Exemplo n.º 1
0
	TaskInfo buildTask (string hostname, string id, const SlaveID& slave)  {
		hostProfile profile = hostList[hostname];
	// Define the Docker container.
		/*  Since there is no "executor" to manage the tasks, the
			container will be built and attached directly into the task below */
		ContainerInfo container;
		container.set_type(container.DOCKER);
		ContainerInfo::DockerInfo docker;
		docker.set_image(DOCKER_IMAGE);
		container.mutable_docker()->MergeFrom(docker);

		// Mount local volume inside Container
		Volume * volume = container.add_volumes();
		volume->set_container_path("/mnt");
		volume->set_host_path("/local/mesos");
		volume->set_mode(Volume_Mode_RW);

		// Define the task
		TaskInfo task;
		task.set_name("K3-" + k3binary);
		task.mutable_task_id()->set_value(id);
		task.mutable_slave_id()->MergeFrom(slave);
		task.mutable_container()->MergeFrom(container);
		//task.set_data(stringify(localTasks));

		// Define include files for the command
		CommandInfo command;

		CommandInfo_URI * k3_bin = command.add_uris();
		k3_bin->set_value(fileServer + "/" + k3binary);
		k3_bin->set_executable(true);
		k3_bin->set_extract(false);

//		CommandInfo_URI * k3_args = command.add_uris();
//		k3_args->set_value(runpath + "/k3input.yaml");
		
//		command.set_value("$MESOS_SANDBOX/" + k3binary + " -l INFO -p " +
//				"$MESOS_SANDBOX/k3input.yaml");
		task.mutable_command()->MergeFrom(command);

		// Option A for doing resources management (see scheduler for option B)
		Resource* resource;

		resource = task.add_resources();
		resource->set_name("cpus");
		resource->set_type(Value::SCALAR);
		resource->mutable_scalar()->set_value(profile.cpu);

		resource = task.add_resources();
		resource->set_name("mem");
		resource->set_type(Value::SCALAR);
		resource->mutable_scalar()->set_value(profile.mem);
		
		return task;
	}
Exemplo n.º 2
0
  virtual void resourceOffers(
      SchedulerDriver* driver,
      const vector<Offer>& offers)
  {
    static const Try<Resources> TASK_RESOURCES = Resources::parse(resources);

    if (TASK_RESOURCES.isError()) {
      cerr << "Failed to parse resources '" << resources
           << "': " << TASK_RESOURCES.error() << endl;
      driver->abort();
      return;
    }

    foreach (const Offer& offer, offers) {
      if (!launched &&
          Resources(offer.resources()).contains(TASK_RESOURCES.get())) {
        TaskInfo task;
        task.set_name(name);
        task.mutable_task_id()->set_value(name);
        task.mutable_slave_id()->MergeFrom(offer.slave_id());
        task.mutable_resources()->CopyFrom(TASK_RESOURCES.get());
        task.mutable_command()->set_value(command);
        if (uri.isSome()) {
          task.mutable_command()->add_uris()->set_value(uri.get());
        }

        if (dockerImage.isSome()) {
          ContainerInfo containerInfo;
          containerInfo.set_type(ContainerInfo::DOCKER);

          ContainerInfo::DockerInfo dockerInfo;
          dockerInfo.set_image(dockerImage.get());

          containerInfo.mutable_docker()->CopyFrom(dockerInfo);
          task.mutable_container()->CopyFrom(containerInfo);
        }

        vector<TaskInfo> tasks;
        tasks.push_back(task);

        driver->launchTasks(offer.id(), tasks);
        cout << "task " << name << " submitted to slave "
             << offer.slave_id() << endl;

        launched = true;
      } else {
        driver->declineOffer(offer.id());
      }
    }
  }
// This test confirms that if a task exceeds configured resource
// limits it is forcibly terminated.
TEST_F(PosixRLimitsIsolatorTest, TaskExceedingLimit)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  slave::Flags flags = CreateSlaveFlags();
  flags.isolation = "posix/rlimits";

  Owned<MasterDetector> detector = master.get()->createDetector();

  Try<Owned<cluster::Slave>> slave = StartSlave(detector.get(), flags);
  ASSERT_SOME(slave);

  MockScheduler sched;

  MesosSchedulerDriver driver(
      &sched,
      DEFAULT_FRAMEWORK_INFO,
      master.get()->pid,
      DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(_, _, _));

  Future<vector<Offer>> offers;

  EXPECT_CALL(sched, resourceOffers(_, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(offers);
  ASSERT_FALSE(offers->empty());

  // The task attempts to use an infinite amount of CPU time.
  TaskInfo task = createTask(
      offers.get()[0].slave_id(),
      offers.get()[0].resources(),
      "while true; do true; done");

  ContainerInfo* container = task.mutable_container();
  container->set_type(ContainerInfo::MESOS);

  // Limit the process to use maximally 1 second of CPU time.
  RLimitInfo rlimitInfo;
  RLimitInfo::RLimit* cpuLimit = rlimitInfo.add_rlimits();
  cpuLimit->set_type(RLimitInfo::RLimit::RLMT_CPU);
  cpuLimit->set_soft(1);
  cpuLimit->set_hard(1);

  container->mutable_rlimit_info()->CopyFrom(rlimitInfo);

