Exemplo n.º 1
0
void rx_complete(struct urb *urb)
{
	struct sk_buff		*skb = (struct sk_buff *) urb->context;
	struct skb_data		*entry = (struct skb_data *) skb->cb;
	struct usbnet		*dev = entry->dev;
	int			urb_status = urb->status;
	enum skb_state		state;

	skb_put (skb, urb->actual_length);
	state = rx_done;
	entry->urb = NULL;

	switch (urb_status) {
	
	case 0:
		if (skb->len < dev->net->hard_header_len) {
			state = rx_cleanup;
			dev->net->stats.rx_errors++;
			dev->net->stats.rx_length_errors++;
			netif_dbg(dev, rx_err, dev->net,
				  "rx length %d\n", skb->len);
		}
		break;

	case -EPIPE:
		dev->net->stats.rx_errors++;
		usbnet_defer_kevent (dev, EVENT_RX_HALT);
		

	
	case -ECONNRESET:		
	case -ESHUTDOWN:		
		netif_dbg(dev, ifdown, dev->net,
			  "rx shutdown, code %d\n", urb_status);
		goto block;

	case -EPROTO:
	case -ETIME:
	case -EILSEQ:
		dev->net->stats.rx_errors++;
		if (!timer_pending (&dev->delay)) {
			mod_timer (&dev->delay, jiffies + THROTTLE_JIFFIES);
			netif_dbg(dev, link, dev->net,
				  "rx throttle %d\n", urb_status);
		}
block:
		state = rx_cleanup;
		entry->urb = urb;
		urb = NULL;
		break;

	
	case -EOVERFLOW:
		dev->net->stats.rx_over_errors++;
		

	default:
		state = rx_cleanup;
		dev->net->stats.rx_errors++;
		netif_dbg(dev, rx_err, dev->net, "rx status %d\n", urb_status);
		break;
	}

	state = defer_bh(dev, skb, &dev->rxq, state);

	if (urb) {
		if (netif_running (dev->net) &&
		    !test_bit (EVENT_RX_HALT, &dev->flags) &&
		    state != unlink_start) {
			rx_submit (dev, urb, GFP_ATOMIC);
			usb_mark_last_busy(dev->udev);
			return;
		}
		usb_free_urb (urb);
	}
	netif_dbg(dev, rx_err, dev->net, "no read resubmitted\n");
}
void fib6_force_start_gc(struct net *net)
{
	if (!timer_pending(&net->ipv6.ip6_fib_timer))
		mod_timer(&net->ipv6.ip6_fib_timer,
			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
}
static void rx_complete (struct urb *urb)
{
	struct sk_buff		*skb = (struct sk_buff *) urb->context;
	struct skb_data		*entry = (struct skb_data *) skb->cb;
	struct usbnet		*dev = entry->dev;
	int			urb_status = urb->status;
	enum skb_state		state;

	skb_put (skb, urb->actual_length);
	state = rx_done;
	entry->urb = NULL;

	switch (urb_status) {
	/* success */
	case 0:
		if (skb->len < dev->net->hard_header_len) {
			state = rx_cleanup;
			dev->net->stats.rx_errors++;
			dev->net->stats.rx_length_errors++;
			netif_dbg(dev, rx_err, dev->net,
				  "rx length %d\n", skb->len);
		}
		break;

	/* stalls need manual reset. this is rare ... except that
	 * when going through USB 2.0 TTs, unplug appears this way.
	 * we avoid the highspeed version of the ETIMEDOUT/EILSEQ
	 * storm, recovering as needed.
	 */
	case -EPIPE:
		dev->net->stats.rx_errors++;
		usbnet_defer_kevent (dev, EVENT_RX_HALT);
		// FALLTHROUGH

	/* software-driven interface shutdown */
	case -ECONNRESET:		/* async unlink */
	case -ESHUTDOWN:		/* hardware gone */
		netif_dbg(dev, ifdown, dev->net,
			  "rx shutdown, code %d\n", urb_status);
		goto block;

	/* we get controller i/o faults during khubd disconnect() delays.
	 * throttle down resubmits, to avoid log floods; just temporarily,
	 * so we still recover when the fault isn't a khubd delay.
	 */
	case -EPROTO:
	case -ETIME:
	case -EILSEQ:
		dev->net->stats.rx_errors++;
		if (!timer_pending (&dev->delay)) {
			mod_timer (&dev->delay, jiffies + THROTTLE_JIFFIES);
			netif_dbg(dev, link, dev->net,
				  "rx throttle %d\n", urb_status);
		}
block:
		state = rx_cleanup;
		entry->urb = urb;
		urb = NULL;
		break;

	/* data overrun ... flush fifo? */
	case -EOVERFLOW:
		dev->net->stats.rx_over_errors++;
		// FALLTHROUGH

	default:
		state = rx_cleanup;
		dev->net->stats.rx_errors++;
		netif_dbg(dev, rx_err, dev->net, "rx status %d\n", urb_status);
		break;
	}

	state = defer_bh(dev, skb, &dev->rxq, state);

	if (urb) {
		if (netif_running (dev->net) &&
		    !test_bit (EVENT_RX_HALT, &dev->flags) &&
		    state != unlink_start) {
			rx_submit (dev, urb, GFP_ATOMIC);
			usb_mark_last_busy(dev->udev);
			return;
		}
		usb_free_urb (urb);
	}
	netif_dbg(dev, rx_err, dev->net, "no read resubmitted\n");
}
Exemplo n.º 4
0
int rose_ftimer_running(struct rose_neigh *neigh)
{
	return timer_pending(&neigh->ftimer);
}
static void cpufreq_interactivex_timer(unsigned long data)
{
	u64 delta_idle;
	u64 update_time;
	u64 *cpu_time_in_idle;
	u64 *cpu_idle_exit_time;
	struct timer_list *t;

	u64 now_idle = get_cpu_idle_time_us(data,
						&update_time);


	cpu_time_in_idle = &per_cpu(time_in_idle, data);
	cpu_idle_exit_time = &per_cpu(idle_exit_time, data);

	if (update_time == *cpu_idle_exit_time)
		return;

	delta_idle = cputime64_sub(now_idle, *cpu_time_in_idle);

	/* Scale up if there were no idle cycles since coming out of idle */
	if (delta_idle == 0) {
		if (policy->cur == policy->max)
			return;

		if (nr_running() < 1)
			return;

		target_freq = policy->max;

		cpumask_set_cpu(data, &work_cpumask);
		queue_work(up_wq, &freq_scale_work);
		return;
	}

	/*
	 * There is a window where if the cpu utlization can go from low to high
	 * between the timer expiring, delta_idle will be > 0 and the cpu will
	 * be 100% busy, preventing idle from running, and this timer from
	 * firing. So setup another timer to fire to check cpu utlization.
	 * Do not setup the timer if there is no scheduled work.
	 */
	t = &per_cpu(cpu_timer, data);
	if (!timer_pending(t) && nr_running() > 0) {
			*cpu_time_in_idle = get_cpu_idle_time_us(
					data, cpu_idle_exit_time);
			mod_timer(t, jiffies + 2);
	}

	if (policy->cur == policy->min)
		return;

	/*
	 * Do not scale down unless we have been at this frequency for the
	 * minimum sample time.
	 */
	if (cputime64_sub(update_time, freq_change_time) < min_sample_time)
		return;

	target_freq = policy->min;
	cpumask_set_cpu(data, &work_cpumask);
	queue_work(down_wq, &freq_scale_work);
}
Exemplo n.º 6
0
/*
 * Writes the given message to S390 system console
 */
static void
sclp_console_write(struct console *console, const char *message,
		   unsigned int count)
{
	unsigned long flags;
	void *page;
	int written;

	if (count == 0)
		return;
	spin_lock_irqsave(&sclp_con_lock, flags);
	/*
	 * process escape characters, write message into buffer,
	 * send buffer to SCLP
	 */
	do {
		/* make sure we have a console output buffer */
		if (sclp_conbuf == NULL) {
			if (list_empty(&sclp_con_pages))
				sclp_console_full++;
			while (list_empty(&sclp_con_pages)) {
				if (sclp_con_suspended)
					goto out;
				if (sclp_console_drop_buffer())
					break;
				spin_unlock_irqrestore(&sclp_con_lock, flags);
				sclp_sync_wait();
				spin_lock_irqsave(&sclp_con_lock, flags);
			}
			page = sclp_con_pages.next;
			list_del((struct list_head *) page);
			sclp_conbuf = sclp_make_buffer(page, sclp_con_columns,
						       sclp_con_width_htab);
		}
		/* try to write the string to the current output buffer */
		written = sclp_write(sclp_conbuf, (const unsigned char *)
				     message, count);
		if (written == count)
			break;
		/*
		 * Not all characters could be written to the current
		 * output buffer. Emit the buffer, create a new buffer
		 * and then output the rest of the string.
		 */
		spin_unlock_irqrestore(&sclp_con_lock, flags);
		sclp_conbuf_emit();
		spin_lock_irqsave(&sclp_con_lock, flags);
		message += written;
		count -= written;
	} while (count > 0);
	/* Setup timer to output current console buffer after 1/10 second */
	if (sclp_conbuf != NULL && sclp_chars_in_buffer(sclp_conbuf) != 0 &&
	    !timer_pending(&sclp_con_timer)) {
		init_timer(&sclp_con_timer);
		sclp_con_timer.function = sclp_console_timeout;
		sclp_con_timer.data = 0UL;
		sclp_con_timer.expires = jiffies + HZ/10;
		add_timer(&sclp_con_timer);
	}
out:
	spin_unlock_irqrestore(&sclp_con_lock, flags);
}
Exemplo n.º 7
0
/* log handler for internal netfilter logging api */
void
nfulnl_log_packet(struct net *net,
		  u_int8_t pf,
		  unsigned int hooknum,
		  const struct sk_buff *skb,
		  const struct net_device *in,
		  const struct net_device *out,
		  const struct nf_loginfo *li_user,
		  const char *prefix)
{
	size_t size;
	unsigned int data_len;
	struct nfulnl_instance *inst;
	const struct nf_loginfo *li;
	unsigned int qthreshold;
	unsigned int plen;
	struct nfnl_log_net *log = nfnl_log_pernet(net);
	const struct nfnl_ct_hook *nfnl_ct = NULL;
	struct nf_conn *ct = NULL;
	enum ip_conntrack_info uninitialized_var(ctinfo);

	if (li_user && li_user->type == NF_LOG_TYPE_ULOG)
		li = li_user;
	else
		li = &default_loginfo;

	inst = instance_lookup_get(log, li->u.ulog.group);
	if (!inst)
		return;

	plen = 0;
	if (prefix)
		plen = strlen(prefix) + 1;

	/* FIXME: do we want to make the size calculation conditional based on
	 * what is actually present?  way more branches and checks, but more
	 * memory efficient... */
	size =    nlmsg_total_size(sizeof(struct nfgenmsg))
		+ nla_total_size(sizeof(struct nfulnl_msg_packet_hdr))
		+ nla_total_size(sizeof(u_int32_t))	/* ifindex */
		+ nla_total_size(sizeof(u_int32_t))	/* ifindex */
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
		+ nla_total_size(sizeof(u_int32_t))	/* ifindex */
		+ nla_total_size(sizeof(u_int32_t))	/* ifindex */
#endif
		+ nla_total_size(sizeof(u_int32_t))	/* mark */
		+ nla_total_size(sizeof(u_int32_t))	/* uid */
		+ nla_total_size(sizeof(u_int32_t))	/* gid */
		+ nla_total_size(plen)			/* prefix */
		+ nla_total_size(sizeof(struct nfulnl_msg_packet_hw))
		+ nla_total_size(sizeof(struct nfulnl_msg_packet_timestamp))
		+ nla_total_size(sizeof(struct nfgenmsg));	/* NLMSG_DONE */

	if (in && skb_mac_header_was_set(skb)) {
		size +=   nla_total_size(skb->dev->hard_header_len)
			+ nla_total_size(sizeof(u_int16_t))	/* hwtype */
			+ nla_total_size(sizeof(u_int16_t));	/* hwlen */
	}

	spin_lock_bh(&inst->lock);

	if (inst->flags & NFULNL_CFG_F_SEQ)
		size += nla_total_size(sizeof(u_int32_t));
	if (inst->flags & NFULNL_CFG_F_SEQ_GLOBAL)
		size += nla_total_size(sizeof(u_int32_t));
	if (inst->flags & NFULNL_CFG_F_CONNTRACK) {
		nfnl_ct = rcu_dereference(nfnl_ct_hook);
		if (nfnl_ct != NULL) {
			ct = nfnl_ct->get_ct(skb, &ctinfo);
			if (ct != NULL)
				size += nfnl_ct->build_size(ct);
		}
	}

	qthreshold = inst->qthreshold;
	/* per-rule qthreshold overrides per-instance */
	if (li->u.ulog.qthreshold)
		if (qthreshold > li->u.ulog.qthreshold)
			qthreshold = li->u.ulog.qthreshold;


	switch (inst->copy_mode) {
	case NFULNL_COPY_META:
	case NFULNL_COPY_NONE:
		data_len = 0;
		break;

	case NFULNL_COPY_PACKET:
		data_len = inst->copy_range;
		if ((li->u.ulog.flags & NF_LOG_F_COPY_LEN) &&
		    (li->u.ulog.copy_len < data_len))
			data_len = li->u.ulog.copy_len;

		if (data_len > skb->len)
			data_len = skb->len;

		size += nla_total_size(data_len);
		break;

	case NFULNL_COPY_DISABLED:
	default:
		goto unlock_and_release;
	}

	if (inst->skb && size > skb_tailroom(inst->skb)) {
		/* either the queue len is too high or we don't have
		 * enough room in the skb left. flush to userspace. */
		__nfulnl_flush(inst);
	}

	if (!inst->skb) {
		inst->skb = nfulnl_alloc_skb(net, inst->peer_portid,
					     inst->nlbufsiz, size);
		if (!inst->skb)
			goto alloc_failure;
	}

	inst->qlen++;

