Exemplo n.º 1
0
// TFSF boundaries
Field TFSF(Field EM, Loss lass, Loss1d lass1d, double Cour){

    int dx, dy;

    // TFSF boundary
    Bound first, last;
    first.x = 10; last.x = 390;
    first.y = 10; last.y = 190;

    // Update along right
    dx = last.x;
    for (int dy = first.y; dy <= last.y; dy++){
        EM.Hz(dx, dy) -= lass.HzE(dx, dy) * EM.Ey1d[dx];
    }

    // Updating Hz along left
    dx = first.x - 1;
    for (int dy = first.y; dy <= last.y; dy++){
        EM.Hz(dx, dy) += lass.HzE(dx, dy) * EM.Ey1d[dx + 1];
    }

    // Insert 1d grid stuff here. Update magnetic and electric field
    Hupdate1d(EM, lass1d, EM.t);
    Eupdate1d(EM, lass1d, EM.t);
    //EM.Ey1d[10] = ricker(EM.t,0, Cour);
    EM.Ey1d[10] = planewave(EM.t, 15, Cour, 30, 40);
    EM.t++;
    std::cout << EM.t << '\n';

    // Check mag instead of ricker.
    // Update along right edge!
    dx = last.x;
    for (int dy = first.y; dy <= last.y; dy++){
        EM.Ey(dx,dy) -= lass.EyH(dx, dy) * EM.Hz1d[dx];
    }

    // Updating along left edge
    dx = first.x;
    for (int dy = first.y; dy <= last.y; dy++){
        EM.Ey(dx,dy) += lass.EyH(dx, dy) * EM.Hz1d[dx-1];
    }

    // Updating along top
    dy = last.y;
    for (int dx = first.x; dx <= last.x; dx++){
        EM.Ex(dx,dy) += lass.ExH(dx, dy) * EM.Hz1d[dx];
    }

    // Update along bot
    dy = first.y;
    for (int dx = first.x; dx <= last.x; dx++){
        EM.Ex(dx,dy) -= lass.ExH(dx, dy) * EM.Hz1d[dx];
    }

    return EM;

}
Exemplo n.º 2
0
// 2 dimensional functions for E / H movement
Field Hupdate2d(Field EM, Loss lass, int t){
    // update magnetic field, x direction
    for (size_t dx = 0; dx < spacex - 1; dx++){
        for (size_t dy = 0; dy < spacey - 1; dy++){
           EM.Hz(dx,dy) = lass.HzH(dx,dy) * EM.Hz(dx, dy)
                       + lass.HzE(dx,dy) * ((EM.Ex(dx, dy + 1)
                                         - EM.Ex(dx, dy))
                                         - (EM.Ey(dx + 1,dy)
                                         - EM.Ey(dx, dy)));
        }
    }

    return EM;

}
Exemplo n.º 3
0
// Checking Absorbing Boundary Conditions (ABC)
Field ABCcheck(Field EM, Loss lass){

    // defining constant for  ABC
    double c1, c2, c3, temp1, temp2;
    temp1 = sqrt(lass.ExH(0,0) * lass.HzE(0,0));
    temp2 = 1.0 / temp1 + 2.0 + temp1;
    c1 = -(1.0 / temp1 - 2.0 + temp1) / temp2;
    c2 = -2.0 * (temp1 - 1.0 / temp1) / temp2;
    c3 = 4.0 * (temp1 + 1.0 / temp1) / temp2;
    size_t dx, dy;

    // Setting ABC for top
    for (dx = 0; dx < spacex; dx++){
        EM.Ex(dx, spacey - 1) = c1 * (EM.Ex(dx, spacey - 3) + EM.Etop(0, 1, dx))
                      + c2 * (EM.Etop(0, 0, dx) + EM.Etop(2, 0 , dx)
                              -EM.Ex(dx,spacey - 2) -EM.Etop(1, 1, dx))
                      + c3 * EM.Etop(1, 0, dx) - EM.Etop(2, 1, dx);

       // memorizing fields...
        for (dy = 0; dy < 3; dy++){
            EM.Etop(dy, 1, dx) = EM.Etop(dy, 0, dx);
            EM.Etop(dy, 0, dx) = EM.Ex(dx, spacey - 1 - dy);
        }
    }

    // Setting ABC for bottom
    for (dx = 0; dx < spacex; dx++){
        EM.Ex(dx,0) = c1 * (EM.Ex(dx, 2) + EM.Ebot(0, 1, dx))
                      + c2 * (EM.Ebot(0, 0, dx) + EM.Ebot(2, 0 , dx)
                              -EM.Ex(dx,1) -EM.Ebot(1, 1, dx))
                      + c3 * EM.Ebot(1, 0, dx) - EM.Ebot(2, 1, dx);