  Future<TaskStatus> statusRunning;
  Future<TaskStatus> statusFailed;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&statusRunning))
    .WillOnce(FutureArg<1>(&statusFailed));

  driver.launchTasks(offers.get()[0].id(), {task});

  AWAIT_READY(statusRunning);
  EXPECT_EQ(task.task_id(), statusRunning->task_id());
  EXPECT_EQ(TASK_RUNNING, statusRunning->state());

  AWAIT_READY(statusFailed);
  EXPECT_EQ(task.task_id(), statusFailed->task_id());
  EXPECT_EQ(TASK_FAILED, statusFailed->state());

  driver.stop();
  driver.join();
}
Exemplo n.º 4
0
// Test that the prepare launch docker hook execute before launch
// a docker container. Test hook create a file "foo" in the sandbox
// directory. When the docker container launched, the sandbox directory
// is mounted to the docker container. We validate the hook by verifying
// the "foo" file exists in the docker container or not.
TEST_F(HookTest, ROOT_DOCKER_VerifySlavePreLaunchDockerHook)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  MockDocker* mockDocker =
    new MockDocker(tests::flags.docker, tests::flags.docker_socket);

  Shared<Docker> docker(mockDocker);

  slave::Flags flags = CreateSlaveFlags();

  Fetcher fetcher;

  Try<ContainerLogger*> logger =
    ContainerLogger::create(flags.container_logger);

  ASSERT_SOME(logger);

  MockDockerContainerizer containerizer(
      flags,
      &fetcher,
      Owned<ContainerLogger>(logger.get()),
      docker);

  Owned<MasterDetector> detector = master.get()->createDetector();

  Try<Owned<cluster::Slave>> slave =
    StartSlave(detector.get(), &containerizer, flags);
  ASSERT_SOME(slave);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get()->pid, DEFAULT_CREDENTIAL);

  Future<FrameworkID> frameworkId;
  EXPECT_CALL(sched, registered(&driver, _, _))
    .WillOnce(FutureArg<1>(&frameworkId));

  Future<vector<Offer>> offers;
  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(frameworkId);

  AWAIT_READY(offers);
  ASSERT_NE(0u, offers.get().size());

  const Offer& offer = offers.get()[0];

  SlaveID slaveId = offer.slave_id();

  TaskInfo task;
  task.set_name("");
  task.mutable_task_id()->set_value("1");
  task.mutable_slave_id()->CopyFrom(offer.slave_id());
  task.mutable_resources()->CopyFrom(offer.resources());

  CommandInfo command;
  command.set_value("test -f " + path::join(flags.sandbox_directory, "foo"));

  ContainerInfo containerInfo;
  containerInfo.set_type(ContainerInfo::DOCKER);

  // TODO(tnachen): Use local image to test if possible.
  ContainerInfo::DockerInfo dockerInfo;
  dockerInfo.set_image("alpine");
  containerInfo.mutable_docker()->CopyFrom(dockerInfo);

  task.mutable_command()->CopyFrom(command);
  task.mutable_container()->CopyFrom(containerInfo);

  vector<TaskInfo> tasks;
  tasks.push_back(task);

  Future<ContainerID> containerId;
  EXPECT_CALL(containerizer, launch(_, _, _, _, _, _, _, _))
    .WillOnce(DoAll(FutureArg<0>(&containerId),
                    Invoke(&containerizer,
                           &MockDockerContainerizer::_launch)));

  Future<TaskStatus> statusRunning;
  Future<TaskStatus> statusFinished;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&statusRunning))
    .WillOnce(FutureArg<1>(&statusFinished))
    .WillRepeatedly(DoDefault());

  driver.launchTasks(offers.get()[0].id(), tasks);

  AWAIT_READY_FOR(containerId, Seconds(60));
  AWAIT_READY_FOR(statusRunning, Seconds(60));
  EXPECT_EQ(TASK_RUNNING, statusRunning.get().state());
  AWAIT_READY_FOR(statusFinished, Seconds(60));
  EXPECT_EQ(TASK_FINISHED, statusFinished.get().state());

  Future<containerizer::Termination> termination =
    containerizer.wait(containerId.get());

  driver.stop();
  driver.join();

  AWAIT_READY(termination);

  Future<list<Docker::Container>> containers =
    docker.get()->ps(true, slave::DOCKER_NAME_PREFIX);

  AWAIT_READY(containers);

  // Cleanup all mesos launched containers.
  foreach (const Docker::Container& container, containers.get()) {
    AWAIT_READY_FOR(docker.get()->rm(container.id, true), Seconds(30));
  }
}
Exemplo n.º 5
0
  virtual void resourceOffers(
      SchedulerDriver* driver,
      const vector<Offer>& offers)
  {
    static const Try<Resources> TASK_RESOURCES = Resources::parse(resources);

    if (TASK_RESOURCES.isError()) {
      cerr << "Failed to parse resources '" << resources
           << "': " << TASK_RESOURCES.error() << endl;
      driver->abort();
      return;
    }

    for (const Offer& offer : offers) {
      if (!launched &&
          Resources(offer.resources()).contains(TASK_RESOURCES.get())) {
        TaskInfo task;
        task.set_name(name);
        task.mutable_task_id()->set_value(name);
        task.mutable_slave_id()->MergeFrom(offer.slave_id());
        task.mutable_resources()->CopyFrom(TASK_RESOURCES.get());

