Exemplo n.º 1
0
void updateAccelerationReadings(void)
{
    if (!acc.read(accADCRaw)) {
        return;
    }

    for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) accADC[axis] = accADCRaw[axis];

    if (accLpfCutHz) {
        if (!accFilterInitialised) {
            if (targetLooptime) {  /* Initialisation needs to happen once sample rate is known */
                for (int axis = 0; axis < 3; axis++) {
                    biquadFilterInit(&accFilterState[axis], accLpfCutHz, 0);
                }

                accFilterInitialised = true;
            }
        }

        if (accFilterInitialised) {
            for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
                accADC[axis] = lrintf(biquadFilterApply(&accFilterState[axis], (float) accADC[axis]));
            }
        }
    }

    if (!isAccelerationCalibrationComplete()) {
        performAcclerationCalibration();
    }

    applyAccelerationZero(accZero, accGain);

    alignSensors(accADC, accADC, accAlign);
}
Exemplo n.º 2
0
bool sensorsAutodetect(void)
{
    memset(&acc, 0, sizeof(acc));
    memset(&gyro, 0, sizeof(gyro));

#if defined(USE_GYRO_MPU6050) || defined(USE_GYRO_MPU3050) || defined(USE_GYRO_MPU6500) || defined(USE_GYRO_SPI_MPU6500) || defined(USE_GYRO_SPI_MPU6000) || defined(USE_ACC_MPU6050)

    const extiConfig_t *extiConfig = selectMPUIntExtiConfig();

    mpuDetectionResult_t *mpuDetectionResult = detectMpu(extiConfig);
    UNUSED(mpuDetectionResult);
#endif

    if (!detectGyro()) {
        return false;
    }
    detectAcc(sensorSelectionConfig()->acc_hardware);
    detectBaro(sensorSelectionConfig()->baro_hardware);


    // Now time to init things, acc first
    if (sensors(SENSOR_ACC))
        acc.init();
    // this is safe because either mpu6050 or mpu3050 or lg3d20 sets it, and in case of fail, we never get here.
    gyro.init(gyroConfig()->gyro_lpf);

#ifdef MAG
    detectMag(sensorSelectionConfig()->mag_hardware);
#endif

    reconfigureAlignment(sensorAlignmentConfig());

    return true;
}
Exemplo n.º 3
0
bool sensorsAutodetect(sensorAlignmentConfig_t *sensorAlignmentConfig, uint8_t gyroLpf, uint8_t accHardwareToUse, uint8_t magHardwareToUse, uint8_t baroHardwareToUse,
        int16_t magDeclinationFromConfig,
        uint32_t looptime, uint8_t gyroSync, uint8_t gyroSyncDenominator) {

    int16_t deg, min;

#ifndef MAG
    UNUSED(magHardwareToUse);
#endif
    memset(&acc, 0, sizeof(acc));
    memset(&gyro, 0, sizeof(gyro));

#if defined(USE_GYRO_MPU6050) || defined(USE_GYRO_MPU3050) || defined(USE_GYRO_MPU6500) || defined(USE_GYRO_SPI_MPU6500) || defined(USE_GYRO_SPI_MPU6000) || defined(USE_ACC_MPU6050)

    const extiConfig_t *extiConfig = selectMPUIntExtiConfig();

    mpuDetectionResult_t *mpuDetectionResult = detectMpu(extiConfig);
    UNUSED(mpuDetectionResult);
#endif

    if (!detectGyro()) {
        return false;
    }
    detectAcc(accHardwareToUse);
    detectBaro(baroHardwareToUse);


    // Now time to init things, acc first
    if (sensors(SENSOR_ACC))
        acc.init();
    // this is safe because either mpu6050 or mpu3050 or lg3d20 sets it, and in case of fail, we never get here.
    gyroUpdateSampleRate(looptime, gyroLpf, gyroSync, gyroSyncDenominator);   // Set gyro sampling rate divider before initialization
    gyro.init(gyroLpf);

#ifdef MAG
    detectMag(magHardwareToUse);
#endif

    reconfigureAlignment(sensorAlignmentConfig);

