least one, checksumming fails otherwise.  Note:
	 * RNDIS headers involve variable numbers of LE32 values.
	 */
	skb_reserve(skb, NET_IP_ALIGN);

	req->buf = skb->data;
	req->length = size;
	req->context = skb;

	retval = usb_ep_queue(out, req, gfp_flags);
	if (retval == -ENOMEM)
enomem:
		defer_kevent(dev, WORK_RX_MEMORY);
	if (retval) {
		DBG(dev, "rx submit --> %d\n", retval);
		if (skb)
			dev_kfree_skb_any(skb);
	}
	return retval;
}
Exemplo n.º 30
0
int fnic_get_vnic_config(struct fnic *fnic)
{
	struct vnic_fc_config *c = &fnic->config;
	int err;

#define GET_CONFIG(m) \
	do { \
		err = vnic_dev_spec(fnic->vdev, \
				    offsetof(struct vnic_fc_config, m), \
				    sizeof(c->m), &c->m); \
		if (err) { \
			shost_printk(KERN_ERR, fnic->lport->host, \
				     "Error getting %s, %d\n", #m, \
				     err); \
			return err; \
		} \
	} while (0);

	GET_CONFIG(node_wwn);
	GET_CONFIG(port_wwn);
	GET_CONFIG(wq_enet_desc_count);
	GET_CONFIG(wq_copy_desc_count);
	GET_CONFIG(rq_desc_count);
	GET_CONFIG(maxdatafieldsize);
	GET_CONFIG(ed_tov);
	GET_CONFIG(ra_tov);
	GET_CONFIG(intr_timer);
	GET_CONFIG(intr_timer_type);
	GET_CONFIG(flags);
	GET_CONFIG(flogi_retries);
	GET_CONFIG(flogi_timeout);
	GET_CONFIG(plogi_retries);
	GET_CONFIG(plogi_timeout);
	GET_CONFIG(io_throttle_count);
	GET_CONFIG(link_down_timeout);
	GET_CONFIG(port_down_timeout);
	GET_CONFIG(port_down_io_retries);
	GET_CONFIG(luns_per_tgt);

	c->wq_enet_desc_count =
		min_t(u32, VNIC_FNIC_WQ_DESCS_MAX,
		      max_t(u32, VNIC_FNIC_WQ_DESCS_MIN,
			    c->wq_enet_desc_count));
	c->wq_enet_desc_count = ALIGN(c->wq_enet_desc_count, 16);

	c->wq_copy_desc_count =
		min_t(u32, VNIC_FNIC_WQ_COPY_DESCS_MAX,
		      max_t(u32, VNIC_FNIC_WQ_COPY_DESCS_MIN,
			    c->wq_copy_desc_count));
	c->wq_copy_desc_count = ALIGN(c->wq_copy_desc_count, 16);

	c->rq_desc_count =
		min_t(u32, VNIC_FNIC_RQ_DESCS_MAX,
		      max_t(u32, VNIC_FNIC_RQ_DESCS_MIN,
			    c->rq_desc_count));
	c->rq_desc_count = ALIGN(c->rq_desc_count, 16);

	c->maxdatafieldsize =
		min_t(u16, VNIC_FNIC_MAXDATAFIELDSIZE_MAX,
		      max_t(u16, VNIC_FNIC_MAXDATAFIELDSIZE_MIN,
			    c->maxdatafieldsize));
	c->ed_tov =
		min_t(u32, VNIC_FNIC_EDTOV_MAX,
		      max_t(u32, VNIC_FNIC_EDTOV_MIN,
			    c->ed_tov));

	c->ra_tov =
		min_t(u32, VNIC_FNIC_RATOV_MAX,
		      max_t(u32, VNIC_FNIC_RATOV_MIN,
			    c->ra_tov));

	c->flogi_retries =
		min_t(u32, VNIC_FNIC_FLOGI_RETRIES_MAX, c->flogi_retries);

	c->flogi_timeout =
		min_t(u32, VNIC_FNIC_FLOGI_TIMEOUT_MAX,
		      max_t(u32, VNIC_FNIC_FLOGI_TIMEOUT_MIN,
			    c->flogi_timeout));

	c->plogi_retries =
		min_t(u32, VNIC_FNIC_PLOGI_RETRIES_MAX, c->plogi_retries);

	c->plogi_timeout =
		min_t(u32, VNIC_FNIC_PLOGI_TIMEOUT_MAX,
		      max_t(u32, VNIC_FNIC_PLOGI_TIMEOUT_MIN,
			    c->plogi_timeout));

	c->io_throttle_count =
		min_t(u32, VNIC_FNIC_IO_THROTTLE_COUNT_MAX,
		      max_t(u32, VNIC_FNIC_IO_THROTTLE_COUNT_MIN,
			    c->io_throttle_count));

	c->link_down_timeout =
		min_t(u32, VNIC_FNIC_LINK_DOWN_TIMEOUT_MAX,
		      c->link_down_timeout);

	c->port_down_timeout =
		min_t(u32, VNIC_FNIC_PORT_DOWN_TIMEOUT_MAX,
		      c->port_down_timeout);

	c->port_down_io_retries =
		min_t(u32, VNIC_FNIC_PORT_DOWN_IO_RETRIES_MAX,
		      c->port_down_io_retries);

	c->luns_per_tgt =
		min_t(u32, VNIC_FNIC_LUNS_PER_TARGET_MAX,
		      max_t(u32, VNIC_FNIC_LUNS_PER_TARGET_MIN,
			    c->luns_per_tgt));

	c->intr_timer = min_t(u16, VNIC_INTR_TIMER_MAX, c->intr_timer);
	c->intr_timer_type = c->intr_timer_type;

	shost_printk(KERN_INFO, fnic->lport->host,
		     "vNIC MAC addr %pM "
		     "wq/wq_copy/rq %d/%d/%d\n",
		     fnic->ctlr.ctl_src_addr,
		     c->wq_enet_desc_count, c->wq_copy_desc_count,
		     c->rq_desc_count);
	shost_printk(KERN_INFO, fnic->lport->host,
		     "vNIC node wwn %llx port wwn %llx\n",
		     c->node_wwn, c->port_wwn);
	shost_printk(KERN_INFO, fnic->lport->host,
		     "vNIC ed_tov %d ra_tov %d\n",
		     c->ed_tov, c->ra_tov);
	shost_printk(KERN_INFO, fnic->lport->host,
		     "vNIC mtu %d intr timer %d\n",
		     c->maxdatafieldsize, c->intr_timer);
	shost_printk(KERN_INFO, fnic->lport->host,
		     "vNIC flags 0x%x luns per tgt %d\n",
		     c->flags, c->luns_per_tgt);
	shost_printk(KERN_INFO, fnic->lport->host,
		     "vNIC flogi_retries %d flogi timeout %d\n",
		     c->flogi_retries, c->flogi_timeout);
	shost_printk(KERN_INFO, fnic->lport->host,
		     "vNIC plogi retries %d plogi timeout %d\n",
		     c->plogi_retries, c->plogi_timeout);
	shost_printk(KERN_INFO, fnic->lport->host,
		     "vNIC io throttle count %d link dn timeout %d\n",
		     c->io_throttle_count, c->link_down_timeout);
	shost_printk(KERN_INFO, fnic->lport->host,
		     "vNIC port dn io retries %d port dn timeout %d\n",
		     c->port_down_io_retries, c->port_down_timeout);

	return 0;
}