        CommandInfo* commandInfo = task.mutable_command();
        commandInfo->set_value(command);
        // if (environment.isSome()) {
        //   Environment* environment_ = commandInfo->mutable_environment();
        //   foreachpair (const std::string& name,
        //                const std::string& value,
        //                environment.get()) {
        //     Environment_Variable* environmentVariable =
        //       environment_->add_variables();
        //     environmentVariable->set_name(name);
        //     environmentVariable->set_value(value);
        //   }
        // }

        if (dockerImage.isSome()) {
          ContainerInfo containerInfo;

          if (containerizer == "mesos") {
            containerInfo.set_type(ContainerInfo::MESOS);

            ContainerInfo::MesosInfo mesosInfo;

            Image mesosImage;
            mesosImage.set_type(Image::DOCKER);
            mesosImage.mutable_docker()->set_name(dockerImage.get());
            mesosInfo.mutable_image()->CopyFrom(mesosImage);

            containerInfo.mutable_mesos()->CopyFrom(mesosInfo);
          } else if (containerizer == "docker") {
            containerInfo.set_type(ContainerInfo::DOCKER);

            ContainerInfo::DockerInfo dockerInfo;
            dockerInfo.set_image(dockerImage.get());

            containerInfo.mutable_docker()->CopyFrom(dockerInfo);
          } else {
            cerr << "Unsupported containerizer: " << containerizer << endl;;

            driver->abort();

            return;
          }

          task.mutable_container()->CopyFrom(containerInfo);
        }

        vector<TaskInfo> tasks;
        tasks.push_back(task);

        driver->launchTasks(offer.id(), tasks);
        cout << "task " << name << " submitted to slave "
             << offer.slave_id() << endl;

        launched = true;
      } else {
        driver->declineOffer(offer.id());
      }
    }
  }
Exemplo n.º 6
0
// This test launches a container which has an image and joins host
// network, and then verifies that the container can access Internet.
TEST_F(CniIsolatorTest, ROOT_INTERNET_CURL_LaunchContainerInHostNetwork)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  slave::Flags flags = CreateSlaveFlags();
  flags.isolation = "docker/runtime,filesystem/linux";
  flags.image_providers = "docker";
  flags.docker_store_dir = path::join(sandbox.get(), "store");

  Owned<MasterDetector> detector = master.get()->createDetector();

  Try<Owned<cluster::Slave>> slave = StartSlave(detector.get(), flags);
  ASSERT_SOME(slave);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get()->pid, DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(&driver, _, _));

  Future<vector<Offer>> offers;
  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(offers);
  ASSERT_EQ(1u, offers->size());

  const Offer& offer = offers.get()[0];

  // NOTE: We use a non-shell command here because 'sh' might not be
  // in the PATH. 'alpine' does not specify env PATH in the image.
  CommandInfo command;
  command.set_shell(false);
  command.set_value("/bin/ping");
  command.add_arguments("/bin/ping");
  command.add_arguments("-c1");
  command.add_arguments("google.com");

  TaskInfo task = createTask(
      offer.slave_id(),
      Resources::parse("cpus:1;mem:128").get(),
      command);

  Image image;
  image.set_type(Image::DOCKER);
  image.mutable_docker()->set_name("alpine");

  ContainerInfo* container = task.mutable_container();
  container->set_type(ContainerInfo::MESOS);
  container->mutable_mesos()->mutable_image()->CopyFrom(image);

  Future<TaskStatus> statusRunning;
  Future<TaskStatus> statusFinished;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&statusRunning))
    .WillOnce(FutureArg<1>(&statusFinished));

  driver.launchTasks(offer.id(), {task});

  AWAIT_READY_FOR(statusRunning, Seconds(60));
  EXPECT_EQ(task.task_id(), statusRunning->task_id());
  EXPECT_EQ(TASK_RUNNING, statusRunning->state());

  AWAIT_READY(statusFinished);
  EXPECT_EQ(task.task_id(), statusFinished->task_id());
  EXPECT_EQ(TASK_FINISHED, statusFinished->state());

  driver.stop();
  driver.join();
}
Exemplo n.º 7
0
// This test launches a command task which has checkpoint enabled, and
// agent is terminated when the task is running, after agent is restarted,
// kill the task and then verify we can receive TASK_KILLED for the task.
TEST_F(CniIsolatorTest, ROOT_SlaveRecovery)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  slave::Flags flags = CreateSlaveFlags();
  flags.isolation = "network/cni";

  flags.network_cni_plugins_dir = cniPluginDir;
  flags.network_cni_config_dir = cniConfigDir;