	__build_packet_message(log, inst, skb, data_len, pf,
				hooknum, in, out, prefix, plen,
				nfnl_ct, ct, ctinfo);

	if (inst->qlen >= qthreshold)
		__nfulnl_flush(inst);
	/* timer_pending always called within inst->lock, so there
	 * is no chance of a race here */
	else if (!timer_pending(&inst->timer)) {
		instance_get(inst);
		inst->timer.expires = jiffies + (inst->flushtimeout*HZ/100);
		add_timer(&inst->timer);
	}

unlock_and_release:
	spin_unlock_bh(&inst->lock);
	instance_put(inst);
	return;

alloc_failure:
	/* FIXME: statistics */
	goto unlock_and_release;
}
static irqreturn_t touchkey_interrupt(int irq, void *dev_id)
{
	struct touchkey_i2c *tkey_i2c = dev_id;
    static const int ledCmd[] = {TK_CMD_LED_ON, TK_CMD_LED_OFF};
	u8 data[3];
	int ret;
	int retry = 10;
	int keycode_type = 0;
	int pressed;

	set_touchkey_debug('a');

	retry = 3;
	while (retry--) {
		ret = i2c_touchkey_read(tkey_i2c->client, KEYCODE_REG, data, 3);
		if (!ret)
			break;
		else {
			pr_debug("[TouchKey] i2c read failed, ret:%d, retry: %d\n",
			       ret, retry);
			continue;
		}
	}
	if (ret < 0)
		return IRQ_HANDLED;

	set_touchkey_debug(data[0]);

	keycode_type = (data[0] & TK_BIT_KEYCODE);
	pressed = !(data[0] & TK_BIT_PRESS_EV);

	if (keycode_type <= 0 || keycode_type >= touchkey_count) {
		pr_debug("[Touchkey] keycode_type err\n");
		return IRQ_HANDLED;
	}

	if (pressed) {
		set_touchkey_debug('P');

        // enable lights on keydown
        if (touch_led_disabled == 0) {
            if (touchkey_led_status == TK_CMD_LED_OFF) {
                pr_debug("[Touchkey] %s: keydown - LED ON\n", __func__);
                i2c_touchkey_write(tkey_i2c->client, (u8 *) &ledCmd[0], 1);
                touchkey_led_status = TK_CMD_LED_ON;
            }
            if (timer_pending(&touch_led_timer) == 1) {
                mod_timer(&touch_led_timer, jiffies + (HZ * touch_led_timeout));
            }
        }
        
    } else {
        // touch led timeout on keyup
        if (touch_led_disabled == 0) {
            if (timer_pending(&touch_led_timer) == 0) {
                pr_debug("[Touchkey] %s: keyup - add_timer\n", __func__);
                touch_led_timer.expires = jiffies + (HZ * touch_led_timeout);
                add_timer(&touch_led_timer);
            } else {
                mod_timer(&touch_led_timer, jiffies + (HZ * touch_led_timeout));
            }
        }
    }

	if (get_tsp_status() && pressed)
		pr_debug("[TouchKey] touchkey pressed but don't send event because touch is pressed.\n");
	else {
		input_report_key(tkey_i2c->input_dev,
				 touchkey_keycode[keycode_type], pressed);
		input_sync(tkey_i2c->input_dev);
#if !defined(CONFIG_SAMSUNG_PRODUCT_SHIP)
		pr_debug("[TouchKey] keycode:%d pressed:%d\n",
		   touchkey_keycode[keycode_type], pressed);
#else
		pr_debug("[TouchKey] pressed:%d\n",
			pressed);
#endif

		#if defined(CONFIG_TARGET_LOCALE_KOR)
		if (g_debug_tkey == true) {
			pr_debug("[TouchKey] keycode[%d]=%d pressed:%d\n",
			keycode_type, touchkey_keycode[keycode_type], pressed);
		} else {
			pr_debug("[TouchKey] pressed:%d\n", pressed);
		}
		#endif
	}
	set_touchkey_debug('A');
	return IRQ_HANDLED;
}
Exemplo n.º 9
0
static void rx_submit (struct usbnet *dev, struct urb *urb, gfp_t flags)
{
	struct sk_buff		*skb;
	struct skb_data		*entry;
	int			retval = 0;
	unsigned long		lockflags;
	size_t			size = dev->rx_urb_size;

#if defined(CONFIG_RA_HW_NAT_PCI) && (defined(CONFIG_RA_HW_NAT) || defined(CONFIG_RA_HW_NAT_MODULE))
	if ((skb = alloc_skb (size + NET_IP_ALIGN + FOE_INFO_LEN, flags)) == NULL) {
#else
	if ((skb = alloc_skb (size + NET_IP_ALIGN, flags)) == NULL) {
#endif
		if (netif_msg_rx_err (dev))
			devdbg (dev, "no rx skb");
		usbnet_defer_kevent (dev, EVENT_RX_MEMORY);
		usb_free_urb (urb);
		return;
	}
#if defined(CONFIG_RA_HW_NAT_PCI) && (defined(CONFIG_RA_HW_NAT) || defined(CONFIG_RA_HW_NAT_MODULE))
	skb_reserve (skb, NET_IP_ALIGN + FOE_INFO_LEN);
#else
	skb_reserve (skb, NET_IP_ALIGN);
#endif
	entry = (struct skb_data *) skb->cb;
	entry->urb = urb;
	entry->dev = dev;
	entry->length = 0;

	usb_fill_bulk_urb (urb, dev->udev, dev->in,
		skb->data, size, rx_complete, skb);

	spin_lock_irqsave (&dev->rxq.lock, lockflags);

	if (netif_running (dev->net)
			&& netif_device_present (dev->net)
			&& !test_bit (EVENT_RX_HALT, &dev->flags)) {
		switch (retval = usb_submit_urb (urb, GFP_ATOMIC)){
		case -EPIPE:
			usbnet_defer_kevent (dev, EVENT_RX_HALT);
			break;
		case -ENOMEM:
			usbnet_defer_kevent (dev, EVENT_RX_MEMORY);
			break;
		case -ENODEV:
			if (netif_msg_ifdown (dev))
				devdbg (dev, "device gone");
			netif_device_detach (dev->net);
			break;
		default:
			if (netif_msg_rx_err (dev))
				devdbg (dev, "rx submit, %d", retval);
			tasklet_schedule (&dev->bh);
			break;
		case 0:
			__usbnet_queue_skb(&dev->rxq, skb, rx_start);
		}
	} else {
		if (netif_msg_ifdown (dev))
			devdbg (dev, "rx: stopped");
		retval = -ENOLINK;
	}
	spin_unlock_irqrestore (&dev->rxq.lock, lockflags);
	if (retval) {
		dev_kfree_skb_any (skb);
		usb_free_urb (urb);
	}
}


/*-------------------------------------------------------------------------*/

static inline void rx_process (struct usbnet *dev, struct sk_buff *skb)
{
	if (dev->driver_info->rx_fixup
			&& !dev->driver_info->rx_fixup (dev, skb))
		goto error;
	// else network stack removes extra byte if we forced a short packet

	if (skb->len)
		usbnet_skb_return (dev, skb);
	else {
		if (netif_msg_rx_err (dev))
			devdbg (dev, "drop");
error:
		dev->stats.rx_errors++;
		skb_queue_tail (&dev->done, skb);
	}
}

/*-------------------------------------------------------------------------*/

static void rx_complete (struct urb *urb)
{
	struct sk_buff		*skb = (struct sk_buff *) urb->context;
	struct skb_data		*entry = (struct skb_data *) skb->cb;
	struct usbnet		*dev = entry->dev;
	int			urb_status = urb->status;
	enum skb_state		state;

	skb_put (skb, urb->actual_length);
	state = rx_done;
	entry->urb = NULL;

	switch (urb_status) {
	    // success
	    case 0:
		if (skb->len < dev->net->hard_header_len) {
			state = rx_cleanup;
			dev->stats.rx_errors++;
			dev->stats.rx_length_errors++;
			if (netif_msg_rx_err (dev))
				devdbg (dev, "rx length %d", skb->len);
		}
		break;

	    // stalls need manual reset. this is rare ... except that
	    // when going through USB 2.0 TTs, unplug appears this way.
	    // we avoid the highspeed version of the ETIMEOUT/EILSEQ
	    // storm, recovering as needed.
	    case -EPIPE:
		dev->stats.rx_errors++;
		usbnet_defer_kevent (dev, EVENT_RX_HALT);
		// FALLTHROUGH

	    // software-driven interface shutdown
	    case -ECONNRESET:		// async unlink
	    case -ESHUTDOWN:		// hardware gone
		if (netif_msg_ifdown (dev))
			devdbg (dev, "rx shutdown, code %d", urb_status);
		goto block;

	    // we get controller i/o faults during khubd disconnect() delays.
	    // throttle down resubmits, to avoid log floods; just temporarily,
	    // so we still recover when the fault isn't a khubd delay.
	    case -EPROTO:
	    case -ETIME:
	    case -EILSEQ:
		dev->stats.rx_errors++;
		if (!timer_pending (&dev->delay)) {
			mod_timer (&dev->delay, jiffies + THROTTLE_JIFFIES);
			if (netif_msg_link (dev))
				devdbg (dev, "rx throttle %d", urb_status);
		}
block:
		state = rx_cleanup;
		entry->urb = urb;
		urb = NULL;
		break;

	    // data overrun ... flush fifo?
	    case -EOVERFLOW:
		dev->stats.rx_over_errors++;
		// FALLTHROUGH

	    default:
		state = rx_cleanup;
		dev->stats.rx_errors++;
		if (netif_msg_rx_err (dev))
			devdbg (dev, "rx status %d", urb_status);
		break;
	}

	state = defer_bh(dev, skb, &dev->rxq, state);

	if (urb) {
		if (netif_running (dev->net)
		    && !test_bit (EVENT_RX_HALT, &dev->flags) &&
		    state != unlink_start) {
			rx_submit (dev, urb, GFP_ATOMIC);
			return;
		}
		usb_free_urb (urb);
	}
	if (netif_msg_rx_err (dev))
		devdbg (dev, "no read resubmitted");
}

static void intr_complete (struct urb *urb)
{
	struct usbnet	*dev = urb->context;
	int		status = urb->status;

	switch (status) {
	    /* success */
	    case 0:
		dev->driver_info->status(dev, urb);
		break;

	    /* software-driven interface shutdown */
	    case -ENOENT:		// urb killed
	    case -ESHUTDOWN:		// hardware gone
		if (netif_msg_ifdown (dev))
			devdbg (dev, "intr shutdown, code %d", status);
		return;

	    /* NOTE:  not throttling like RX/TX, since this endpoint
	     * already polls infrequently
	     */
	    default:
		devdbg (dev, "intr status %d", status);
		break;
	}

	memset(urb->transfer_buffer, 0, urb->transfer_buffer_length);
	status = usb_submit_urb (urb, GFP_ATOMIC);
	if (status != 0 && netif_msg_timer (dev))
		deverr(dev, "intr resubmit --> %d", status);
}

/*-------------------------------------------------------------------------*/

// unlink pending rx/tx; completion handlers do all other cleanup

static int unlink_urbs (struct usbnet *dev, struct sk_buff_head *q)
{
	unsigned long		flags;
	struct sk_buff		*skb;
	int			count = 0;

	spin_lock_irqsave (&q->lock, flags);
	while (!skb_queue_empty(q)) {
		struct skb_data		*entry;
		struct urb		*urb;
		int			retval;

		skb_queue_walk(q, skb) {
		entry = (struct skb_data *) skb->cb;
			if (entry->state != unlink_start)
				goto found;
		}
		break;
found:
		entry->state = unlink_start;
		urb = entry->urb;

		/*
		 * Get reference count of the URB to avoid it to be
		 * freed during usb_unlink_urb, which may trigger
		 * use-after-free problem inside usb_unlink_urb since
		 * usb_unlink_urb is always racing with .complete
		 * handler(include defer_bh).
		 */
		usb_get_urb(urb);
		spin_unlock_irqrestore(&q->lock, flags);
		// during some PM-driven resume scenarios,
		// these (async) unlinks complete immediately
		retval = usb_unlink_urb (urb);
		if (retval != -EINPROGRESS && retval != 0)
			devdbg (dev, "unlink urb err, %d", retval);
		else
			count++;
		usb_put_urb(urb);
		spin_lock_irqsave(&q->lock, flags);
	}
Exemplo n.º 10
0
static void usbnet_bh (unsigned long param)
{
	struct usbnet		*dev = (struct usbnet *) param;
	struct sk_buff		*skb;
	struct skb_data		*entry;

	while ((skb = skb_dequeue (&dev->done))) {
		entry = (struct skb_data *) skb->cb;
		switch (entry->state) {
		case rx_done:
			entry->state = rx_cleanup;
			rx_process (dev, skb);
			continue;
		case tx_done:
		case rx_cleanup:
			usb_free_urb (entry->urb);
			dev_kfree_skb (skb);
			continue;
		default:
			netdev_dbg(dev->net, "bogus skb state %d\n", entry->state);
		}
	}

	// waiting for all pending urbs to complete?
	if (dev->wait) {
		if ((dev->txq.qlen + dev->rxq.qlen + dev->done.qlen) == 0) {
			wake_up (dev->wait);
		}

	// or are we maybe short a few urbs?
	} else if (netif_running (dev->net) &&
		   netif_device_present (dev->net) &&
		   !timer_pending (&dev->delay) &&
		   !test_bit (EVENT_RX_HALT, &dev->flags)) {
		int	temp = dev->rxq.qlen;
		int	qlen = RX_QLEN (dev);

		if (temp < qlen) {
			struct urb	*urb;
			int		i;

			// don't refill the queue all at once
			for (i = 0; i < 10 && dev->rxq.qlen < qlen; i++) {
				urb = usb_alloc_urb (0, GFP_ATOMIC);
				if (urb != NULL) {
					if (rx_submit (dev, urb, GFP_ATOMIC) ==
					    -ENOLINK)
						return;
				}
			}
			if (temp != dev->rxq.qlen)
				netif_dbg(dev, link, dev->net,
					  "rxqlen %d --> %d\n",
					  temp, dev->rxq.qlen);
			if (dev->rxq.qlen < qlen)
				tasklet_schedule (&dev->bh);
		}
		if (dev->txq.qlen < TX_QLEN (dev))
			netif_wake_queue (dev->net);
	}
}
static ssize_t touchkey_led_control(struct device *dev,
				 struct device_attribute *attr, const char *buf,
				 size_t size)
{
	struct touchkey_i2c *tkey_i2c = dev_get_drvdata(dev);
	int data;
	int ret;
	static const int ledCmd[] = {TK_CMD_LED_ON, TK_CMD_LED_OFF};

#if defined(CONFIG_TARGET_LOCALE_KOR)
	if (touchkey_probe == false)
		return size;
#endif
	ret = sscanf(buf, "%d", &data);
	if (ret != 1) {
		printk(KERN_DEBUG "[Touchkey] %s: %d err\n",
			__func__, __LINE__);
		return size;
	}

	if (data != 1 && data != 2) {
		printk(KERN_DEBUG "[Touchkey] %s: wrong cmd %x\n",
			__func__, data);
		return size;
	}

