Exemplo n.º 1
0
/**
 * Perform the proposal.
 *
 * \return The hastings ratio.
 */
double EventBranchTimeBetaProposal::doProposal( void )
{
    
    CharacterHistory &history = distribution->getCharacterHistory();
    
    RandomNumberGenerator *rng = GLOBAL_RNG;
    
    size_t num_events = history.getNumberEvents();
    
    // we let the proposal fail if there is actually no event to slide
    failed = (num_events == 0);
    
    if ( failed == false )
    {
                
        // pick a random event
        size_t branch_index = 0;
        CharacterEvent *event = history.pickRandomEvent( branch_index );

        // we need to remove and add the event so that the events are back in time order
        history.removeEvent(event, branch_index);
        double branch_length = distribution->getValue().getNode(branch_index).getBranchLength();
        
        // store the event
        stored_value = event;
        // get the current index
        stored_time = event->getTime();
        // store the current branch
        stored_branch_index = branch_index;
        
        // draw new ages and compute the hastings ratio at the same time
        double m = stored_time / branch_length;
        double a = delta * m + offset;
        double b = delta * (1.0-m) + offset;
        double new_time = RbStatistics::Beta::rv(a, b, *rng);
        
        // compute the Hastings ratio
        double forward = RbStatistics::Beta::lnPdf(a, b, new_time);
        double new_a = delta * new_time + offset;
        double new_b = delta * (1.0-new_time) + offset;
        double backward = RbStatistics::Beta::lnPdf(new_a, new_b, stored_time / branch_length);
        
        // set the time
        event->setTime( new_time * branch_length );
        
        // we need to remove and add the event so that the events are back in time order
        history.addEvent(event, branch_index);
        
        return backward - forward;
    }
    else
    {
        // we need to decrement the failed counter because we did not actually reject the new proposal
        move->decrementTriedCounter();
        return RbConstants::Double::neginf;
    }
    
    
    return 0.0;
}
Exemplo n.º 2
0
size_t HeterogeneousRateBirthDeath::computeStartIndex(size_t i) const
{
    
    size_t node_index = i;
    while ( value->getNode(node_index).isRoot() == false && branch_histories[node_index].getNumberEvents() == 0)
    {
        node_index = value->getNode(node_index).getParent().getIndex();
    }
    
    
    if ( value->getNode(node_index).isRoot() == false )
    {
        const BranchHistory &bh = branch_histories[ node_index ];
        const std::multiset<CharacterEvent*, CharacterEventCompare> &h = bh.getHistory();
        CharacterEvent *event = *(h.begin());
        return event->getState();
    }
    else
    {
        return root_state->getValue()-1;
    }
    
}
Exemplo n.º 3
0
void HeterogeneousRateBirthDeath::executeMethod(const std::string &n, const std::vector<const DagNode *> &args, RbVector<double> &rv) const
{
    
    if ( n == "averageSpeciationRate" )
    {
        size_t num_branches = branch_histories.getNumberBranches();
        const RbVector<double> &lambda = speciation->getValue();
        rv.clear();
        rv.resize( num_branches );
        
        for (size_t i = 0; i < num_branches; ++i)
        {
            const TopologyNode &node = this->value->getNode( i );
            const BranchHistory& bh = branch_histories[ i ];
            const std::multiset<CharacterEvent*,CharacterEventCompare>& hist = bh.getHistory();
            size_t state_index_rootwards = computeStartIndex( node.getParent().getIndex() );
            
            double rate = 0;
            double begin_time = 0.0;
            double branch_length = node.getBranchLength();
            for (std::multiset<CharacterEvent*,CharacterEventCompare>::const_iterator it=hist.begin(); it!=hist.end(); ++it)
            {
                CharacterEvent* event = *it;
                double end_time = event->getTime();
                double time_interval = (end_time - begin_time) / branch_length;
                
                // we need to set the current rate caterogy
                size_t current_state = event->getState();

                rate += time_interval * lambda[current_state];
                
                begin_time = end_time;
            }
            rate += (branch_length-begin_time)/branch_length * lambda[state_index_rootwards];
            
            rv[i] = rate;
            
        }
        
    }
    else if ( n == "averageExtinctionRate" )
    {
        size_t num_branches = branch_histories.getNumberBranches();
        const RbVector<double> &mu = extinction->getValue();
        rv.clear();
        rv.resize( num_branches );
        
        for (size_t i = 0; i < num_branches; ++i)
        {
            const TopologyNode &node = this->value->getNode( i );
            const BranchHistory& bh = branch_histories[ i ];
            const std::multiset<CharacterEvent*,CharacterEventCompare>& hist = bh.getHistory();
            size_t state_index_rootwards = computeStartIndex( node.getParent().getIndex() );
            
            double rate = 0;
            double begin_time = 0.0;
            double branch_length = node.getBranchLength();
            for (std::multiset<CharacterEvent*,CharacterEventCompare>::const_iterator it=hist.begin(); it!=hist.end(); ++it)
            {
                CharacterEvent* event = *it;
                double end_time = event->getTime();
                double time_interval = (end_time - begin_time) / branch_length;
                