  Owned<MasterDetector> detector = master.get()->createDetector();

  Try<Owned<cluster::Slave>> slave = StartSlave(detector.get(), flags);
  ASSERT_SOME(slave);

  MockScheduler sched;

  // Enable checkpointing for the framework.
  FrameworkInfo frameworkInfo = DEFAULT_FRAMEWORK_INFO;
  frameworkInfo.set_checkpoint(true);

  MesosSchedulerDriver driver(
      &sched, frameworkInfo, master.get()->pid, DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(_, _, _));

  Future<vector<Offer>> offers;
  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(offers);
  ASSERT_EQ(1u, offers->size());

  const Offer& offer = offers.get()[0];

  CommandInfo command;
  command.set_value("sleep 1000");

  TaskInfo task = createTask(
      offer.slave_id(),
      Resources::parse("cpus:1;mem:128").get(),
      command);

  ContainerInfo* container = task.mutable_container();
  container->set_type(ContainerInfo::MESOS);

  // Make sure the container join the mock CNI network.
  container->add_network_infos()->set_name("__MESOS_TEST__");

  Future<TaskStatus> statusRunning;
  Future<TaskStatus> statusKilled;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&statusRunning))
    .WillOnce(FutureArg<1>(&statusKilled));

  EXPECT_CALL(sched, offerRescinded(&driver, _))
    .Times(AtMost(1));

  Future<Nothing> ack =
    FUTURE_DISPATCH(_, &Slave::_statusUpdateAcknowledgement);

  driver.launchTasks(offer.id(), {task});

  AWAIT_READY(statusRunning);
  EXPECT_EQ(task.task_id(), statusRunning->task_id());
  EXPECT_EQ(TASK_RUNNING, statusRunning->state());

  // Wait for the ACK to be checkpointed.
  AWAIT_READY(ack);

  // Stop the slave after TASK_RUNNING is received.
  slave.get()->terminate();

  // Restart the slave.
  slave = StartSlave(detector.get(), flags);
  ASSERT_SOME(slave);

  // Kill the task.
  driver.killTask(task.task_id());

  AWAIT_READY(statusKilled);
  EXPECT_EQ(task.task_id(), statusKilled->task_id());
  EXPECT_EQ(TASK_KILLED, statusKilled->state());

  driver.stop();
  driver.join();
}
Exemplo n.º 8
0
// This test verifies that docker image default cmd is executed correctly.
// This corresponds to the case in runtime isolator logic table: sh=0,
// value=0, argv=1, entrypoint=0, cmd=1.
TEST_F(DockerRuntimeIsolatorTest, ROOT_DockerDefaultCmdLocalPuller)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  const string directory = path::join(os::getcwd(), "archives");

  Future<Nothing> testImage =
    DockerArchive::create(directory, "alpine", "null", "[\"sh\"]");

  AWAIT_READY(testImage);

  ASSERT_TRUE(os::exists(path::join(directory, "alpine.tar")));

  slave::Flags flags = CreateSlaveFlags();
  flags.isolation = "docker/runtime,filesystem/linux";
  flags.image_providers = "docker";
  flags.docker_registry = directory;

  // Make docker store directory as a temparary directory. Because the
  // manifest of the test image is changeable, the image cached on
  // previous tests should never be used.
  flags.docker_store_dir = path::join(os::getcwd(), "store");

  Owned<MasterDetector> detector = master.get()->createDetector();

  Try<Owned<cluster::Slave>> slave = StartSlave(detector.get(), flags);
  ASSERT_SOME(slave);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get()->pid, DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(&driver, _, _));

  Future<vector<Offer>> offers;
  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(offers);
  ASSERT_EQ(1u, offers->size());

  const Offer& offer = offers.get()[0];

  TaskInfo task;
  task.set_name("test-task");
  task.mutable_task_id()->set_value(UUID::random().toString());
  task.mutable_slave_id()->CopyFrom(offer.slave_id());
  task.mutable_resources()->CopyFrom(Resources::parse("cpus:1;mem:128").get());
  task.mutable_command()->set_shell(false);
  task.mutable_command()->add_arguments("-c");
  task.mutable_command()->add_arguments("echo 'hello world'");

  Image image;
  image.set_type(Image::DOCKER);
  image.mutable_docker()->set_name("alpine");

  ContainerInfo* container = task.mutable_container();
  container->set_type(ContainerInfo::MESOS);
  container->mutable_mesos()->mutable_image()->CopyFrom(image);

  Future<TaskStatus> statusRunning;
  Future<TaskStatus> statusFinished;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&statusRunning))
    .WillOnce(FutureArg<1>(&statusFinished));

  driver.launchTasks(offer.id(), {task});

  AWAIT_READY_FOR(statusRunning, Seconds(60));
  EXPECT_EQ(task.task_id(), statusRunning->task_id());
  EXPECT_EQ(TASK_RUNNING, statusRunning->state());