#if defined(CONFIG_TARGET_LOCALE_NA)
	if (tkey_i2c->module_ver >= 8)
		data = ledCmd[data-1];
#else
	data = ledCmd[data-1];
#endif

    if (touch_led_disabled == 0) {
        ret = i2c_touchkey_write(tkey_i2c->client, (u8 *) &data, 1);
    }

    if(data == ledCmd[0]) {
        if (touch_led_disabled == 0) {
            if (timer_pending(&touch_led_timer) == 0) {
                pr_debug("[Touchkey] %s: add_timer\n", __func__);
                touch_led_timer.expires = jiffies + (HZ * touch_led_timeout);
                add_timer(&touch_led_timer);
            } else {
                mod_timer(&touch_led_timer, jiffies + (HZ * touch_led_timeout));
            }
        }
    } else {
        if (timer_pending(&touch_led_timer) == 1) {
            pr_debug("[Touchkey] %s: del_timer\n", __func__);
            del_timer(&touch_led_timer);
        }
    }

	if (ret == -ENODEV) {
		pr_err("[Touchkey] error to write i2c\n");
		touchled_cmd_reversed = 1;
	}

    pr_debug("[Touchkey] %s: touchkey_led_status=%d\n", __func__, data);
	touchkey_led_status = data;

	return size;
}
Exemplo n.º 12
0
static void kevent (void *data)
{
	struct usbnet *dev = (struct usbnet *)data;
#else
static void kevent (struct work_struct *work)
{
	struct usbnet		*dev =
		container_of(work, struct usbnet, kevent);
#endif
	int			status;

	/* usb_clear_halt() needs a thread context */
	if (test_bit (EVENT_TX_HALT, &dev->flags)) {
printk ("EVENT_TX_HALT\n");
		unlink_urbs (dev, &dev->txq);
		status = usb_clear_halt (dev->udev, dev->out);
		if (status < 0
				&& status != -EPIPE
				&& status != -ESHUTDOWN) {
			if (netif_msg_tx_err (dev))
				deverr (dev, "can't clear tx halt, status %d",
					status);
		} else {
			clear_bit (EVENT_TX_HALT, &dev->flags);
			if (status != -ESHUTDOWN)
				netif_wake_queue (dev->net);
		}
	}
	if (test_bit (EVENT_RX_HALT, &dev->flags)) {
printk ("EVENT_RX_HALT\n");
		unlink_urbs (dev, &dev->rxq);
		status = usb_clear_halt (dev->udev, dev->in);
		if (status < 0
				&& status != -EPIPE
				&& status != -ESHUTDOWN) {
			if (netif_msg_rx_err (dev))
				deverr (dev, "can't clear rx halt, status %d",
					status);
		} else {
			clear_bit (EVENT_RX_HALT, &dev->flags);
			tasklet_schedule (&dev->bh);
		}
	}

	/* tasklet could resubmit itself forever if memory is tight */
	if (test_bit (EVENT_RX_MEMORY, &dev->flags)) {
		struct urb	*urb = NULL;
printk ("EVENT_RX_MEMORY\n");
		if (netif_running (dev->net))
			urb = usb_alloc_urb (0, GFP_KERNEL);
		else
			clear_bit (EVENT_RX_MEMORY, &dev->flags);
		if (urb != NULL) {
			clear_bit (EVENT_RX_MEMORY, &dev->flags);
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,14)
			urb->transfer_flags |= URB_ASYNC_UNLINK;
#endif
			rx_submit (dev, urb, GFP_KERNEL);
			tasklet_schedule (&dev->bh);
		}
	}

	if (test_bit (EVENT_LINK_RESET, &dev->flags)) {
		struct driver_info	*info = dev->driver_info;
		int			retval = 0;

		clear_bit (EVENT_LINK_RESET, &dev->flags);
		if(info->link_reset && (retval = info->link_reset(dev)) < 0) {
			devinfo(dev, "link reset failed (%d) usbnet usb-%s-%s, %s",
				retval,
				dev->udev->bus->bus_name, dev->udev->devpath,
				info->description);
		}
	}

	if (dev->flags)
		devdbg (dev, "kevent done, flags = 0x%lx",
			dev->flags);
}

/*-------------------------------------------------------------------------*/

#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,19)
static void tx_complete (struct urb *urb, struct pt_regs *regs)
#else
static void tx_complete (struct urb *urb)
#endif
{
	struct sk_buff		*skb = (struct sk_buff *) urb->context;
	struct skb_data		*entry = (struct skb_data *) skb->cb;
	struct usbnet		*dev = entry->dev;

	if (urb->status == 0) {
		dev->stats.tx_packets++;
		dev->stats.tx_bytes += entry->length;
	} else {
		dev->stats.tx_errors++;

		switch (urb->status) {
		case -EPIPE:
			axusbnet_defer_kevent (dev, EVENT_TX_HALT);
			break;

		/* software-driven interface shutdown */
		case -ECONNRESET:		// async unlink
		case -ESHUTDOWN:		// hardware gone
			break;

		// like rx, tx gets controller i/o faults during khubd delays
		// and so it uses the same throttling mechanism.
		case -EPROTO:
		case -ETIME:
		case -EILSEQ:
			if (!timer_pending (&dev->delay)) {
				mod_timer (&dev->delay,
					jiffies + THROTTLE_JIFFIES);
				if (netif_msg_link (dev))
					devdbg (dev, "tx throttle %d",
							urb->status);
			}
			netif_stop_queue (dev->net);
			break;
		default:
			if (netif_msg_tx_err (dev))
				devdbg (dev, "tx err %d", entry->urb->status);
			break;
		}
	}

	urb->dev = NULL;
	entry->state = tx_done;
	defer_bh(dev, skb, &dev->txq);
}

/*-------------------------------------------------------------------------*/

static
void axusbnet_tx_timeout (struct net_device *net)
{
	struct usbnet		*dev = netdev_priv(net);

	unlink_urbs (dev, &dev->txq);
	tasklet_schedule (&dev->bh);

	// FIXME: device recovery -- reset?
}

/*-------------------------------------------------------------------------*/
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,32)
static int
#else
static netdev_tx_t
#endif
axusbnet_start_xmit (struct sk_buff *skb,
				     struct net_device *net)
{
	struct usbnet		*dev = netdev_priv(net);
	int			length;
	struct urb		*urb = NULL;
	struct skb_data		*entry;
	struct driver_info	*info = dev->driver_info;
	unsigned long		flags;
	int retval;

	// some devices want funky USB-level framing, for
	// win32 driver (usually) and/or hardware quirks
	if (info->tx_fixup) {
		skb = info->tx_fixup (dev, skb, GFP_ATOMIC);
		if (!skb) {
			if (netif_msg_tx_err (dev))
				devdbg (dev, "can't tx_fixup skb");
			goto drop;
		}
	}
	length = skb->len;

	if (!(urb = usb_alloc_urb (0, GFP_ATOMIC))) {
		if (netif_msg_tx_err (dev))
			devdbg (dev, "no urb");
		goto drop;
	}

	entry = (struct skb_data *) skb->cb;
	entry->urb = urb;
	entry->dev = dev;
	entry->state = tx_start;
	entry->length = length;

	usb_fill_bulk_urb (urb, dev->udev, dev->out,
			skb->data, skb->len, tx_complete, skb);

	/* don't assume the hardware handles USB_ZERO_PACKET
	 * NOTE:  strictly conforming cdc-ether devices should expect
	 * the ZLP here, but ignore the one-byte packet.
	 */
	if (!(info->flags & FLAG_SEND_ZLP) && (length % dev->maxpacket) == 0) {
		urb->transfer_buffer_length++;
		if (skb_tailroom(skb)) {
			skb->data[skb->len] = 0;
			__skb_put(skb, 1);
		}
	}

	spin_lock_irqsave (&dev->txq.lock, flags);

	switch ((retval = usb_submit_urb (urb, GFP_ATOMIC))) {
	case -EPIPE:
		netif_stop_queue (net);
		axusbnet_defer_kevent (dev, EVENT_TX_HALT);
		break;
	default:
		if (netif_msg_tx_err (dev))
			devdbg (dev, "tx: submit urb err %d", retval);
		break;
	case 0:
		net->trans_start = jiffies;
		__skb_queue_tail (&dev->txq, skb);
		if (dev->txq.qlen >= TX_QLEN (dev))
			netif_stop_queue (net);
	}
	spin_unlock_irqrestore (&dev->txq.lock, flags);

	if (retval) {
		if (netif_msg_tx_err (dev))
			devdbg (dev, "drop, code %d", retval);
drop:
		dev->stats.tx_dropped++;
		if (skb)
			dev_kfree_skb_any (skb);
		usb_free_urb (urb);
	} else if (netif_msg_tx_queued (dev)) {
		devdbg (dev, "> tx, len %d, type 0x%x",
			length, skb->protocol);
	}
	return NETDEV_TX_OK;
}

/*-------------------------------------------------------------------------*/

// tasklet (work deferred from completions, in_irq) or timer

static void axusbnet_bh (unsigned long param)
{
	struct usbnet		*dev = (struct usbnet *) param;
	struct sk_buff		*skb;
	struct skb_data		*entry;

	while ((skb = skb_dequeue (&dev->done))) {
		entry = (struct skb_data *) skb->cb;
		switch (entry->state) {
		case rx_done:
			entry->state = rx_cleanup;
			rx_process (dev, skb);
			continue;
		case tx_done:
		case rx_cleanup:
			usb_free_urb (entry->urb);
			dev_kfree_skb (skb);
			continue;
		default:
			devdbg (dev, "bogus skb state %d", entry->state);
		}
	}

	// waiting for all pending urbs to complete?
	if (dev->wait) {
		if ((dev->txq.qlen + dev->rxq.qlen + dev->done.qlen) == 0) {
			wake_up (dev->wait);
		}

	// or are we maybe short a few urbs?
	} else if (netif_running (dev->net)
			&& netif_device_present (dev->net)
			&& !timer_pending (&dev->delay)
			&& !test_bit (EVENT_RX_HALT, &dev->flags)) {
		int	temp = dev->rxq.qlen;
		int	qlen = RX_QLEN (dev);

		if (temp < qlen) {
			struct urb	*urb;
			int		i;

			// don't refill the queue all at once
			for (i = 0; i < 10 && dev->rxq.qlen < qlen; i++) {
				urb = usb_alloc_urb (0, GFP_ATOMIC);
				if (urb != NULL) {
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,14)
					urb->transfer_flags |= URB_ASYNC_UNLINK;
#endif
					rx_submit (dev, urb, GFP_ATOMIC);
				}
			}
			if (temp != dev->rxq.qlen && netif_msg_link (dev))
				devdbg (dev, "rxqlen %d --> %d",
						temp, dev->rxq.qlen);
			if (dev->rxq.qlen < qlen)
				tasklet_schedule (&dev->bh);
		}
		if (dev->txq.qlen < TX_QLEN (dev))
			netif_wake_queue (dev->net);
	}
}


/*-------------------------------------------------------------------------
 *
 * USB Device Driver support
 *
 *-------------------------------------------------------------------------*/

// precondition: never called in_interrupt

static
void axusbnet_disconnect (struct usb_interface *intf)
{
	struct usbnet		*dev;
	struct usb_device	*xdev;
	struct net_device	*net;

	dev = usb_get_intfdata(intf);
	usb_set_intfdata(intf, NULL);
	if (!dev)
		return;

	xdev = interface_to_usbdev (intf);

	if (netif_msg_probe (dev))
		devinfo (dev, "unregister '%s' usb-%s-%s, %s",
			intf->dev.driver->name,
			xdev->bus->bus_name, xdev->devpath,
			dev->driver_info->description);

	net = dev->net;
	unregister_netdev (net);

	/* we don't hold rtnl here ... */
	flush_scheduled_work ();

	if (dev->driver_info->unbind)
		dev->driver_info->unbind (dev, intf);

	free_netdev(net);
	usb_put_dev (xdev);
}

/*-------------------------------------------------------------------------*/

// precondition: never called in_interrupt

static int
axusbnet_probe (struct usb_interface *udev, const struct usb_device_id *prod)
{
	struct usbnet			*dev;
	struct net_device		*net;
	struct usb_host_interface	*interface;
	struct driver_info		*info;
	struct usb_device		*xdev;
	int				status;
	const char			*name;

	name = udev->dev.driver->name;
	info = (struct driver_info *) prod->driver_info;
	if (!info) {
		printk (KERN_ERR "blacklisted by %s\n", name);
		return -ENODEV;
	}
	xdev = interface_to_usbdev (udev);
	interface = udev->cur_altsetting;

	usb_get_dev (xdev);

	status = -ENOMEM;

	// set up our own records
	net = alloc_etherdev(sizeof(*dev));
	if (!net) {
		dbg ("can't kmalloc dev");
		goto out;
	}

	dev = netdev_priv(net);
	dev->udev = xdev;
	dev->intf = udev;
	dev->driver_info = info;
	dev->driver_name = name;
	dev->msg_enable = netif_msg_init (msg_level, NETIF_MSG_DRV
				| NETIF_MSG_PROBE | NETIF_MSG_LINK | NETIF_MSG_IFDOWN |NETIF_MSG_IFUP);
	skb_queue_head_init (&dev->rxq);
	skb_queue_head_init (&dev->txq);
	skb_queue_head_init (&dev->done);
	dev->bh.func = axusbnet_bh;
	dev->bh.data = (unsigned long) dev;
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20)
	INIT_WORK (&dev->kevent, kevent, dev);
#else
	INIT_WORK (&dev->kevent, kevent);
#endif

	dev->delay.function = axusbnet_bh;
	dev->delay.data = (unsigned long) dev;
	init_timer (&dev->delay);
//	mutex_init (&dev->phy_mutex);

	dev->net = net;

	/* rx and tx sides can use different message sizes;
	 * bind() should set rx_urb_size in that case.
	 */
	dev->hard_mtu = net->mtu + net->hard_header_len;

#if 0
// dma_supported() is deeply broken on almost all architectures
	// possible with some EHCI controllers
	if (dma_supported (&udev->dev, DMA_BIT_MASK(64)))
		net->features |= NETIF_F_HIGHDMA;
#endif

#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,30)
	net->open		= axusbnet_open,
	net->stop		= axusbnet_stop,
	net->hard_start_xmit	= axusbnet_start_xmit,
	net->tx_timeout	= axusbnet_tx_timeout,
	net->get_stats = axusbnet_get_stats;
#endif

	net->watchdog_timeo = TX_TIMEOUT_JIFFIES;
	net->ethtool_ops = &axusbnet_ethtool_ops;

	// allow device-specific bind/init procedures
	// NOTE net->name still not usable ...
	status = info->bind (dev, udev);
	if (status < 0) {
		deverr(dev, "Binding device failed: %d", status);
		goto out1;
	} else 	{
	}

	/* maybe the remote can't receive an Ethernet MTU */
	if (net->mtu > (dev->hard_mtu - net->hard_header_len))
		net->mtu = dev->hard_mtu - net->hard_header_len;

	status = init_status (dev, udev);
	if (status < 0)
		goto out3;

	if (!dev->rx_urb_size)
		dev->rx_urb_size = dev->hard_mtu;
	dev->maxpacket = usb_maxpacket (dev->udev, dev->out, 1);