                // we need to set the current rate caterogy
                size_t current_state = event->getState();
                
                rate += time_interval * mu[current_state];
                
                begin_time = end_time;
            }
            rate += (branch_length-begin_time)/branch_length * mu[state_index_rootwards];
            
            rv[i] = rate;
            
        }
        
    }
    else
    {
        throw RbException("The heterogeneous rate birth-death process does not have a member method called '" + n + "'.");
    }
    
}
Exemplo n.º 4
0
void HeterogeneousRateBirthDeath::computeNodeProbability(const RevBayesCore::TopologyNode &node, size_t node_index)
{
    
    // check for recomputation
    if ( dirty_nodes[node_index] || true )
    {
        // mark as computed
        dirty_nodes[node_index] = false;
        
        
        const BranchHistory& bh = branch_histories[ node_index ];
        const std::multiset<CharacterEvent*,CharacterEventCompare>& hist = bh.getHistory();
        
//        const std::vector<CharacterEvent*> child_states = bh.getChildCharacters();
//        size_t start_index = child_states[0]->getState();
        size_t state_index_tipwards  = computeStartIndex( node_index );
        size_t state_index_rootwards = computeStartIndex( node.getParent().getIndex() );

        std::vector<double> initialState = std::vector<double>(1+num_rate_categories,0);
        if ( node.isTip() )
        {
            // this is a tip node
            
            double samplingProbability = rho->getValue();
            for (size_t i=0; i<num_rate_categories; ++i)
            {
                initialState[i] = 1.0 - samplingProbability;
            }
            initialState[num_rate_categories] = samplingProbability;
            
        }
        else
        {
            // this is an internal node
            const TopologyNode &left = node.getChild(0);
            size_t left_index = left.getIndex();
            computeNodeProbability( left, left_index );
            const TopologyNode &right = node.getChild(1);
            size_t right_index = right.getIndex();
            computeNodeProbability( right, right_index );
            
            // now compute the likelihoods of this internal node
            const std::vector<double> &leftStates = nodeStates[left_index][activeLikelihood[left_index]];
            const std::vector<double> &rightStates = nodeStates[right_index][activeLikelihood[right_index]];
            const RbVector<double> &birthRate = speciation->getValue();
            for (size_t i=0; i<num_rate_categories; ++i)
            {
                initialState[i] = leftStates[i];
            }
            
            initialState[num_rate_categories] = leftStates[num_rate_categories]*rightStates[num_rate_categories]*birthRate[ state_index_tipwards ];
            
        }
        
        const RbVector<double> &s = speciation->getValue();
        const RbVector<double> &e = extinction->getValue();
        double                  r = event_rate->getValue();
        double beginAge = node.getAge();

        // remember that we go back in time (rootwards)
        double begin_time = 0.0;
        double branch_length = node.getBranchLength();
        
        // set the previous state to an impossible state
        // we need this for checking if the states were different
        size_t previous_state = num_rate_categories;
        for (std::multiset<CharacterEvent*,CharacterEventCompare>::const_iterator it=hist.begin(); it!=hist.end(); ++it)
        {
            CharacterEvent* event = *it;
            double end_time = event->getTime();
            double time_interval = end_time - begin_time;
            
            // we need to set the current rate category
            size_t current_state = event->getState();
            
            // check that we got a distinct new state
            if ( previous_state == current_state )
            {
                shift_same_category = true;
            }
            
            updateBranchProbabilitiesNumerically(initialState, beginAge, beginAge+time_interval, s, e, r, current_state);
            
            initialState[num_rate_categories] = initialState[num_rate_categories]*event_rate->getValue()* (1.0/num_rate_categories);
            
            
            begin_time = end_time;
            beginAge += time_interval;
            previous_state = current_state;
        }
        
        // check that we got a distinct new state
        if ( previous_state == state_index_rootwards )
        {
            shift_same_category = true;
        }
        
        double time_interval = branch_length - begin_time;
        updateBranchProbabilitiesNumerically(initialState, beginAge, beginAge+time_interval, s, e, r, state_index_rootwards);
        
        
        // rescale the states
        double max = initialState[num_rate_categories];
        initialState[num_rate_categories] = 1.0;
        
//        totalScaling -= scalingFactors[node_index][activeLikelihood[node_index]];
//        scalingFactors[node_index][activeLikelihood[node_index]] = log(max);
//        totalScaling += scalingFactors[node_index][activeLikelihood[node_index]] - scalingFactors[node_index][activeLikelihood[node_index]^1];
//        totalScaling += scalingFactors[node_index][activeLikelihood[node_index]];
        
        totalScaling += log(max);
        
        // store the states
        nodeStates[node_index][activeLikelihood[node_index]] = initialState;
    }
    
}