  AWAIT_READY(statusFinished);
  EXPECT_EQ(task.task_id(), statusFinished->task_id());
  EXPECT_EQ(TASK_FINISHED, statusFinished->state());

  driver.stop();
  driver.join();
}
Exemplo n.º 9
0
// This test verifies that docker image default entrypoint is executed
// correctly using registry puller. This corresponds to the case in runtime
// isolator logic table: sh=0, value=0, argv=1, entrypoint=1, cmd=0.
TEST_F(DockerRuntimeIsolatorTest,
       ROOT_CURL_INTERNET_DockerDefaultEntryptRegistryPuller)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  slave::Flags flags = CreateSlaveFlags();
  flags.isolation = "docker/runtime,filesystem/linux";
  flags.image_providers = "docker";
  flags.docker_store_dir = path::join(os::getcwd(), "store");

  Owned<MasterDetector> detector = master.get()->createDetector();

  Try<Owned<cluster::Slave>> slave = StartSlave(detector.get(), flags);
  ASSERT_SOME(slave);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get()->pid, DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(&driver, _, _));

  Future<vector<Offer>> offers;
  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(offers);
  ASSERT_EQ(1u, offers->size());

  const Offer& offer = offers.get()[0];

  TaskInfo task;
  task.set_name("test-task");
  task.mutable_task_id()->set_value(UUID::random().toString());
  task.mutable_slave_id()->CopyFrom(offer.slave_id());
  task.mutable_resources()->CopyFrom(Resources::parse("cpus:1;mem:128").get());
  task.mutable_command()->set_shell(false);
  task.mutable_command()->add_arguments("hello world");

  Image image;
  image.set_type(Image::DOCKER);

  // 'mesosphere/inky' image is used in docker containerizer test, which
  // contains entrypoint as 'echo' and cmd as null.
  image.mutable_docker()->set_name("mesosphere/inky");

  ContainerInfo* container = task.mutable_container();
  container->set_type(ContainerInfo::MESOS);
  container->mutable_mesos()->mutable_image()->CopyFrom(image);

  Future<TaskStatus> statusRunning;
  Future<TaskStatus> statusFinished;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&statusRunning))
    .WillOnce(FutureArg<1>(&statusFinished));

  driver.launchTasks(offer.id(), {task});

  AWAIT_READY_FOR(statusRunning, Seconds(60));
  EXPECT_EQ(task.task_id(), statusRunning->task_id());
  EXPECT_EQ(TASK_RUNNING, statusRunning->state());

  AWAIT_READY(statusFinished);
  EXPECT_EQ(task.task_id(), statusFinished->task_id());
  EXPECT_EQ(TASK_FINISHED, statusFinished->state());

  driver.stop();
  driver.join();
}
Exemplo n.º 10
0
  virtual void resourceOffers(SchedulerDriver* driver,
                              const vector<Offer>& offers)
  {
    cout << "." << flush;
    for (size_t i = 0; i < offers.size(); i++) {
      const Offer& offer = offers[i];

      // Lookup resources we care about.
      // TODO(benh): It would be nice to ultimately have some helper
      // functions for looking up resources.
      double cpus = 0;
      double mem = 0;

      for (int i = 0; i < offer.resources_size(); i++) {
        const Resource& resource = offer.resources(i);
        if (resource.name() == "cpus" &&
            resource.type() == Value::SCALAR) {
          cpus = resource.scalar().value();
        } else if (resource.name() == "mem" &&
                   resource.type() == Value::SCALAR) {
          mem = resource.scalar().value();
        }
      }

      // Launch tasks.
      vector<TaskInfo> tasks;
      while (tasksLaunched < totalTasks &&
             cpus >= CPUS_PER_TASK &&
             mem >= MEM_PER_TASK) {
        int taskId = tasksLaunched++;

        cout << "Starting task " << taskId << " on "
             << offer.hostname() << endl;

        TaskInfo task;
        task.set_name("Task " + lexical_cast<string>(taskId));
        task.mutable_task_id()->set_value(lexical_cast<string>(taskId));
        task.mutable_slave_id()->MergeFrom(offer.slave_id());
        task.mutable_command()->set_value("echo hello");

        // Use Docker to run the task.
        ContainerInfo containerInfo;
        containerInfo.set_type(ContainerInfo::DOCKER);

        ContainerInfo::DockerInfo dockerInfo;
        dockerInfo.set_image("busybox");

        containerInfo.mutable_docker()->CopyFrom(dockerInfo);
        task.mutable_container()->CopyFrom(containerInfo);