	SET_NETDEV_DEV(net, &udev->dev);
	status = register_netdev (net);
	if (status) {
		deverr(dev, "net device registration failed: %d", status);
		goto out3;
	}

	if (netif_msg_probe (dev))
		devinfo (dev, "register '%s' at usb-%s-%s, %s, %pM",
			udev->dev.driver->name,
			xdev->bus->bus_name, xdev->devpath,
			dev->driver_info->description,
			net->dev_addr);

	// ok, it's ready to go.
	usb_set_intfdata (udev, dev);

	// start as if the link is up
	netif_device_attach (net);

	return 0;

out3:
	if (info->unbind)
		info->unbind (dev, udev);
out1:
	free_netdev(net);
out:
	usb_put_dev(xdev);
	return status;
}

/*-------------------------------------------------------------------------*/

/*
 * suspend the whole driver as soon as the first interface is suspended
 * resume only when the last interface is resumed
 */

static int axusbnet_suspend (struct usb_interface *intf,
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,10)
pm_message_t message)
#else
u32 message)
#endif
{
	struct usbnet		*dev = usb_get_intfdata(intf);

	if (!dev->suspend_count++) {
		/*
		 * accelerate emptying of the rx and queues, to avoid
		 * having everything error out.
		 */
		netif_device_detach (dev->net);
		(void) unlink_urbs (dev, &dev->rxq);
		(void) unlink_urbs (dev, &dev->txq);
		/*
		 * reattach so runtime management can use and
		 * wake the device
		 */
		netif_device_attach (dev->net);
	}
	return 0;
}

static int
axusbnet_resume (struct usb_interface *intf)
{
	struct usbnet		*dev = usb_get_intfdata(intf);

	if (!--dev->suspend_count)
		tasklet_schedule (&dev->bh);

	return 0;
}
Exemplo n.º 13
0
int inet_sk_diag_fill(struct sock *sk, struct inet_connection_sock *icsk,
			      struct sk_buff *skb, struct inet_diag_req_v2 *req,
			      struct user_namespace *user_ns,		      	
			      u32 portid, u32 seq, u16 nlmsg_flags,
			      const struct nlmsghdr *unlh)
{
	const struct inet_sock *inet = inet_sk(sk);
	struct inet_diag_msg *r;
	struct nlmsghdr  *nlh;
	struct nlattr *attr;
	void *info = NULL;
	const struct inet_diag_handler *handler;
	int ext = req->idiag_ext;

	handler = inet_diag_table[req->sdiag_protocol];
	BUG_ON(handler == NULL);

	nlh = nlmsg_put(skb, portid, seq, unlh->nlmsg_type, sizeof(*r),
			nlmsg_flags);
	if (!nlh)
		return -EMSGSIZE;

	r = nlmsg_data(nlh);
	BUG_ON(sk->sk_state == TCP_TIME_WAIT);

	r->idiag_family = sk->sk_family;
	r->idiag_state = sk->sk_state;
	r->idiag_timer = 0;
	r->idiag_retrans = 0;

	r->id.idiag_if = sk->sk_bound_dev_if;
	sock_diag_save_cookie(sk, r->id.idiag_cookie);

	r->id.idiag_sport = inet->inet_sport;
	r->id.idiag_dport = inet->inet_dport;
	r->id.idiag_src[0] = inet->inet_rcv_saddr;
	r->id.idiag_dst[0] = inet->inet_daddr;

	if (nla_put_u8(skb, INET_DIAG_SHUTDOWN, sk->sk_shutdown))
		goto errout;

	/* IPv6 dual-stack sockets use inet->tos for IPv4 connections,
	 * hence this needs to be included regardless of socket family.
	 */
	if (ext & (1 << (INET_DIAG_TOS - 1)))
		if (nla_put_u8(skb, INET_DIAG_TOS, inet->tos) < 0)
			goto errout;

#if IS_ENABLED(CONFIG_IPV6)
	if (r->idiag_family == AF_INET6) {
		const struct ipv6_pinfo *np = inet6_sk(sk);

		*(struct in6_addr *)r->id.idiag_src = np->rcv_saddr;
		*(struct in6_addr *)r->id.idiag_dst = np->daddr;

		if (ext & (1 << (INET_DIAG_TCLASS - 1)))
			if (nla_put_u8(skb, INET_DIAG_TCLASS, np->tclass) < 0)
				goto errout;
	}
#endif

	r->idiag_uid = from_kuid_munged(user_ns, sock_i_uid(sk));
	r->idiag_inode = sock_i_ino(sk);

	if (ext & (1 << (INET_DIAG_MEMINFO - 1))) {
		struct inet_diag_meminfo minfo = {
			.idiag_rmem = sk_rmem_alloc_get(sk),
			.idiag_wmem = sk->sk_wmem_queued,
			.idiag_fmem = sk->sk_forward_alloc,
			.idiag_tmem = sk_wmem_alloc_get(sk),
		};

		if (nla_put(skb, INET_DIAG_MEMINFO, sizeof(minfo), &minfo) < 0)
			goto errout;
	}

	if (ext & (1 << (INET_DIAG_SKMEMINFO - 1)))
		if (sock_diag_put_meminfo(sk, skb, INET_DIAG_SKMEMINFO))
			goto errout;

	if (icsk == NULL) {
		handler->idiag_get_info(sk, r, NULL);
		goto out;
	}

#define EXPIRES_IN_MS(tmo)  DIV_ROUND_UP((tmo - jiffies) * 1000, HZ)

	if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
		r->idiag_timer = 1;
		r->idiag_retrans = icsk->icsk_retransmits;
		r->idiag_expires = EXPIRES_IN_MS(icsk->icsk_timeout);
	} else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
		r->idiag_timer = 4;
		r->idiag_retrans = icsk->icsk_probes_out;
		r->idiag_expires = EXPIRES_IN_MS(icsk->icsk_timeout);
	} else if (timer_pending(&sk->sk_timer)) {
		r->idiag_timer = 2;
		r->idiag_retrans = icsk->icsk_probes_out;
		r->idiag_expires = EXPIRES_IN_MS(sk->sk_timer.expires);
	} else {
		r->idiag_timer = 0;
		r->idiag_expires = 0;
	}
#undef EXPIRES_IN_MS

	if (ext & (1 << (INET_DIAG_INFO - 1))) {
		attr = nla_reserve(skb, INET_DIAG_INFO,
				   sizeof(struct tcp_info));
		if (!attr)
			goto errout;

		info = nla_data(attr);
	}

	if ((ext & (1 << (INET_DIAG_CONG - 1))) && icsk->icsk_ca_ops)
		if (nla_put_string(skb, INET_DIAG_CONG,
				   icsk->icsk_ca_ops->name) < 0)
			goto errout;

	handler->idiag_get_info(sk, r, info);

	if (sk->sk_state < TCP_TIME_WAIT &&
	    icsk->icsk_ca_ops && icsk->icsk_ca_ops->get_info)
		icsk->icsk_ca_ops->get_info(sk, ext, skb);

out:
	return nlmsg_end(skb, nlh);

errout:
	nlmsg_cancel(skb, nlh);
	return -EMSGSIZE;
}
EXPORT_SYMBOL_GPL(inet_sk_diag_fill);

static int inet_csk_diag_fill(struct sock *sk,
			      struct sk_buff *skb, struct inet_diag_req_v2 *req,
			      struct user_namespace *user_ns,
			      u32 portid, u32 seq, u16 nlmsg_flags,
			      const struct nlmsghdr *unlh)
{
	return inet_sk_diag_fill(sk, inet_csk(sk),
			skb, req, user_ns, portid, seq, nlmsg_flags, unlh);
}

static int inet_twsk_diag_fill(struct inet_timewait_sock *tw,
			       struct sk_buff *skb, struct inet_diag_req_v2 *req,
			       u32 portid, u32 seq, u16 nlmsg_flags,
			       const struct nlmsghdr *unlh)
{
	long tmo;
	struct inet_diag_msg *r;
	struct nlmsghdr *nlh;

	nlh = nlmsg_put(skb, portid, seq, unlh->nlmsg_type, sizeof(*r),
			nlmsg_flags);
	if (!nlh)
		return -EMSGSIZE;

	r = nlmsg_data(nlh);
	BUG_ON(tw->tw_state != TCP_TIME_WAIT);

	tmo = tw->tw_ttd - jiffies;
	if (tmo < 0)
		tmo = 0;

	r->idiag_family	      = tw->tw_family;
	r->idiag_retrans      = 0;
	r->id.idiag_if	      = tw->tw_bound_dev_if;
	sock_diag_save_cookie(tw, r->id.idiag_cookie);
	r->id.idiag_sport     = tw->tw_sport;
	r->id.idiag_dport     = tw->tw_dport;
	r->id.idiag_src[0]    = tw->tw_rcv_saddr;
	r->id.idiag_dst[0]    = tw->tw_daddr;
	r->idiag_state	      = tw->tw_substate;
	r->idiag_timer	      = 3;
	r->idiag_expires      = DIV_ROUND_UP(tmo * 1000, HZ);
	r->idiag_rqueue	      = 0;
	r->idiag_wqueue	      = 0;
	r->idiag_uid	      = 0;
	r->idiag_inode	      = 0;
#if IS_ENABLED(CONFIG_IPV6)
	if (tw->tw_family == AF_INET6) {
		const struct inet6_timewait_sock *tw6 =
						inet6_twsk((struct sock *)tw);

		*(struct in6_addr *)r->id.idiag_src = tw6->tw_v6_rcv_saddr;
		*(struct in6_addr *)r->id.idiag_dst = tw6->tw_v6_daddr;
	}
#endif

	return nlmsg_end(skb, nlh);
}
Exemplo n.º 14
0
void
tz_policy_check (
	void                    *context)
{
	acpi_status             status = AE_OK;
	TZ_CONTEXT              *tz = NULL;
	TZ_POLICY		*policy = NULL;
	TZ_THRESHOLDS		*thresholds = NULL;
	u32                     previous_temperature = 0;
	u32                     previous_state = 0;
	u32                     active_index = 0;
	u32                     i = 0;
	u32                     sleep_time = 0;

	FUNCTION_TRACE("tz_policy_check");

	if (!context) {
		ACPI_DEBUG_PRINT ((ACPI_DB_ERROR, "Invalid (NULL) context.\n"));
		return_VOID;
	}

	tz = (TZ_CONTEXT*)context;
	policy = &(tz->policy);
	thresholds = &(tz->policy.thresholds);

	/*
	 * Preserve Previous State:
	 * ------------------------
	 */
	previous_temperature = tz->policy.temperature;
	previous_state = tz->policy.state;

	/*
	 * Get Temperature:
	 * ----------------
	 */
	status = tz_get_temperature(tz);
	if (ACPI_FAILURE(status)) {
		return_VOID;
	}

	/*
	 * Calculate State:
	 * ----------------
	 */
	policy->state = TZ_STATE_OK;

	/* Critical? */
	if (policy->temperature >= thresholds->critical.temperature)
		policy->state |= TZ_STATE_CRITICAL;

	/* Hot? */
	if ((thresholds->hot.is_valid) &&  (policy->temperature >= thresholds->hot.temperature))
		policy->state |= TZ_STATE_CRITICAL;

	/* Passive? */
	if ((thresholds->passive.is_valid) && (policy->temperature >= thresholds->passive.temperature))
		policy->state |= TZ_STATE_PASSIVE;

	/* Active? */
	if (thresholds->active[0].is_valid) {
		for (i=0; i<TZ_MAX_ACTIVE_THRESHOLDS; i++) {
			if ((thresholds->active[i].is_valid) && (policy->temperature >= thresholds->active[i].temperature)) {
				policy->state |= TZ_STATE_ACTIVE;
				if (i > active_index)
					active_index = i;
			}
		}
		policy->state |= active_index;
	}

	/*
	 * Invoke Policy:
	 * --------------
	 * Note that policy must be invoked both when 'going into' a
	 * policy state (e.g. to allow fans to be turned on) and 'going
	 * out of' a policy state (e.g. to allow fans to be turned off);
	 * thus we must preserve the previous state.
	 */
	if (policy->state & TZ_STATE_CRITICAL)
		tz_policy_critical(tz);
	if (policy->state & TZ_STATE_HOT)
		tz_policy_hot(tz);
	if ((policy->state & TZ_STATE_PASSIVE) || (previous_state & TZ_STATE_PASSIVE))
		tz_policy_passive(tz);
	if ((policy->state & TZ_STATE_ACTIVE) || (previous_state & TZ_STATE_ACTIVE))
		tz_policy_active(tz);

	/*
	 * Calculate Sleep Time:
	 * ---------------------
	 * If we're in the passive state, use _TSP's value.  Otherwise
	 * use _TZP or the OS's default polling frequency.  If no polling
	 * frequency is specified then we'll wait forever (that is, until
	 * a thermal event occurs -- e.g. never poll).  Note that _TSP
	 * and _TZD values are given in 1/10th seconds.
	 */
	if (policy->state & TZ_STATE_PASSIVE)
		sleep_time = thresholds->passive.tsp * 100;
	else if (policy->polling_freq > 0)
		sleep_time = policy->polling_freq * 100;
	else
		sleep_time = WAIT_FOREVER;

	ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "Thermal_zone[%02x]: temperature[%d] state[%08x]\n", tz->device_handle, policy->temperature, policy->state));
	ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "Scheduling next poll in [%d]ms.\n", sleep_time));

	/*
	 * Schedule Next Poll:
	 * -------------------
	 */
	if (sleep_time < WAIT_FOREVER) {
		if (timer_pending(&(policy->timer)))
			mod_timer(&(policy->timer), (HZ*sleep_time)/1000);
		else {
			policy->timer.data = (unsigned long)tz;
			policy->timer.function = tz_policy_run;
			policy->timer.expires = jiffies + (HZ*sleep_time)/1000;
			add_timer(&(policy->timer));
		}
	}
	else {
		if (timer_pending(&(policy->timer)))
			del_timer(&(policy->timer));
	}

	return_VOID;
}
Exemplo n.º 15
0
/* log handler for internal netfilter logging api */
static void
nfulnl_log_packet(unsigned int pf,
		  unsigned int hooknum,
		  const struct sk_buff *skb,
		  const struct net_device *in,
		  const struct net_device *out,
		  const struct nf_loginfo *li_user,
		  const char *prefix)
{
	unsigned int size, data_len;
	struct nfulnl_instance *inst;
	const struct nf_loginfo *li;
	unsigned int qthreshold;
	unsigned int plen;

	if (li_user && li_user->type == NF_LOG_TYPE_ULOG)
		li = li_user;
	else
		li = &default_loginfo;

	inst = instance_lookup_get(li->u.ulog.group);
	if (!inst)
		return;

	plen = 0;
	if (prefix)
		plen = strlen(prefix) + 1;