    // FIXME extract to a method to reduce dependencies, maybe move to sensors_compass.c
    if (sensors(SENSOR_MAG)) {
        // calculate magnetic declination
        deg = magDeclinationFromConfig / 100;
        min = magDeclinationFromConfig % 100;

        magneticDeclination = (deg + ((float)min * (1.0f / 60.0f))) * 10; // heading is in 0.1deg units
    } else {
        magneticDeclination = 0.0f; // TODO investigate if this is actually needed if there is no mag sensor or if the value stored in the config should be used.
    }

    return true;
}
Exemplo n.º 4
0
void updateAccelerationReadings(rollAndPitchTrims_t *rollAndPitchTrims)
{
    acc.read(accADC);
    alignSensors(accADC, accADC, accAlign);

    if (!isAccelerationCalibrationComplete()) {
        performAcclerationCalibration(rollAndPitchTrims);
    }

    if (feature(FEATURE_INFLIGHT_ACC_CAL)) {
        performInflightAccelerationCalibration(rollAndPitchTrims);
    }

    applyAccelerationTrims(accelerationTrims);
}
Exemplo n.º 5
0
bool sensorsAutodetect(sensorAlignmentConfig_t *sensorAlignmentConfig, uint8_t gyroLpf, uint8_t accHardwareToUse, uint8_t magHardwareToUse, uint8_t baroHardwareToUse,
        int16_t magDeclinationFromConfig) {

    int16_t deg, min;

    memset(&acc, 0, sizeof(acc));
    memset(&gyro, 0, sizeof(gyro));

#if defined(USE_GYRO_MPU6050) || defined(USE_GYRO_MPU3050) || defined(USE_GYRO_MPU6500) || defined(USE_GYRO_SPI_MPU6500) || defined(USE_GYRO_SPI_MPU6000) || defined(USE_ACC_MPU6050)

    const extiConfig_t *extiConfig = selectMPUIntExtiConfig();

    mpuDetectionResult_t *mpuDetectionResult = detectMpu(extiConfig);
    UNUSED(mpuDetectionResult);
#endif

    if (!detectGyro()) {
        return false;
    }
    detectAcc(accHardwareToUse);
    detectBaro(baroHardwareToUse);


    // Now time to init things, acc first
    if (sensors(SENSOR_ACC))
        acc.init(&acc);

    gyro.init(gyroLpf);

    detectMag(magHardwareToUse);

    reconfigureAlignment(sensorAlignmentConfig);

    // FIXME extract to a method to reduce dependencies, maybe move to sensors_compass.c
    if (sensors(SENSOR_MAG)) {
        // calculate magnetic declination
        deg = magDeclinationFromConfig / 100;
        min = magDeclinationFromConfig % 100;

        magneticDeclination = (deg + ((float)min * (1.0f / 60.0f))) * 10; // heading is in 0.1deg units
    } else {
        magneticDeclination = 0.0f; // TODO investigate if this is actually needed if there is no mag sensor or if the value stored in the config should be used.
    }

    return true;
}
Exemplo n.º 6
0
void updateAccelerationReadings(rollAndPitchTrims_t *rollAndPitchTrims)
{
    int16_t accADCRaw[XYZ_AXIS_COUNT];

    if (!acc.read(accADCRaw)) {
        return;
    }

    for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
        if (debugMode == DEBUG_ACCELEROMETER) debug[axis] = accADCRaw[axis];
        accSmooth[axis] = accADCRaw[axis];
    }

    if (accLpfCutHz) {
        if (!accFilterInitialised) {
            if (accTargetLooptime) {  /* Initialisation needs to happen once sample rate is known */
                for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
                    biquadFilterInitLPF(&accFilter[axis], accLpfCutHz, accTargetLooptime);
                }
                accFilterInitialised = true;
            }
        }

        if (accFilterInitialised) {
            for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
                accSmooth[axis] = lrintf(biquadFilterApply(&accFilter[axis], (float)accSmooth[axis]));
            }
        }
    }

    alignSensors(accSmooth, accSmooth, accAlign);

    if (!isAccelerationCalibrationComplete()) {
        performAcclerationCalibration(rollAndPitchTrims);
    }

    if (feature(FEATURE_INFLIGHT_ACC_CAL)) {
        performInflightAccelerationCalibration(rollAndPitchTrims);
    }

    applyAccelerationTrims(accelerationTrims);
}
Exemplo n.º 7
0
bool sensorsAutodetect(sensorAlignmentConfig_t *sensorAlignmentConfig, uint16_t gyroLpf, uint8_t accHardwareToUse, int16_t magDeclinationFromConfig)
{
    int16_t deg, min;
    memset(&acc, sizeof(acc), 0);
    memset(&gyro, sizeof(gyro), 0);

    if (!detectGyro(gyroLpf)) {
        return false;
    }
    detectAcc(accHardwareToUse);
    detectBaro();

    reconfigureAlignment(sensorAlignmentConfig);

    // Now time to init things, acc first
    if (sensors(SENSOR_ACC))
        acc.init();
    // this is safe because either mpu6050 or mpu3050 or lg3d20 sets it, and in case of fail, we never get here.
    gyro.init();

#ifdef MAG
    if (hmc5883lDetect()) {
        magAlign = CW180_DEG; // default NAZE alignment
    } else {
        sensorsClear(SENSOR_MAG);
    }
#endif