        Resource* resource;

        resource = task.add_resources();
        resource->set_name("cpus");
        resource->set_type(Value::SCALAR);
        resource->mutable_scalar()->set_value(CPUS_PER_TASK);

        resource = task.add_resources();
        resource->set_name("mem");
        resource->set_type(Value::SCALAR);
        resource->mutable_scalar()->set_value(MEM_PER_TASK);

        tasks.push_back(task);

        cpus -= CPUS_PER_TASK;
        mem -= MEM_PER_TASK;
      }

      driver->launchTasks(offer.id(), tasks);
    }
  }
// This test verifies that persistent volumes are unmounted properly
// after a checkpointed framework disappears and the slave restarts.
//
// TODO(jieyu): Even though the command task specifies a new
// filesystem root, the executor (command executor) itself does not
// change filesystem root (uses the host filesystem). We need to add a
// test to test the scenario that the executor itself changes rootfs.
TEST_F(LinuxFilesystemIsolatorMesosTest,
       ROOT_RecoverOrphanedPersistentVolume)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  string registry = path::join(sandbox.get(), "registry");
  AWAIT_READY(DockerArchive::create(registry, "test_image"));

  slave::Flags flags = CreateSlaveFlags();
  flags.resources = "cpus:2;mem:1024;disk(role1):1024";
  flags.isolation = "filesystem/linux,docker/runtime";
  flags.docker_registry = registry;
  flags.docker_store_dir = path::join(sandbox.get(), "store");
  flags.image_providers = "docker";

  Fetcher fetcher(flags);

  Try<MesosContainerizer*> create =
    MesosContainerizer::create(flags, true, &fetcher);

  ASSERT_SOME(create);

  Owned<Containerizer> containerizer(create.get());

  Owned<MasterDetector> detector = master.get()->createDetector();

  Try<Owned<cluster::Slave>> slave = StartSlave(
      detector.get(),
      containerizer.get(),
      flags);

  ASSERT_SOME(slave);

  MockScheduler sched;
  FrameworkInfo frameworkInfo = DEFAULT_FRAMEWORK_INFO;
  frameworkInfo.set_roles(0, "role1");
  frameworkInfo.set_checkpoint(true);

  MesosSchedulerDriver driver(
      &sched,
      frameworkInfo,
      master.get()->pid,
      DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(&driver, _, _));

  Future<vector<Offer>> offers;
  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(offers);
  ASSERT_FALSE(offers->empty());

  Offer offer = offers.get()[0];

  string dir1 = path::join(sandbox.get(), "dir1");
  ASSERT_SOME(os::mkdir(dir1));

  Resource persistentVolume = createPersistentVolume(
      Megabytes(64),
      "role1",
      "id1",
      "path1",
      None(),
      None(),
      frameworkInfo.principal());

  // Create a task that does nothing for a long time.
  TaskInfo task = createTask(
      offer.slave_id(),
      Resources::parse("cpus:1;mem:512").get() + persistentVolume,
      "sleep 1000");

  task.mutable_container()->CopyFrom(createContainerInfo(
      "test_image",
      {createVolumeHostPath("/tmp", dir1, Volume::RW)}));

  Future<TaskStatus> statusStarting;
  Future<TaskStatus> statusRunning;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&statusStarting))
    .WillOnce(FutureArg<1>(&statusRunning))
    .WillRepeatedly(DoDefault());

  Future<Nothing> ack =
    FUTURE_DISPATCH(_, &Slave::_statusUpdateAcknowledgement);

  // Create the persistent volumes and launch task via `acceptOffers`.
  driver.acceptOffers(
      {offer.id()},
      {CREATE(persistentVolume), LAUNCH({task})});

  AWAIT_READY(statusStarting);
  EXPECT_EQ(TASK_STARTING, statusStarting->state());

  AWAIT_READY(statusRunning);
  EXPECT_EQ(TASK_RUNNING, statusRunning->state());

  // Wait for the ACK to be checkpointed.
  AWAIT_READY(ack);

  Future<hashset<ContainerID>> containers = containerizer->containers();

  AWAIT_READY(containers);
  ASSERT_EQ(1u, containers->size());

  ContainerID containerId = *containers->begin();

  // Restart the slave.
  slave.get()->terminate();

  // Wipe the slave meta directory so that the slave will treat the
  // above running task as an orphan.
  ASSERT_SOME(os::rmdir(slave::paths::getMetaRootDir(flags.work_dir)));

  Future<Nothing> _recover = FUTURE_DISPATCH(_, &Slave::_recover);

  // Recreate the containerizer using the same helper as above.
  containerizer.reset();

  create = MesosContainerizer::create(flags, true, &fetcher);
  ASSERT_SOME(create);

  containerizer.reset(create.get());

  slave = StartSlave(detector.get(), containerizer.get(), flags);
  ASSERT_SOME(slave);

  // Wait until slave recovery is complete.
  AWAIT_READY(_recover);

  // Wait until the orphan containers are cleaned up.
  AWAIT_READY(containerizer->wait(containerId));

  Try<fs::MountInfoTable> table = fs::MountInfoTable::read();
  ASSERT_SOME(table);

  // All mount targets should be under this directory.
  string directory = slave::paths::getSandboxRootDir(flags.work_dir);

  // Verify that the orphaned container's persistent volume and
  // the rootfs are unmounted.
  foreach (const fs::MountInfoTable::Entry& entry, table->entries) {
    EXPECT_FALSE(strings::contains(entry.target, directory))
      << "Target was not unmounted: " << entry.target;
  }

  driver.stop();
  driver.join();
}
// This test verifies that the framework can launch a command task
// that specifies both container image and persistent volumes.
TEST_F(LinuxFilesystemIsolatorMesosTest,
       ROOT_ChangeRootFilesystemCommandExecutorPersistentVolume)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  string registry = path::join(sandbox.get(), "registry");
  AWAIT_READY(DockerArchive::create(registry, "test_image"));

  slave::Flags flags = CreateSlaveFlags();
  flags.resources = "cpus:2;mem:1024;disk(role1):1024";
  flags.isolation = "filesystem/linux,docker/runtime";
  flags.docker_registry = registry;
  flags.docker_store_dir = path::join(sandbox.get(), "store");
  flags.image_providers = "docker";