	/* all macros expand to constant values at compile time */
	/* FIXME: do we want to make the size calculation conditional based on
	 * what is actually present?  way more branches and checks, but more
	 * memory efficient... */
	size =    NLMSG_SPACE(sizeof(struct nfgenmsg))
		+ NFA_SPACE(sizeof(struct nfulnl_msg_packet_hdr))
		+ NFA_SPACE(sizeof(u_int32_t))	/* ifindex */
		+ NFA_SPACE(sizeof(u_int32_t))	/* ifindex */
#ifdef CONFIG_BRIDGE_NETFILTER
		+ NFA_SPACE(sizeof(u_int32_t))	/* ifindex */
		+ NFA_SPACE(sizeof(u_int32_t))	/* ifindex */
#endif
		+ NFA_SPACE(sizeof(u_int32_t))	/* mark */
		+ NFA_SPACE(sizeof(u_int32_t))	/* uid */
		+ NFA_SPACE(plen)		/* prefix */
		+ NFA_SPACE(sizeof(struct nfulnl_msg_packet_hw))
		+ NFA_SPACE(sizeof(struct nfulnl_msg_packet_timestamp));

	UDEBUG("initial size=%u\n", size);

	spin_lock_bh(&inst->lock);

	if (inst->flags & NFULNL_CFG_F_SEQ)
		size += NFA_SPACE(sizeof(u_int32_t));
	if (inst->flags & NFULNL_CFG_F_SEQ_GLOBAL)
		size += NFA_SPACE(sizeof(u_int32_t));

	qthreshold = inst->qthreshold;
	/* per-rule qthreshold overrides per-instance */
	if (qthreshold > li->u.ulog.qthreshold)
		qthreshold = li->u.ulog.qthreshold;

	switch (inst->copy_mode) {
	case NFULNL_COPY_META:
	case NFULNL_COPY_NONE:
		data_len = 0;
		break;

	case NFULNL_COPY_PACKET:
		if (inst->copy_range == 0
		    || inst->copy_range > skb->len)
			data_len = skb->len;
		else
			data_len = inst->copy_range;

		size += NFA_SPACE(data_len);
		UDEBUG("copy_packet, therefore size now %u\n", size);
		break;

	default:
		goto unlock_and_release;
	}

	if (inst->qlen >= qthreshold ||
	    (inst->skb && size > skb_tailroom(inst->skb))) {
		/* either the queue len is too high or we don't have
		 * enough room in the skb left. flush to userspace. */
		UDEBUG("flushing old skb\n");

		/* timer "holds" one reference (we have another one) */
		if (del_timer(&inst->timer))
			instance_put(inst);
		__nfulnl_send(inst);
	}

	if (!inst->skb) {
		inst->skb = nfulnl_alloc_skb(inst->nlbufsiz, size);
		if (!inst->skb)
			goto alloc_failure;
	}

	UDEBUG("qlen %d, qthreshold %d\n", inst->qlen, qthreshold);
	inst->qlen++;

	__build_packet_message(inst, skb, data_len, pf,
				hooknum, in, out, li, prefix, plen);

	/* timer_pending always called within inst->lock, so there
	 * is no chance of a race here */
	if (!timer_pending(&inst->timer)) {
		instance_get(inst);
		inst->timer.expires = jiffies + (inst->flushtimeout*HZ/100);
		add_timer(&inst->timer);
	}

unlock_and_release:
	spin_unlock_bh(&inst->lock);
	instance_put(inst);
	return;

alloc_failure:
	UDEBUG("error allocating skb\n");
	/* FIXME: statistics */
	goto unlock_and_release;
}
mali_bool _mali_osk_timer_pending(_mali_osk_timer_t *tim)
{
	MALI_DEBUG_ASSERT_POINTER(tim);
	return 1 == timer_pending(&(tim->timer));
}
Exemplo n.º 17
0
void
via_dmablit_handler(drm_device_t *dev, int engine, int from_irq)
{
	drm_via_private_t *dev_priv = (drm_via_private_t *)dev->dev_private;
	drm_via_blitq_t *blitq = dev_priv->blit_queues + engine;
	int cur;
	int done_transfer;
	unsigned long irqsave=0;
	uint32_t status = 0;

	DRM_DEBUG("DMA blit handler called. engine = %d, from_irq = %d, blitq = 0x%lx\n",
		  engine, from_irq, (unsigned long) blitq);

	if (from_irq) {
		spin_lock(&blitq->blit_lock);
	} else {
		spin_lock_irqsave(&blitq->blit_lock, irqsave);
	}

	done_transfer = blitq->is_active && 
	  (( status = VIA_READ(VIA_PCI_DMA_CSR0 + engine*0x04)) & VIA_DMA_CSR_TD);
	done_transfer = done_transfer || ( blitq->aborting && !(status & VIA_DMA_CSR_DE)); 

	cur = blitq->cur;
	if (done_transfer) {

		blitq->blits[cur]->aborted = blitq->aborting;
		blitq->done_blit_handle++;
		DRM_WAKEUP(blitq->blit_queue + cur);		

		cur++;
		if (cur >= VIA_NUM_BLIT_SLOTS) 
			cur = 0;
		blitq->cur = cur;

		/*
		 * Clear transfer done flag.
		 */

		VIA_WRITE(VIA_PCI_DMA_CSR0 + engine*0x04,  VIA_DMA_CSR_TD);

		blitq->is_active = 0;
		blitq->aborting = 0;
		schedule_work(&blitq->wq);	

	} else if (blitq->is_active && time_after_eq(jiffies, blitq->end)) {

		/*
		 * Abort transfer after one second.
		 */

		via_abort_dmablit(dev, engine);
		blitq->aborting = 1;
		blitq->end = jiffies + DRM_HZ;
	}
	  		
	if (!blitq->is_active) {
		if (blitq->num_outstanding) {
			via_fire_dmablit(dev, blitq->blits[cur], engine);
			blitq->is_active = 1;
			blitq->cur = cur;
			blitq->num_outstanding--;
			blitq->end = jiffies + DRM_HZ;
			if (!timer_pending(&blitq->poll_timer)) {
				blitq->poll_timer.expires = jiffies+1;
				add_timer(&blitq->poll_timer);
			}
		} else {
			if (timer_pending(&blitq->poll_timer)) {
				del_timer(&blitq->poll_timer);
			}
			via_dmablit_engine_off(dev, engine);
		}
	}		

	if (from_irq) {
		spin_unlock(&blitq->blit_lock);
	} else {
		spin_unlock_irqrestore(&blitq->blit_lock, irqsave);
	}
} 
Exemplo n.º 18
0
int dccp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
		 size_t len)
{
	const struct dccp_sock *dp = dccp_sk(sk);
	const int flags = msg->msg_flags;
	const int noblock = flags & MSG_DONTWAIT;
	struct sk_buff *skb;
	int rc, size;
	long timeo;

	if (len > dp->dccps_mss_cache)
		return -EMSGSIZE;

	lock_sock(sk);

	if (dccp_qpolicy_full(sk)) {
		rc = -EAGAIN;
		goto out_release;
	}

	timeo = sock_sndtimeo(sk, noblock);

	/*
	 * We have to use sk_stream_wait_connect here to set sk_write_pending,
	 * so that the trick in dccp_rcv_request_sent_state_process.
	 */
	/* Wait for a connection to finish. */
	if ((1 << sk->sk_state) & ~(DCCPF_OPEN | DCCPF_PARTOPEN))
		if ((rc = sk_stream_wait_connect(sk, &timeo)) != 0)
			goto out_release;

	size = sk->sk_prot->max_header + len;
	release_sock(sk);
	skb = sock_alloc_send_skb(sk, size, noblock, &rc);
	lock_sock(sk);
	if (skb == NULL)
		goto out_release;

	skb_reserve(skb, sk->sk_prot->max_header);
	rc = memcpy_fromiovec(skb_put(skb, len), msg->msg_iov, len);
	if (rc != 0)
		goto out_discard;

	rc = dccp_msghdr_parse(msg, skb);
	if (rc != 0)
		goto out_discard;

	dccp_qpolicy_push(sk, skb);
	/*
	 * The xmit_timer is set if the TX CCID is rate-based and will expire
	 * when congestion control permits to release further packets into the
	 * network. Window-based CCIDs do not use this timer.
	 */
	if (!timer_pending(&dp->dccps_xmit_timer))
		dccp_write_xmit(sk);
out_release:
	release_sock(sk);
	return rc ? : len;
out_discard:
	kfree_skb(skb);
	goto out_release;
}
Exemplo n.º 19
0
static int print_request_stats (threadinfo_t *ti, char *page, unsigned int skip_count, unsigned int max_count)
{
	struct list_head *head, *curr;
	tux_req_t *req;
	unsigned int count = 0, size, line_off, len;
	char stat_line [LINE_SIZE];

	if (!max_count)
		BUG();

	head = &ti->all_requests;
	curr = head->next;

	while (curr != head) {
		req = list_entry(curr, tux_req_t, all);
		curr = curr->next;
		count++;
		if (count <= skip_count)
			continue;
		line_off = 0;
#define SP(x...) \
	line_off += sprintf(stat_line + line_off, x)

		if (req->proto == &tux_proto_http)
			SP("0 ");
		else
			SP("1 ");

		SP("%p ", req);
		SP("%d ", req->atom_idx);
		if (req->atom_idx >= 1)
			SP("%p ", req->atoms[0]);
		else
			SP("........ ");
		if (req->atom_idx >= 2)
			SP("%p ", req->atoms[1]);
		else
			SP("........ ");
		if (!list_empty(&req->work))	SP("W");	else SP(".");
		if (!list_empty(&req->free))	SP("F");	else SP(".");
		if (!list_empty(&req->lru))	SP("L");	else SP(".");
		if (req->keep_alive)		SP("K");	else SP(".");
		if (req->idle_input)		SP("I");	else SP(".");
		if (timer_pending(&req->keepalive_timer))
						SP("T(%lu/%lu)",jiffies,req->keepalive_timer.expires);	else SP(".");
		if (req->wait_output_space)	SP("O");	else SP(".");
		if (timer_pending(&req->output_timer))
						SP("T");	else SP(".");
		SP(" %d ", req->error);
		SP(" %d ", req->status);

#define SP_HOST(ip,port) \
		SP("%d.%d.%d.%d:%d ",NIPQUAD(ip),port)

		if (req->sock) {
			if (req->sock->sk)
				SP("%d:", req->sock->sk->sk_state);
			else
				SP("-2:");
		} else
			SP("-1:");
		SP_HOST(req->client_addr, req->client_port);

		SP("%Ld ", req->total_file_len);
		SP("%Ld ", req->in_file ? req->in_file->f_pos : -1);
		if (req->proto == &tux_proto_http) {
			SP("%d ", req->method);
			SP("%d ", req->version);
		}
		if (req->proto == &tux_proto_ftp) {
			SP("%d ", req->ftp_command);
			if (req->data_sock) {
				if (req->data_sock->sk)
					SP("%d:",req->data_sock->sk->sk_state);
				else
					SP("-2:");
				if (req->data_sock->sk)
					SP_HOST(inet_sk(req->data_sock->sk)->daddr,
						inet_sk(req->data_sock->sk)->dport);
				else
					SP("-1:-1 ");
			} else
				SP("-1 ");
		}
		SP("%p/%p %p/%p ", req->sock, req->sock ? req->sock->sk : (void *)-1, req->data_sock, req->data_sock ? req->data_sock->sk : (void *)-1);

		SP("%d\n", req->parsed_len);
		len = req->headers_len;
		if (len > 500)
			len = 500;
		SP("\n%d\n", len);
		memcpy(stat_line + line_off, req->headers, len);
		line_off += len;
		len = req->objectname_len;
		if (len > 100)
			len = 100;
		SP("\n%d\n", len);
		memcpy(stat_line + line_off, req->objectname, len);
		line_off += len;
		SP("\n\n<END>");
		if (line_off >= LINE_SIZE)
			BUG();
		Dprintk("printing req %p, count %d, page %p: {%s}.\n", req, count, page, stat_line);
		size = sprintf(page, "%-*s\n", LINE_SIZE-1, stat_line);
		if (size != LINE_SIZE)
			BUG();
		page += LINE_SIZE;
		if (count-skip_count >= max_count)
			break;
	}

	Dprintk("count: %d.\n", count-skip_count);
	return count - skip_count;
}
static int dbg_status_print(struct seq_file *s, void *p)
{
	struct ap9540_c2c *c2c = (struct ap9540_c2c *) s->private;
	struct c2c_genio *genio;
	int i , j;