        // memorizing fields...
        for (dy = 0; dy < 3; dy++){
            EM.Ebot(dy, 1, dx) = EM.Ebot(dy, 0, dx);
            EM.Ebot(dy, 0, dx) = EM.Ex(dx, dy);
        }
    }

    // ABC on right
    for (dy = 0; dy < spacey; dy++){
        EM.Ey(spacex - 1,dy) = c1 * (EM.Ey(spacex - 3,dy) + EM.Eright(0, 1, dy))
                      + c2 * (EM.Eright(0, 0, dy) + EM.Eright(2, 0 , dy)
                              -EM.Ey(spacex - 2,dy) -EM.Eright(1, 1, dy))
                      + c3 * EM.Eright(1, 0, dy) - EM.Eright(2, 1, dy);

        // memorizing fields...
        for (dx = 0; dx < 3; dx++){
            EM.Eright(dx, 1, dy) = EM.Eright(dx, 0, dy);
            EM.Eright(dx, 0, dy) = EM.Ey(spacex - 1 - dx, dy);
        }
    }


    // Setting ABC for left side of grid. Woo!
    for (dy = 0; dy < spacey; dy++){
        EM.Ey(0,dy) = c1 * (EM.Ey(2,dy) + EM.Eleft(0, 1, dy))
                      + c2 * (EM.Eleft(0, 0, dy) + EM.Eleft(2, 0 , dy)
                              -EM.Ey(1,dy) -EM.Eleft(1, 1, dy))
                      + c3 * EM.Eleft(1, 0, dy) - EM.Eleft(2, 1, dy);

        // memorizing fields...
        for (dx = 0; dx < 3; dx++){
            EM.Eleft(dx, 1, dy) = EM.Eleft(dx, 0, dy);
            EM.Eleft(dx, 0, dy) = EM.Ey(dx, dy);
        }
    }

    return EM;
}
Exemplo n.º 4
0
// Creating loss
Loss createloss2d(Loss lass, double eps, double Cour, double loss){

    double radius = 40;
    int sourcex = 200, sourcex2 = 100;
    int sourcey = 100, sourcey2 = 100;
    double dist, var, Q, epsp, mup, dist2;
    for (size_t dx = 0; dx < spacex; dx++){
        for (size_t dy = 0; dy < spacey; dy++){
             dist = sqrt((dx - sourcex)*(dx - sourcex)
                       + (dy - sourcey)*(dy - sourcey));
             dist2 = sqrt((dx - sourcex2)*(dx - sourcex2)
                        + (dy - sourcey2)*(dy - sourcey2));

            // if (dx > 100 && dx < 150 && dy > 75 && dy < 125){
            if (dist < radius){
                Q = cbrt(-(radius / dist) + sqrt((radius/dist)
                                               * (radius/dist) + (1.0/27.0)));
                var = (Q - (1.0 / (3.0 * Q))) * (Q - (1.0/ (3.0 * Q)));
                // var = 1.4;
                if (abs(var) > 1000){
                    var = 1000;
                }

                if (isnan(var)){
                    var = 1000;
                }

                epsp = eps / (var * var);
                mup = 1 / (var * var);

                lass.ExH(dx, dy) = Cour * epsp /(1.0 - loss);
                lass.ExE(dx, dy) = (1.0 - loss) / (1.0 + loss);
                lass.EyE(dx, dy) = (1.0 - loss) / (1.0 + loss);
                lass.EyH(dx, dy) = Cour * epsp / (1.0 + loss);
                lass.HzE(dx, dy) = Cour * (mup / eps) / (1.0 + loss);
                lass.HzH(dx, dy) = (1.0 - loss) / (1.0 + loss);

/*
                // PEC stuff -- not complete!
                lass.ExH(dx, dy) = 0;
                lass.ExE(dx, dy) = 0;
                lass.HzH(dx, dy) = 0;
                lass.HzE(dx, dy) = 0;
                lass.ExE(dx, dy) = 0;
                lass.ExH(dx, dy) = 0;
*/

            }
            else{

                lass.ExH(dx, dy) = Cour * eps;
                lass.ExE(dx, dy) = 1.0;
                lass.EyE(dx, dy) = 1.0;
                lass.EyH(dx, dy) = Cour * eps;
                lass.HzE(dx, dy) = Cour / eps;
                lass.HzH(dx, dy) = 1.0;

            }
        }
    }


    return lass;
}