  Owned<MasterDetector> detector = master.get()->createDetector();

  Try<Owned<cluster::Slave>> slave = StartSlave(detector.get(), flags);
  ASSERT_SOME(slave);

  MockScheduler sched;
  FrameworkInfo frameworkInfo = DEFAULT_FRAMEWORK_INFO;
  frameworkInfo.set_roles(0, "role1");

  MesosSchedulerDriver driver(
      &sched,
      frameworkInfo,
      master.get()->pid,
      DEFAULT_CREDENTIAL);

  Future<FrameworkID> frameworkId;
  EXPECT_CALL(sched, registered(&driver, _, _))
    .WillOnce(FutureArg<1>(&frameworkId));

  Future<vector<Offer>> offers;
  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(frameworkId);

  AWAIT_READY(offers);
  ASSERT_FALSE(offers->empty());

  Offer offer = offers.get()[0];

  string dir1 = path::join(sandbox.get(), "dir1");
  ASSERT_SOME(os::mkdir(dir1));

  Resource persistentVolume = createPersistentVolume(
      Megabytes(64),
      "role1",
      "id1",
      "path1",
      None(),
      None(),
      frameworkInfo.principal());

  // We use the filter explicitly here so that the resources will not
  // be filtered for 5 seconds (the default).
  Filters filters;
  filters.set_refuse_seconds(0);

  TaskInfo task = createTask(
      offer.slave_id(),
      Resources::parse("cpus:1;mem:512").get() + persistentVolume,
      "echo abc > path1/file");

  task.mutable_container()->CopyFrom(createContainerInfo(
      "test_image",
      {createVolumeHostPath("/tmp", dir1, Volume::RW)}));

  // Create the persistent volumes and launch task via `acceptOffers`.
  driver.acceptOffers(
      {offer.id()},
      {CREATE(persistentVolume), LAUNCH({task})},
      filters);

  Future<TaskStatus> statusStarting;
  Future<TaskStatus> statusRunning;
  Future<TaskStatus> statusFinished;

  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&statusStarting))
    .WillOnce(FutureArg<1>(&statusRunning))
    .WillOnce(FutureArg<1>(&statusFinished));

  AWAIT_READY(statusStarting);
  EXPECT_EQ(TASK_STARTING, statusStarting->state());

  AWAIT_READY(statusRunning);
  EXPECT_EQ(TASK_RUNNING, statusRunning->state());

  AWAIT_READY(statusFinished);
  EXPECT_EQ(TASK_FINISHED, statusFinished->state());

  // NOTE: The command executor's id is the same as the task id.
  ExecutorID executorId;
  executorId.set_value(task.task_id().value());

  string directory = slave::paths::getExecutorLatestRunPath(
      flags.work_dir,
      offer.slave_id(),
      frameworkId.get(),
      executorId);

  EXPECT_FALSE(os::exists(path::join(directory, "path1")));

  string volumePath = slave::paths::getPersistentVolumePath(
      flags.work_dir,
      "role1",
      "id1");

  EXPECT_SOME_EQ("abc\n", os::read(path::join(volumePath, "file")));

  driver.stop();
  driver.join();
}
// This test verifies that the framework can launch a command task
// that specifies a container image.
TEST_F(LinuxFilesystemIsolatorMesosTest,
       ROOT_ChangeRootFilesystemCommandExecutor)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  string registry = path::join(sandbox.get(), "registry");
  AWAIT_READY(DockerArchive::create(registry, "test_image"));

  slave::Flags flags = CreateSlaveFlags();
  flags.isolation = "filesystem/linux,docker/runtime";
  flags.docker_registry = registry;
  flags.docker_store_dir = path::join(sandbox.get(), "store");
  flags.image_providers = "docker";

  Owned<MasterDetector> detector = master.get()->createDetector();

  Try<Owned<cluster::Slave>> slave = StartSlave(detector.get(), flags);
  ASSERT_SOME(slave);

  MockScheduler sched;

  MesosSchedulerDriver driver(
      &sched,
      DEFAULT_FRAMEWORK_INFO,
      master.get()->pid,
      DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(&driver, _, _));

  Future<vector<Offer>> offers;
  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(offers);
  ASSERT_FALSE(offers->empty());

  const Offer& offer = offers.get()[0];

  TaskInfo task = createTask(
      offer.slave_id(),
      offer.resources(),
      "test -d " + flags.sandbox_directory);

  task.mutable_container()->CopyFrom(createContainerInfo("test_image"));

  driver.launchTasks(offer.id(), {task});

  Future<TaskStatus> statusStarting;
  Future<TaskStatus> statusRunning;
  Future<TaskStatus> statusFinished;