	if (c2c == NULL) {
		seq_printf(s, "No C2C device avaiable\n");
		return 0;
	}
	seq_printf(s, "Subscribed GENI/GENOs:\n");
	seq_printf(s, "- setter 0x%08X    getter 0x%08X   irq1 0x%08X\n",
			c2c->setter_mask, c2c->getter_mask, c2c->irq1_mask);
	;
	for (i = 0, j = 0, genio = c2c->genio; i < 31; i++, genio++) {
		if (genio->mask == 0)
			continue;
		seq_printf(s, "- bit %02d : %s, timeout:%d, pending:%d, "
				"event_cb:%p, cnt:%d\n",
			i, (genio->mask & c2c->setter_mask) ? "Fast-Setter" :
			(genio->mask & c2c->getter_mask) ? "Fast-Getter" :
			(genio->mask & c2c->irq1_mask) ? "Irq1-Getter" :
			"unknown", genio->poll_timeout, genio->pending,
			genio->event_cb, genio->hs_cnt);
		j++;
	}
	if (j == 0)
		seq_printf(s, "- no pending set bit, no subscribed bit.\n");
	seq_printf(s, "\n");
	seq_printf(s, "Powerup timeout: trigged=%s armed=%s, pending=%s, "
			"timer-ms=%d\n", (c2c->powerup_timeout) ? "Yes" : "No",
			(c2c->powerup_timeout_armed) ? "Yes" : "No",
			(timer_pending(&c2c->powerup_timer)) ? "Yes" : "No",
			c2c->powerup_timeout_ms);
	seq_printf(s, "Misc: init=%04X reset=%d prot_evt=%d pwr_is_on=%d "
			"pwr_last_req=%d\n", c2c->init_flags, c2c->reset_flag,
			c2c->protection_event, c2c->pwr_is_on,
			c2c->pwr_last_req);
	seq_printf(s, "\n");
	seq_printf(s, "C2C Registers:\n");
	if (c2c->pwr_is_on) {
		seq_printf(s, "-  wake_req %d  wake_ack %d  standby %d  "
				"standby_in %d  wait %d\n",
			readl(c2c_dev->c2c_base + C2COFF_WAKE_REQ),
			readl(c2c_dev->c2c_base + C2COFF_WAKE_ACK),
			readl(c2c_dev->c2c_base + C2COFF_STANDBY),
			readl(c2c_dev->c2c_base + C2COFF_STANDBY_IN),
			readl(c2c_dev->c2c_base + C2COFF_WAIT));
		seq_printf(s, "- fclk_freq %-4d    rx_max %-4d  "
				"tx_max %-4d   rx_max_ack %-4d\n",
			readl(c2c_dev->c2c_base + C2COFF_FCLK_FREQ),
			readl(c2c_dev->c2c_base + C2COFF_RX_MAX_FREQ),
			readl(c2c_dev->c2c_base + C2COFF_TX_MAX_FREQ),
			readl(c2c_dev->c2c_base + C2COFF_RX_MAX_FREQ_ACK));
		seq_printf(s, "- portconfig   0x%04X       mirrormode %d\n",
			readl(c2c_dev->c2c_base + C2COFF_PORTCONFIG),
			readl(c2c_dev->c2c_base + C2COFF_MIRRORMODE));
		seq_printf(s, "- irq_raw_st_0 0x%08X   irq_raw_st_1 0x%08X\n",
			readl(c2c_dev->c2c_base + C2COFF_IRQ_RAW_STATUS_0),
			readl(c2c_dev->c2c_base + C2COFF_IRQ_RAW_STATUS_1));
		seq_printf(s, "- irq_status_0 0x%08X   irq_status_1 0x%08X\n",
			readl(c2c_dev->c2c_base + C2COFF_IRQ_ENABLE_STATUS_0),
			readl(c2c_dev->c2c_base + C2COFF_IRQ_ENABLE_STATUS_1));
		seq_printf(s, "- irq_set_0    0x%08X   irq_set_1    0x%08X\n",
			readl(c2c_dev->c2c_base + C2COFF_IRQ_ENABLE_SET_0),
			readl(c2c_dev->c2c_base + C2COFF_IRQ_ENABLE_SET_1));
		seq_printf(s, "- irq_clear_0  0x%08X   irq_clear_1  0x%08X\n",
			readl(c2c_dev->c2c_base + C2COFF_IRQ_ENABLE_CLEAR_0),
			readl(c2c_dev->c2c_base + C2COFF_IRQ_ENABLE_CLEAR_1));
		seq_printf(s, "- geni_control 0x%08X   geni_mask    0x%08X\n",
			readl(c2c_dev->c2c_base + C2COFF_GENI_CONTROL),
			readl(c2c_dev->c2c_base + C2COFF_GENI_MASK));
		seq_printf(s, "- geno_status  0x%08X   geno_interr. 0x%08X   "
			"geno_level 0x%08X\n",
			readl(c2c_dev->c2c_base + C2COFF_GENO_STATUS),
			readl(c2c_dev->c2c_base + C2COFF_GENO_INTERRUPT),
			readl(c2c_dev->c2c_base + C2COFF_GENO_LEVEL));
	} else {
		seq_printf(s, "- can't access C2C IP: not sure it is 'On'\n");
	}

	seq_printf(s, "\n");
	seq_printf(s, "PRCM Registers\n");
	seq_printf(s, "- a9_geno_mask 0x%08X   geni_val 0x%08X   geno 0x%08X\n",
		readl(c2c_dev->prcm_base + PRCMOFF_A9_C2C_GENO_MASK_VAL),
		readl(c2c_dev->prcm_base + PRCMOFF_C2C_SSCM_GENI_VAL),
		readl(c2c_dev->prcm_base + PRCMOFF_C2C_SSCM_GENO));

	return 0;
}
Exemplo n.º 21
0
static void ace_fsm_dostate(struct ace_device *ace)
{
	struct request *req;
	u32 status;
	u16 val;
	int count;

#if defined(DEBUG)
	dev_dbg(ace->dev, "fsm_state=%i, id_req_count=%i\n",
		ace->fsm_state, ace->id_req_count);
#endif

	/*                                                             
                                                                */
	status = ace_in32(ace, ACE_STATUS);
	if ((status & ACE_STATUS_CFDETECT) == 0) {
		ace->fsm_state = ACE_FSM_STATE_IDLE;
		ace->media_change = 1;
		set_capacity(ace->gd, 0);
		dev_info(ace->dev, "No CF in slot\n");

		/*                                         */
		if (ace->req) {
			__blk_end_request_all(ace->req, -EIO);
			ace->req = NULL;
		}
		while ((req = blk_fetch_request(ace->queue)) != NULL)
			__blk_end_request_all(req, -EIO);

		/*                                            */
		ace->fsm_state = ACE_FSM_STATE_IDLE;
		ace->id_result = -EIO;
		while (ace->id_req_count) {
			complete(&ace->id_completion);
			ace->id_req_count--;
		}
	}

	switch (ace->fsm_state) {
	case ACE_FSM_STATE_IDLE:
		/*                                */
		if (ace->id_req_count || ace_get_next_request(ace->queue)) {
			ace->fsm_iter_num++;
			ace->fsm_state = ACE_FSM_STATE_REQ_LOCK;
			mod_timer(&ace->stall_timer, jiffies + HZ);
			if (!timer_pending(&ace->stall_timer))
				add_timer(&ace->stall_timer);
			break;
		}
		del_timer(&ace->stall_timer);
		ace->fsm_continue_flag = 0;
		break;

	case ACE_FSM_STATE_REQ_LOCK:
		if (ace_in(ace, ACE_STATUS) & ACE_STATUS_MPULOCK) {
			/*                                           */
			ace->fsm_state = ACE_FSM_STATE_WAIT_CFREADY;
			break;
		}

		/*                  */
		val = ace_in(ace, ACE_CTRL);
		ace_out(ace, ACE_CTRL, val | ACE_CTRL_LOCKREQ);
		ace->fsm_state = ACE_FSM_STATE_WAIT_LOCK;
		break;

	case ACE_FSM_STATE_WAIT_LOCK:
		if (ace_in(ace, ACE_STATUS) & ACE_STATUS_MPULOCK) {
			/*                                  */
			ace->fsm_state = ACE_FSM_STATE_WAIT_CFREADY;
			break;
		}

		/*                         */
		ace_fsm_yield(ace);
		break;

	case ACE_FSM_STATE_WAIT_CFREADY:
		status = ace_in32(ace, ACE_STATUS);
		if (!(status & ACE_STATUS_RDYFORCFCMD) ||
		    (status & ACE_STATUS_CFBSY)) {
			/*                                            */
			ace_fsm_yield(ace);
			break;
		}

		/*                                                        */
		if (ace->id_req_count)
			ace->fsm_state = ACE_FSM_STATE_IDENTIFY_PREPARE;
		else
			ace->fsm_state = ACE_FSM_STATE_REQ_PREPARE;
		break;

	case ACE_FSM_STATE_IDENTIFY_PREPARE:
		/*                       */
		ace->fsm_task = ACE_TASK_IDENTIFY;
		ace->data_ptr = ace->cf_id;
		ace->data_count = ACE_BUF_PER_SECTOR;
		ace_out(ace, ACE_SECCNTCMD, ACE_SECCNTCMD_IDENTIFY);

		/*                                                  */
		val = ace_in(ace, ACE_CTRL);
		ace_out(ace, ACE_CTRL, val | ACE_CTRL_CFGRESET);

		/*                                                     
                          */
		ace->fsm_state = ACE_FSM_STATE_IDENTIFY_TRANSFER;
		ace_fsm_yieldirq(ace);
		break;

	case ACE_FSM_STATE_IDENTIFY_TRANSFER:
		/*                                                */
		status = ace_in32(ace, ACE_STATUS);
		if (status & ACE_STATUS_CFBSY) {
			dev_dbg(ace->dev, "CFBSY set; t=%i iter=%i dc=%i\n",
				ace->fsm_task, ace->fsm_iter_num,
				ace->data_count);
			ace_fsm_yield(ace);
			break;
		}
		if (!(status & ACE_STATUS_DATABUFRDY)) {
			ace_fsm_yield(ace);
			break;
		}

		/*                          */
		ace->reg_ops->datain(ace);
		ace->data_count--;

		/*                                                           */
		if (ace->data_count != 0) {
			ace_fsm_yieldirq(ace);
			break;
		}

		/*                                       */
		dev_dbg(ace->dev, "identify finished\n");
		ace->fsm_state = ACE_FSM_STATE_IDENTIFY_COMPLETE;
		break;

	case ACE_FSM_STATE_IDENTIFY_COMPLETE:
		ace_fix_driveid(ace->cf_id);
		ace_dump_mem(ace->cf_id, 512);	/*                         */

		if (ace->data_result) {
			/*                                  */
			ace->media_change = 1;
			set_capacity(ace->gd, 0);
			dev_err(ace->dev, "error fetching CF id (%i)\n",
				ace->data_result);
		} else {
			ace->media_change = 0;

			/*                        */
			set_capacity(ace->gd,
				ata_id_u32(ace->cf_id, ATA_ID_LBA_CAPACITY));
			dev_info(ace->dev, "capacity: %i sectors\n",
				ata_id_u32(ace->cf_id, ATA_ID_LBA_CAPACITY));
		}

		/*                                                   */
		ace->fsm_state = ACE_FSM_STATE_IDLE;
		ace->id_result = ace->data_result;
		while (ace->id_req_count) {
			complete(&ace->id_completion);
			ace->id_req_count--;
		}
		break;

	case ACE_FSM_STATE_REQ_PREPARE:
		req = ace_get_next_request(ace->queue);
		if (!req) {
			ace->fsm_state = ACE_FSM_STATE_IDLE;
			break;
		}
		blk_start_request(req);

		/*                                                   */
		dev_dbg(ace->dev,
			"request: sec=%llx hcnt=%x, ccnt=%x, dir=%i\n",
			(unsigned long long)blk_rq_pos(req),
			blk_rq_sectors(req), blk_rq_cur_sectors(req),
			rq_data_dir(req));

		ace->req = req;
		ace->data_ptr = req->buffer;
		ace->data_count = blk_rq_cur_sectors(req) * ACE_BUF_PER_SECTOR;
		ace_out32(ace, ACE_MPULBA, blk_rq_pos(req) & 0x0FFFFFFF);

		count = blk_rq_sectors(req);
		if (rq_data_dir(req)) {
			/*                        */
			dev_dbg(ace->dev, "write data\n");
			ace->fsm_task = ACE_TASK_WRITE;
			ace_out(ace, ACE_SECCNTCMD,
				count | ACE_SECCNTCMD_WRITE_DATA);
		} else {
			/*                       */
			dev_dbg(ace->dev, "read data\n");
			ace->fsm_task = ACE_TASK_READ;
			ace_out(ace, ACE_SECCNTCMD,
				count | ACE_SECCNTCMD_READ_DATA);
		}

		/*                                                  */
		val = ace_in(ace, ACE_CTRL);
		ace_out(ace, ACE_CTRL, val | ACE_CTRL_CFGRESET);

		/*                                                      
                                               
   */
		ace->fsm_state = ACE_FSM_STATE_REQ_TRANSFER;
		if (ace->fsm_task == ACE_TASK_READ)
			ace_fsm_yieldirq(ace);	/*                     */
		break;

	case ACE_FSM_STATE_REQ_TRANSFER:
		/*                                                */
		status = ace_in32(ace, ACE_STATUS);
		if (status & ACE_STATUS_CFBSY) {
			dev_dbg(ace->dev,
				"CFBSY set; t=%i iter=%i c=%i dc=%i irq=%i\n",
				ace->fsm_task, ace->fsm_iter_num,
				blk_rq_cur_sectors(ace->req) * 16,
				ace->data_count, ace->in_irq);
			ace_fsm_yield(ace);	/*                        */
			break;
		}
		if (!(status & ACE_STATUS_DATABUFRDY)) {
			dev_dbg(ace->dev,
				"DATABUF not set; t=%i iter=%i c=%i dc=%i irq=%i\n",
				ace->fsm_task, ace->fsm_iter_num,
				blk_rq_cur_sectors(ace->req) * 16,
				ace->data_count, ace->in_irq);
			ace_fsm_yieldirq(ace);
			break;
		}

		/*                          */
		if (ace->fsm_task == ACE_TASK_WRITE)
			ace->reg_ops->dataout(ace);
		else
			ace->reg_ops->datain(ace);
		ace->data_count--;

		/*                                                           */
		if (ace->data_count != 0) {
			ace_fsm_yieldirq(ace);
			break;
		}

		/*                                     */
		if (__blk_end_request_cur(ace->req, 0)) {
			/*                                             
                                    
                                         
    */
			ace->data_ptr = ace->req->buffer;
			ace->data_count = blk_rq_cur_sectors(ace->req) * 16;
			ace_fsm_yieldirq(ace);
			break;
		}

		ace->fsm_state = ACE_FSM_STATE_REQ_COMPLETE;
		break;

	case ACE_FSM_STATE_REQ_COMPLETE:
		ace->req = NULL;

		/*                                    */
		ace->fsm_state = ACE_FSM_STATE_IDLE;
		break;

	default:
		ace->fsm_state = ACE_FSM_STATE_IDLE;
		break;
	}
}
Exemplo n.º 22
0
static void jpeg_device_dec_run(void *priv)
{
	struct jpeg_ctx *ctx = priv;
	struct jpeg_dev *dev = ctx->dev;
	struct jpeg_dec_param dec_param;
	struct vb2_buffer *vb = NULL;
	unsigned long flags;

	dev = ctx->dev;

	spin_lock_irqsave(&ctx->slock, flags);

	printk(KERN_DEBUG "dec_run.\n");

	if (timer_pending(&ctx->dev->watchdog_timer) == 0) {
		ctx->dev->watchdog_timer.expires = jiffies +
					msecs_to_jiffies(JPEG_WATCHDOG_INTERVAL);
		add_timer(&ctx->dev->watchdog_timer);
	}

	set_bit(0, &ctx->dev->hw_run);

	dev->mode = DECODING;
	dec_param = ctx->param.dec_param;

	jpeg_sw_reset(dev->reg_base);
	jpeg_set_interrupt(dev->reg_base);

	jpeg_set_encode_tbl_select(dev->reg_base, 0);

	vb = v4l2_m2m_next_src_buf(ctx->m2m_ctx);
	jpeg_set_stream_buf_address(dev->reg_base, dev->vb2->plane_addr(vb, 0));

	vb = v4l2_m2m_next_dst_buf(ctx->m2m_ctx);
	if (dec_param.out_plane == 1)
		jpeg_set_frame_buf_address(dev->reg_base,
			dec_param.out_fmt, dev->vb2->plane_addr(vb, 0), 0, 0);
	else if (dec_param.out_plane == 2) {
		jpeg_set_frame_buf_address(dev->reg_base,
		dec_param.out_fmt, dev->vb2->plane_addr(vb, 0), dev->vb2->plane_addr(vb, 1), 0);
	} else if (dec_param.out_plane == 3)
		jpeg_set_frame_buf_address(dev->reg_base,
			dec_param.out_fmt, dev->vb2->plane_addr(vb, 0),
			dev->vb2->plane_addr(vb, 1), dev->vb2->plane_addr(vb, 2));

	if (dec_param.out_width > 0 && dec_param.out_height > 0) {
		if ((dec_param.out_width * 2 == dec_param.in_width) &&
			(dec_param.out_height * 2 == dec_param.in_height))
			jpeg_set_dec_scaling(dev->reg_base, JPEG_SCALE_2, JPEG_SCALE_2);
		else if ((dec_param.out_width * 4 == dec_param.in_width) &&
			(dec_param.out_height * 4 == dec_param.in_height))
			jpeg_set_dec_scaling(dev->reg_base, JPEG_SCALE_4, JPEG_SCALE_4);
		else
			jpeg_set_dec_scaling(dev->reg_base, JPEG_SCALE_NORMAL, JPEG_SCALE_NORMAL);
	}

	jpeg_set_dec_out_fmt(dev->reg_base, dec_param.out_fmt);
	jpeg_set_dec_bitstream_size(dev->reg_base, dec_param.size);
	jpeg_set_enc_dec_mode(dev->reg_base, DECODING);

	spin_unlock_irqrestore(&ctx->slock, flags);
}
Exemplo n.º 23
0
static int rose_t0timer_running(struct rose_neigh *neigh)
{
	return timer_pending(&neigh->t0timer);
}
int lapb_t1timer_running(struct lapb_cb *lapb)
{
	return timer_pending(&lapb->t1timer);
}
Exemplo n.º 25
0
static void
hfc4s8s_bh(struct work_struct *work)
{
	hfc4s8s_hw *hw = container_of(work, hfc4s8s_hw, tqueue);
	u_char b;
	struct hfc4s8s_l1 *l1p;
	volatile u_char *fifo_stat;
	int idx;