  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&statusStarting))
    .WillOnce(FutureArg<1>(&statusRunning))
    .WillOnce(FutureArg<1>(&statusFinished));

  AWAIT_READY(statusStarting);
  EXPECT_EQ(TASK_STARTING, statusStarting->state());

  AWAIT_READY(statusRunning);
  EXPECT_EQ(TASK_RUNNING, statusRunning->state());

  AWAIT_READY(statusFinished);
  EXPECT_EQ(TASK_FINISHED, statusFinished->state());

  driver.stop();
  driver.join();
}
// This test checks the behavior of passed invalid limits.
TEST_F(PosixRLimitsIsolatorTest, InvalidLimits)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  slave::Flags flags = CreateSlaveFlags();
  flags.isolation = "posix/rlimits";

  Owned<MasterDetector> detector = master.get()->createDetector();

  Try<Owned<cluster::Slave>> slave = StartSlave(detector.get(), flags);
  ASSERT_SOME(slave);

  MockScheduler sched;

  MesosSchedulerDriver driver(
      &sched,
      DEFAULT_FRAMEWORK_INFO,
      master.get()->pid, DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(_, _, _));

  Future<vector<Offer>> offers;

  EXPECT_CALL(sched, resourceOffers(_, _))
      .WillOnce(FutureArg<1>(&offers))
      .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(offers);
  ASSERT_NE(0u, offers->size());

  TaskInfo task = createTask(
      offers.get()[0].slave_id(),
      offers.get()[0].resources(),
      "true");

  ContainerInfo* container = task.mutable_container();
  container->set_type(ContainerInfo::MESOS);

  // Set impossible limit soft > hard.
  RLimitInfo rlimitInfo;
  RLimitInfo::RLimit* rlimit = rlimitInfo.add_rlimits();
  rlimit->set_type(RLimitInfo::RLimit::RLMT_CPU);
  rlimit->set_soft(100);
  rlimit->set_hard(1);

  container->mutable_rlimit_info()->CopyFrom(rlimitInfo);

  Future<TaskStatus> taskStatus;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
      .WillOnce(FutureArg<1>(&taskStatus));

  driver.launchTasks(offers.get()[0].id(), {task});

  AWAIT_READY(taskStatus);
  EXPECT_EQ(task.task_id(), taskStatus->task_id());
  EXPECT_EQ(TASK_FAILED, taskStatus->state());
  EXPECT_EQ(TaskStatus::REASON_EXECUTOR_TERMINATED, taskStatus->reason());

  driver.stop();
  driver.join();
}
// This test confirms that setting no values for the soft and hard
// limits implies an unlimited resource.
TEST_F(PosixRLimitsIsolatorTest, UnsetLimits) {
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  slave::Flags flags = CreateSlaveFlags();
  flags.isolation = "posix/rlimits";

  Owned<MasterDetector> detector = master.get()->createDetector();

  Try<Owned<cluster::Slave>> slave = StartSlave(detector.get(), flags);
  ASSERT_SOME(slave);

  MockScheduler sched;

  MesosSchedulerDriver driver(
      &sched,
      DEFAULT_FRAMEWORK_INFO,
      master.get()->pid,
      DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(_, _, _));

  Future<vector<Offer>> offers;

  EXPECT_CALL(sched, resourceOffers(_, _))
      .WillOnce(FutureArg<1>(&offers))
      .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(offers);
  ASSERT_NE(0u, offers->size());

  TaskInfo task = createTask(
      offers.get()[0].slave_id(),
      offers.get()[0].resources(),
      "exit `ulimit -c | grep -q unlimited`");

  // Force usage of C locale as we interpret a potentially translated
  // string in the task's command.
  mesos::Environment::Variable* locale =
      task.mutable_command()->mutable_environment()->add_variables();
  locale->set_name("LC_ALL");
  locale->set_value("C");

  ContainerInfo* container = task.mutable_container();
  container->set_type(ContainerInfo::MESOS);

  // Setting rlimit for core without soft or hard limit signifies
  // unlimited range.
  RLimitInfo rlimitInfo;
  RLimitInfo::RLimit* rlimit = rlimitInfo.add_rlimits();
  rlimit->set_type(RLimitInfo::RLimit::RLMT_CORE);

  container->mutable_rlimit_info()->CopyFrom(rlimitInfo);

  Future<TaskStatus> statusRunning;
  Future<TaskStatus> statusFinal;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
      .WillOnce(FutureArg<1>(&statusRunning))
      .WillOnce(FutureArg<1>(&statusFinal));

  driver.launchTasks(offers.get()[0].id(), {task});

  AWAIT_READY(statusRunning);
  EXPECT_EQ(task.task_id(), statusRunning->task_id());
  EXPECT_EQ(TASK_RUNNING, statusRunning->state());

  AWAIT_READY(statusFinal);
  EXPECT_EQ(task.task_id(), statusFinal->task_id());
  EXPECT_EQ(TASK_FINISHED, statusFinal->state());

  driver.stop();
  driver.join();
}