	/* handle layer 1 state changes */
	b = 1;
	l1p = hw->l1;
	while (b) {
		if ((b & hw->mr.r_irq_statech)) {
			/* reset l1 event */
			hw->mr.r_irq_statech &= ~b;
			if (l1p->enabled) {
				if (l1p->nt_mode) {
					u_char oldstate = l1p->l1_state;

					Write_hfc8(l1p->hw, R_ST_SEL,
						   l1p->st_num);
					l1p->l1_state =
					    Read_hfc8(l1p->hw,
						      A_ST_RD_STA) & 0xf;

					if ((oldstate == 3)
					    && (l1p->l1_state != 3))
						l1p->d_if.ifc.l1l2(&l1p->
								   d_if.
								   ifc,
								   PH_DEACTIVATE
								   |
								   INDICATION,
								   NULL);

					if (l1p->l1_state != 2) {
						del_timer(&l1p->l1_timer);
						if (l1p->l1_state == 3) {
							l1p->d_if.ifc.
							    l1l2(&l1p->
								 d_if.ifc,
								 PH_ACTIVATE
								 |
								 INDICATION,
								 NULL);
						}
					} else {
						/* allow transition */
						Write_hfc8(hw, A_ST_WR_STA,
							   M_SET_G2_G3);
						mod_timer(&l1p->l1_timer,
							  jiffies +
							  L1_TIMER_T1);
					}
					printk(KERN_INFO
					       "HFC-4S/8S: NT ch %d l1 state %d -> %d\n",
					       l1p->st_num, oldstate,
					       l1p->l1_state);
				} else {
					u_char oldstate = l1p->l1_state;

					Write_hfc8(l1p->hw, R_ST_SEL,
						   l1p->st_num);
					l1p->l1_state =
					    Read_hfc8(l1p->hw,
						      A_ST_RD_STA) & 0xf;

					if (((l1p->l1_state == 3) &&
					     ((oldstate == 7) ||
					      (oldstate == 8))) ||
					    ((timer_pending
					      (&l1p->l1_timer))
					     && (l1p->l1_state == 8))) {
						mod_timer(&l1p->l1_timer,
							  L1_TIMER_T4 +
							  jiffies);
					} else {
						if (l1p->l1_state == 7) {
							del_timer(&l1p->
								  l1_timer);
							l1p->d_if.ifc.
							    l1l2(&l1p->
								 d_if.ifc,
								 PH_ACTIVATE
								 |
								 INDICATION,
								 NULL);
							tx_d_frame(l1p);
						}
						if (l1p->l1_state == 3) {
							if (oldstate != 3)
								l1p->d_if.
								    ifc.
								    l1l2
								    (&l1p->
								     d_if.
								     ifc,
								     PH_DEACTIVATE
								     |
								     INDICATION,
								     NULL);
						}
					}
					printk(KERN_INFO
					       "HFC-4S/8S: TE %d ch %d l1 state %d -> %d\n",
					       l1p->hw->cardnum,
					       l1p->st_num, oldstate,
					       l1p->l1_state);
				}
			}
		}
		b <<= 1;
		l1p++;
	}

	/* now handle the fifos */
	idx = 0;
	fifo_stat = hw->mr.r_irq_fifo_blx;
	l1p = hw->l1;
	while (idx < hw->driver_data.max_st_ports) {

		if (hw->mr.timer_irq) {
			*fifo_stat |= hw->mr.fifo_rx_trans_enables[idx];
			if (hw->fifo_sched_cnt <= 0) {
				*fifo_stat |=
				    hw->mr.fifo_slow_timer_service[l1p->
								   st_num];
			}
		}
		/* ignore fifo 6 (TX E fifo) */
		*fifo_stat &= 0xff - 0x40;

		while (*fifo_stat) {

			if (!l1p->nt_mode) {
				/* RX Fifo has data to read */
				if ((*fifo_stat & 0x20)) {
					*fifo_stat &= ~0x20;
					rx_d_frame(l1p, 0);
				}
				/* E Fifo has data to read */
				if ((*fifo_stat & 0x80)) {
					*fifo_stat &= ~0x80;
					rx_d_frame(l1p, 1);
				}
				/* TX Fifo completed send */
				if ((*fifo_stat & 0x10)) {
					*fifo_stat &= ~0x10;
					tx_d_frame(l1p);
				}
			}
			/* B1 RX Fifo has data to read */
			if ((*fifo_stat & 0x2)) {
				*fifo_stat &= ~0x2;
				rx_b_frame(l1p->b_ch);
			}
			/* B1 TX Fifo has send completed */
			if ((*fifo_stat & 0x1)) {
				*fifo_stat &= ~0x1;
				tx_b_frame(l1p->b_ch);
			}
			/* B2 RX Fifo has data to read */
			if ((*fifo_stat & 0x8)) {
				*fifo_stat &= ~0x8;
				rx_b_frame(l1p->b_ch + 1);
			}
			/* B2 TX Fifo has send completed */
			if ((*fifo_stat & 0x4)) {
				*fifo_stat &= ~0x4;
				tx_b_frame(l1p->b_ch + 1);
			}
		}
		fifo_stat++;
		l1p++;
		idx++;
	}

	if (hw->fifo_sched_cnt <= 0)
		hw->fifo_sched_cnt += (1 << (7 - TRANS_TIMER_MODE));
	hw->mr.timer_irq = 0;	/* clear requested timer irq */
}				/* hfc4s8s_bh */
Exemplo n.º 26
0
static int xenvif_read_io_ring(struct seq_file *m, void *v)
{
	struct xenvif_queue *queue = m->private;
	struct xen_netif_tx_back_ring *tx_ring = &queue->tx;
	struct xen_netif_rx_back_ring *rx_ring = &queue->rx;
	struct netdev_queue *dev_queue;

	if (tx_ring->sring) {
		struct xen_netif_tx_sring *sring = tx_ring->sring;

		seq_printf(m, "Queue %d\nTX: nr_ents %u\n", queue->id,
			   tx_ring->nr_ents);
		seq_printf(m, "req prod %u (%d) cons %u (%d) event %u (%d)\n",
			   sring->req_prod,
			   sring->req_prod - sring->rsp_prod,
			   tx_ring->req_cons,
			   tx_ring->req_cons - sring->rsp_prod,
			   sring->req_event,
			   sring->req_event - sring->rsp_prod);
		seq_printf(m, "rsp prod %u (base) pvt %u (%d) event %u (%d)\n",
			   sring->rsp_prod,
			   tx_ring->rsp_prod_pvt,
			   tx_ring->rsp_prod_pvt - sring->rsp_prod,
			   sring->rsp_event,
			   sring->rsp_event - sring->rsp_prod);
		seq_printf(m, "pending prod %u pending cons %u nr_pending_reqs %u\n",
			   queue->pending_prod,
			   queue->pending_cons,
			   nr_pending_reqs(queue));
		seq_printf(m, "dealloc prod %u dealloc cons %u dealloc_queue %u\n\n",
			   queue->dealloc_prod,
			   queue->dealloc_cons,
			   queue->dealloc_prod - queue->dealloc_cons);
	}

	if (rx_ring->sring) {
		struct xen_netif_rx_sring *sring = rx_ring->sring;

		seq_printf(m, "RX: nr_ents %u\n", rx_ring->nr_ents);
		seq_printf(m, "req prod %u (%d) cons %u (%d) event %u (%d)\n",
			   sring->req_prod,
			   sring->req_prod - sring->rsp_prod,
			   rx_ring->req_cons,
			   rx_ring->req_cons - sring->rsp_prod,
			   sring->req_event,
			   sring->req_event - sring->rsp_prod);
		seq_printf(m, "rsp prod %u (base) pvt %u (%d) event %u (%d)\n\n",
			   sring->rsp_prod,
			   rx_ring->rsp_prod_pvt,
			   rx_ring->rsp_prod_pvt - sring->rsp_prod,
			   sring->rsp_event,
			   sring->rsp_event - sring->rsp_prod);
	}

	seq_printf(m, "NAPI state: %lx NAPI weight: %d TX queue len %u\n"
		   "Credit timer_pending: %d, credit: %lu, usec: %lu\n"
		   "remaining: %lu, expires: %lu, now: %lu\n",
		   queue->napi.state, queue->napi.weight,
		   skb_queue_len(&queue->tx_queue),
		   timer_pending(&queue->credit_timeout),
		   queue->credit_bytes,
		   queue->credit_usec,
		   queue->remaining_credit,
		   queue->credit_timeout.expires,
		   jiffies);

	dev_queue = netdev_get_tx_queue(queue->vif->dev, queue->id);

	seq_printf(m, "\nRx internal queue: len %u max %u pkts %u %s\n",
		   queue->rx_queue_len, queue->rx_queue_max,
		   skb_queue_len(&queue->rx_queue),
		   netif_tx_queue_stopped(dev_queue) ? "stopped" : "running");

	return 0;
}
Exemplo n.º 27
0
static unsigned int
ipt_acct_handle (struct sk_buff **pskb, const struct net_device *in,
                 const struct net_device *out, unsigned int hook_number,
#if LINUX_VERSION_CODE >= KERNEL_VERSION (2, 6, 17)
                 const struct ipt_target *target,
#endif
                 const void *target_info
#if LINUX_VERSION_CODE < KERNEL_VERSION (2, 6, 19)
                 , void *user_info 
#endif
                 )
{
  unsigned int i;
  struct sk_buff *skb = *pskb;
  struct ipt_acct_info *info = (struct ipt_acct_info *) target_info;
  struct iphdr tmp_iph, *ip_header;
  struct item *item;
  u32 src, dst;
  u16 sport, dport;
  u16 size;
  u8 proto;

  ip_header = skb_header_pointer (skb, 0, sizeof (tmp_iph), &tmp_iph);

  if (!ip_header)
    return info->critical_p ? info->retcode : NF_DROP;

  if (ip_header->protocol == IPPROTO_TCP)
    {
      struct tcphdr tmp_tcph, *tcp_header;
      tcp_header = skb_header_pointer (skb, ip_header->ihl * 4,
                                       sizeof (tmp_tcph), &tmp_tcph);
      if (!tcp_header)
        return info->critical_p ? info->retcode : NF_DROP;
      sport = ntohs (tcp_header->source);
      dport = ntohs (tcp_header->dest);
    }
  else if (ip_header->protocol == IPPROTO_UDP)
    {
      struct udphdr tmp_udph, *udp_header;
      udp_header = skb_header_pointer (skb, ip_header->ihl * 4,
                                       sizeof (tmp_udph), &tmp_udph);
      if (!udp_header)
        return info->critical_p ? info->retcode : NF_DROP;
      sport = ntohs (udp_header->source);
      dport = ntohs (udp_header->dest);
    }
  else
    {
      sport = 0;
      dport = 0;
    }

  proto = ip_header->protocol;
  src = ip_header->saddr;
  dst = ip_header->daddr;
  size = ntohs (ip_header->tot_len);

  if (info->header_p) {
    size += info->header;
  } else {
#if LINUX_VERSION_CODE < KERNEL_VERSION (2, 5, 0)
    size += sizeof (*skb->mac.ethernet);
#else
    size += skb->mac_len;
#endif
  }

  i = HASH (src, dst, sport, dport, proto, info->magic) % nlayers;

  spin_lock_bh (&hash_table_lock);

  for (item = layers[i]; item; item = item->next)
    if (item->record->src == src && item->record->dst == dst
        && item->record->sport == sport && item->record->dport == dport
        && item->record->proto == proto && item->record->magic == info->magic)
      break;

  if (!item)
    {
      if (!free_item)
        ipt_acct_dump_records (0);

      if (!free_item)
        {
	  spin_lock_bh (&stat_lock);
	  if (info->critical_p)
	    pkts_not_accted += 1;
	  else
	    pkts_dropped += 1;
	  spin_unlock_bh (&stat_lock);
          spin_unlock_bh (&hash_table_lock);
          return info->critical_p ? info->retcode : NF_DROP;
        }

      item = free_item;
      item->record = free_record;

      if (++free_item == acct_item_pool + max_records)
        free_item = NULL;

      ++free_record;

      item->next = layers[i];
      layers[i] = item;
      item->record->src = src;
      item->record->dst = dst;
      item->record->sport = sport;
      item->record->dport = dport;
      item->record->proto = proto;
      item->record->npkts = 0;
      item->record->size = 0;
      item->record->first = get_seconds ();
      item->record->magic = info->magic;
    }

  item->record->npkts += 1;
  item->record->size += size;
  item->record->last = get_seconds ();

  spin_lock_bh (&stat_lock);
  if (pkts_accted == 0)
    startup_ts = item->record->last;
  pkts_accted += 1;
  spin_unlock_bh (&stat_lock);

  if (timeout > 0 && !timer_pending (&dump_timer))
    {
      dump_timer.expires = jiffies + timeout * HZ;
      add_timer (&dump_timer);
    }
  
  spin_unlock_bh (&hash_table_lock);
  return info->retcode;
}
Exemplo n.º 28
0
static void ipt_ulog_packet(unsigned int hooknum,
			    const struct sk_buff *skb,
			    const struct net_device *in,
			    const struct net_device *out,
			    const struct ipt_ulog_info *loginfo,
			    const char *prefix)
{
	ulog_buff_t *ub;
	ulog_packet_msg_t *pm;
	size_t size, copy_len;
	struct nlmsghdr *nlh;
	struct timeval tv;

	/* ffs == find first bit set, necessary because userspace
	 * is already shifting groupnumber, but we need unshifted.
	 * ffs() returns [1..32], we need [0..31] */
	unsigned int groupnum = ffs(loginfo->nl_group) - 1;

	/* calculate the size of the skb needed */
	if (loginfo->copy_range == 0 || loginfo->copy_range > skb->len)
		copy_len = skb->len;
	else
		copy_len = loginfo->copy_range;

	size = NLMSG_SPACE(sizeof(*pm) + copy_len);

	ub = &ulog_buffers[groupnum];

	spin_lock_bh(&ulog_lock);

	if (!ub->skb) {
		if (!(ub->skb = ulog_alloc_skb(size)))
			goto alloc_failure;
	} else if (ub->qlen >= loginfo->qthreshold ||
		   size > skb_tailroom(ub->skb)) {
		/* either the queue len is too high or we don't have
		 * enough room in nlskb left. send it to userspace. */

		ulog_send(groupnum);

		if (!(ub->skb = ulog_alloc_skb(size)))
			goto alloc_failure;
	}

	pr_debug("qlen %d, qthreshold %Zu\n", ub->qlen, loginfo->qthreshold);

	/* NLMSG_PUT contains a hidden goto nlmsg_failure !!! */
	nlh = NLMSG_PUT(ub->skb, 0, ub->qlen, ULOG_NL_EVENT,
			sizeof(*pm)+copy_len);
	ub->qlen++;

	pm = NLMSG_DATA(nlh);

	/* We might not have a timestamp, get one */
	if (skb->tstamp.tv64 == 0)
		__net_timestamp((struct sk_buff *)skb);

	/* copy hook, prefix, timestamp, payload, etc. */
	pm->data_len = copy_len;
	tv = ktime_to_timeval(skb->tstamp);
	put_unaligned(tv.tv_sec, &pm->timestamp_sec);
	put_unaligned(tv.tv_usec, &pm->timestamp_usec);
	put_unaligned(skb->mark, &pm->mark);
	pm->hook = hooknum;
	if (prefix != NULL)
		strncpy(pm->prefix, prefix, sizeof(pm->prefix));
	else if (loginfo->prefix[0] != '\0')
		strncpy(pm->prefix, loginfo->prefix, sizeof(pm->prefix));
	else
		*(pm->prefix) = '\0';

	if (in && in->hard_header_len > 0 &&
	    skb->mac_header != skb->network_header &&
	    in->hard_header_len <= ULOG_MAC_LEN) {
		memcpy(pm->mac, skb_mac_header(skb), in->hard_header_len);
		pm->mac_len = in->hard_header_len;
	} else
		pm->mac_len = 0;

	if (in)
		strncpy(pm->indev_name, in->name, sizeof(pm->indev_name));
	else
		pm->indev_name[0] = '\0';

	if (out)
		strncpy(pm->outdev_name, out->name, sizeof(pm->outdev_name));
	else
		pm->outdev_name[0] = '\0';

	/* copy_len <= skb->len, so can't fail. */
	if (skb_copy_bits(skb, 0, pm->payload, copy_len) < 0)
		BUG();

	/* check if we are building multi-part messages */
	if (ub->qlen > 1)
		ub->lastnlh->nlmsg_flags |= NLM_F_MULTI;

	ub->lastnlh = nlh;

	/* if timer isn't already running, start it */
	if (!timer_pending(&ub->timer)) {
		ub->timer.expires = jiffies + flushtimeout * HZ / 100;
		add_timer(&ub->timer);
	}

	/* if threshold is reached, send message to userspace */
	if (ub->qlen >= loginfo->qthreshold) {
		if (loginfo->qthreshold > 1)
			nlh->nlmsg_type = NLMSG_DONE;
		ulog_send(groupnum);
	}

	spin_unlock_bh(&ulog_lock);

	return;

nlmsg_failure:
	pr_debug("error during NLMSG_PUT\n");
alloc_failure:
	pr_debug("Error building netlink message\n");
	spin_unlock_bh(&ulog_lock);
}
Exemplo n.º 29
0
static void ace_fsm_dostate(struct ace_device *ace)
{
	struct request *req;
	u32 status;
	u16 val;
	int count;

#if defined(DEBUG)
	dev_dbg(ace->dev, "fsm_state=%i, id_req_count=%i\n",
		ace->fsm_state, ace->id_req_count);
#endif

	/* Verify that there is actually a CF in the slot. If not, then
	 * bail out back to the idle state and wake up all the waiters */
	status = ace_in32(ace, ACE_STATUS);
	if ((status & ACE_STATUS_CFDETECT) == 0) {
		ace->fsm_state = ACE_FSM_STATE_IDLE;
		ace->media_change = 1;
		set_capacity(ace->gd, 0);
		dev_info(ace->dev, "No CF in slot\n");

		/* Drop all pending requests */
		while ((req = elv_next_request(ace->queue)) != NULL)
			end_request(req, 0);

		/* Drop back to IDLE state and notify waiters */
		ace->fsm_state = ACE_FSM_STATE_IDLE;
		ace->id_result = -EIO;
		while (ace->id_req_count) {
			complete(&ace->id_completion);
			ace->id_req_count--;
		}
	}

	switch (ace->fsm_state) {
	case ACE_FSM_STATE_IDLE:
		/* See if there is anything to do */
		if (ace->id_req_count || ace_get_next_request(ace->queue)) {
			ace->fsm_iter_num++;
			ace->fsm_state = ACE_FSM_STATE_REQ_LOCK;
			mod_timer(&ace->stall_timer, jiffies + HZ);
			if (!timer_pending(&ace->stall_timer))
				add_timer(&ace->stall_timer);
			break;
		}
		del_timer(&ace->stall_timer);
		ace->fsm_continue_flag = 0;
		break;

	case ACE_FSM_STATE_REQ_LOCK:
		if (ace_in(ace, ACE_STATUS) & ACE_STATUS_MPULOCK) {
			/* Already have the lock, jump to next state */
			ace->fsm_state = ACE_FSM_STATE_WAIT_CFREADY;
			break;
		}

		/* Request the lock */
		val = ace_in(ace, ACE_CTRL);
		ace_out(ace, ACE_CTRL, val | ACE_CTRL_LOCKREQ);
		ace->fsm_state = ACE_FSM_STATE_WAIT_LOCK;
		break;

	case ACE_FSM_STATE_WAIT_LOCK:
		if (ace_in(ace, ACE_STATUS) & ACE_STATUS_MPULOCK) {
			/* got the lock; move to next state */
			ace->fsm_state = ACE_FSM_STATE_WAIT_CFREADY;
			break;
		}

		/* wait a bit for the lock */
		ace_fsm_yield(ace);
		break;

	case ACE_FSM_STATE_WAIT_CFREADY:
		status = ace_in32(ace, ACE_STATUS);
		if (!(status & ACE_STATUS_RDYFORCFCMD) ||
		    (status & ACE_STATUS_CFBSY)) {
			/* CF card isn't ready; it needs to be polled */
			ace_fsm_yield(ace);
			break;
		}

		/* Device is ready for command; determine what to do next */
		if (ace->id_req_count)
			ace->fsm_state = ACE_FSM_STATE_IDENTIFY_PREPARE;
		else
			ace->fsm_state = ACE_FSM_STATE_REQ_PREPARE;
		break;

	case ACE_FSM_STATE_IDENTIFY_PREPARE:
		/* Send identify command */
		ace->fsm_task = ACE_TASK_IDENTIFY;
		ace->data_ptr = &ace->cf_id;
		ace->data_count = ACE_BUF_PER_SECTOR;
		ace_out(ace, ACE_SECCNTCMD, ACE_SECCNTCMD_IDENTIFY);

		/* As per datasheet, put config controller in reset */
		val = ace_in(ace, ACE_CTRL);
		ace_out(ace, ACE_CTRL, val | ACE_CTRL_CFGRESET);

		/* irq handler takes over from this point; wait for the
		 * transfer to complete */
		ace->fsm_state = ACE_FSM_STATE_IDENTIFY_TRANSFER;
		ace_fsm_yieldirq(ace);
		break;

	case ACE_FSM_STATE_IDENTIFY_TRANSFER:
		/* Check that the sysace is ready to receive data */
		status = ace_in32(ace, ACE_STATUS);
		if (status & ACE_STATUS_CFBSY) {
			dev_dbg(ace->dev, "CFBSY set; t=%i iter=%i dc=%i\n",
				ace->fsm_task, ace->fsm_iter_num,
				ace->data_count);
			ace_fsm_yield(ace);
			break;
		}
		if (!(status & ACE_STATUS_DATABUFRDY)) {
			ace_fsm_yield(ace);
			break;
		}

		/* Transfer the next buffer */
		ace->reg_ops->datain(ace);
		ace->data_count--;

		/* If there are still buffers to be transfers; jump out here */
		if (ace->data_count != 0) {
			ace_fsm_yieldirq(ace);
			break;
		}

		/* transfer finished; kick state machine */
		dev_dbg(ace->dev, "identify finished\n");
		ace->fsm_state = ACE_FSM_STATE_IDENTIFY_COMPLETE;
		break;

	case ACE_FSM_STATE_IDENTIFY_COMPLETE:
		ace_fix_driveid(&ace->cf_id);
		ace_dump_mem(&ace->cf_id, 512);	/* Debug: Dump out disk ID */

		if (ace->data_result) {
			/* Error occured, disable the disk */
			ace->media_change = 1;
			set_capacity(ace->gd, 0);
			dev_err(ace->dev, "error fetching CF id (%i)\n",
				ace->data_result);
		} else {
			ace->media_change = 0;

			/* Record disk parameters */
			set_capacity(ace->gd, ace->cf_id.lba_capacity);
			dev_info(ace->dev, "capacity: %i sectors\n",
				 ace->cf_id.lba_capacity);
		}

		/* We're done, drop to IDLE state and notify waiters */
		ace->fsm_state = ACE_FSM_STATE_IDLE;
		ace->id_result = ace->data_result;
		while (ace->id_req_count) {
			complete(&ace->id_completion);
			ace->id_req_count--;
		}
		break;

	case ACE_FSM_STATE_REQ_PREPARE:
		req = ace_get_next_request(ace->queue);
		if (!req) {
			ace->fsm_state = ACE_FSM_STATE_IDLE;
			break;
		}

		/* Okay, it's a data request, set it up for transfer */
		dev_dbg(ace->dev,
			"request: sec=%llx hcnt=%lx, ccnt=%x, dir=%i\n",
			(unsigned long long) req->sector, req->hard_nr_sectors,
			req->current_nr_sectors, rq_data_dir(req));

		ace->req = req;
		ace->data_ptr = req->buffer;
		ace->data_count = req->current_nr_sectors * ACE_BUF_PER_SECTOR;
		ace_out32(ace, ACE_MPULBA, req->sector & 0x0FFFFFFF);

		count = req->hard_nr_sectors;
		if (rq_data_dir(req)) {
			/* Kick off write request */
			dev_dbg(ace->dev, "write data\n");
			ace->fsm_task = ACE_TASK_WRITE;
			ace_out(ace, ACE_SECCNTCMD,
				count | ACE_SECCNTCMD_WRITE_DATA);
		} else {
			/* Kick off read request */
			dev_dbg(ace->dev, "read data\n");
			ace->fsm_task = ACE_TASK_READ;
			ace_out(ace, ACE_SECCNTCMD,
				count | ACE_SECCNTCMD_READ_DATA);
		}

		/* As per datasheet, put config controller in reset */
		val = ace_in(ace, ACE_CTRL);
		ace_out(ace, ACE_CTRL, val | ACE_CTRL_CFGRESET);

		/* Move to the transfer state.  The systemace will raise
		 * an interrupt once there is something to do
		 */
		ace->fsm_state = ACE_FSM_STATE_REQ_TRANSFER;
		if (ace->fsm_task == ACE_TASK_READ)
			ace_fsm_yieldirq(ace);	/* wait for data ready */
		break;

	case ACE_FSM_STATE_REQ_TRANSFER:
		/* Check that the sysace is ready to receive data */
		status = ace_in32(ace, ACE_STATUS);
		if (status & ACE_STATUS_CFBSY) {
			dev_dbg(ace->dev,
				"CFBSY set; t=%i iter=%i c=%i dc=%i irq=%i\n",
				ace->fsm_task, ace->fsm_iter_num,
				ace->req->current_nr_sectors * 16,
				ace->data_count, ace->in_irq);
			ace_fsm_yield(ace);	/* need to poll CFBSY bit */
			break;
		}
		if (!(status & ACE_STATUS_DATABUFRDY)) {
			dev_dbg(ace->dev,
				"DATABUF not set; t=%i iter=%i c=%i dc=%i irq=%i\n",
				ace->fsm_task, ace->fsm_iter_num,
				ace->req->current_nr_sectors * 16,
				ace->data_count, ace->in_irq);
			ace_fsm_yieldirq(ace);
			break;
		}

		/* Transfer the next buffer */
		if (ace->fsm_task == ACE_TASK_WRITE)
			ace->reg_ops->dataout(ace);
		else
			ace->reg_ops->datain(ace);
		ace->data_count--;

		/* If there are still buffers to be transfers; jump out here */
		if (ace->data_count != 0) {
			ace_fsm_yieldirq(ace);
			break;
		}

		/* bio finished; is there another one? */
		if (__blk_end_request(ace->req, 0,
					blk_rq_cur_bytes(ace->req))) {
			/* dev_dbg(ace->dev, "next block; h=%li c=%i\n",
			 *      ace->req->hard_nr_sectors,
			 *      ace->req->current_nr_sectors);
			 */
			ace->data_ptr = ace->req->buffer;
			ace->data_count = ace->req->current_nr_sectors * 16;
			ace_fsm_yieldirq(ace);
			break;
		}

		ace->fsm_state = ACE_FSM_STATE_REQ_COMPLETE;
		break;

	case ACE_FSM_STATE_REQ_COMPLETE:
		ace->req = NULL;

		/* Finished request; go to idle state */
		ace->fsm_state = ACE_FSM_STATE_IDLE;
		break;

	default:
		ace->fsm_state = ACE_FSM_STATE_IDLE;
		break;
	}
}
Exemplo n.º 30
0
static inline int nr_loopback_running(void)
{
	return timer_pending(&loopback_timer);
}