    // FIXME extract to a method to reduce dependencies, maybe move to sensors_compass.c
    if (sensors(SENSOR_MAG)) {
        // calculate magnetic declination
        deg = magDeclinationFromConfig / 100;
        min = magDeclinationFromConfig % 100;

        magneticDeclination = (deg + ((float)min * (1.0f / 60.0f))) * 10; // heading is in 0.1deg units
    } else {
        magneticDeclination = 0.0f; // TODO investigate if this is actually needed if there is no mag sensor or if the value stored in the config should be used.
    }

    return true;
}
Exemplo n.º 8
0
static void detectAcc(accelerationSensor_e accHardwareToUse)
{
    accelerationSensor_e accHardware;

    #ifdef USE_ACC_ADXL345
    drv_adxl345_config_t acc_params;
#endif

retry:
    accAlign = ALIGN_DEFAULT;

    switch (accHardwareToUse) {
        case ACC_DEFAULT:
            ; // fallthrough
        case ACC_ADXL345: // ADXL345
#ifdef USE_ACC_ADXL345
            acc_params.useFifo = false;
            acc_params.dataRate = 800; // unused currently
#ifdef NAZE
            if (hardwareRevision < NAZE32_REV5 && adxl345Detect(&acc_params, &acc)) {
#else
            if (adxl345Detect(&acc_params, &acc)) {
#endif
#ifdef ACC_ADXL345_ALIGN
                accAlign = ACC_ADXL345_ALIGN;
#endif
                accHardware = ACC_ADXL345;
                break;
            }
#endif
            ; // fallthrough
        case ACC_LSM303DLHC:
#ifdef USE_ACC_LSM303DLHC
            if (lsm303dlhcAccDetect(&acc)) {
#ifdef ACC_LSM303DLHC_ALIGN
                accAlign = ACC_LSM303DLHC_ALIGN;
#endif
                accHardware = ACC_LSM303DLHC;
                break;
            }
#endif
            ; // fallthrough
        case ACC_MPU6050: // MPU6050
#ifdef USE_ACC_MPU6050
            if (mpu6050AccDetect(selectMPU6050Config(), &acc)) {
#ifdef ACC_MPU6050_ALIGN
                accAlign = ACC_MPU6050_ALIGN;
#endif
                accHardware = ACC_MPU6050;
                break;
            }
#endif
            ; // fallthrough
        case ACC_MMA8452: // MMA8452
#ifdef USE_ACC_MMA8452
#ifdef NAZE
            // Not supported with this frequency
            if (hardwareRevision < NAZE32_REV5 && mma8452Detect(&acc)) {
#else
            if (mma8452Detect(&acc)) {
#endif
#ifdef ACC_MMA8452_ALIGN
                accAlign = ACC_MMA8452_ALIGN;
#endif
                accHardware = ACC_MMA8452;
                break;
            }
#endif
            ; // fallthrough
        case ACC_BMA280: // BMA280
#ifdef USE_ACC_BMA280
            if (bma280Detect(&acc)) {
#ifdef ACC_BMA280_ALIGN
                accAlign = ACC_BMA280_ALIGN;
#endif
                accHardware = ACC_BMA280;
                break;
            }
#endif
            ; // fallthrough
        case ACC_SPI_MPU6000:
#ifdef USE_ACC_SPI_MPU6000
            if (mpu6000SpiAccDetect(&acc)) {
#ifdef ACC_SPI_MPU6000_ALIGN
                accAlign = ACC_SPI_MPU6000_ALIGN;
#endif
                accHardware = ACC_SPI_MPU6000;
                break;
            }
#endif
            ; // fallthrough
        case ACC_SPI_MPU6500:
#ifdef USE_ACC_SPI_MPU6500
#ifdef NAZE
            if (hardwareRevision == NAZE32_SP && mpu6500SpiAccDetect(&acc)) {
#else
            if (mpu6500SpiAccDetect(&acc)) {
#endif
#ifdef ACC_SPI_MPU6500_ALIGN
                accAlign = ACC_SPI_MPU6500_ALIGN;
#endif
                accHardware = ACC_SPI_MPU6500;
                break;
            }
#endif
            ; // fallthrough
        case ACC_FAKE:
#ifdef USE_FAKE_ACC
            if (fakeAccDetect(&acc)) {
                accHardware = ACC_FAKE;
                break;
            }
#endif
            ; // fallthrough
        case ACC_NONE: // disable ACC
            accHardware = ACC_NONE;
            break;

    }

    // Found anything? Check if error or ACC is really missing.
    if (accHardware == ACC_NONE && accHardwareToUse != ACC_DEFAULT && accHardwareToUse != ACC_NONE) {
        // Nothing was found and we have a forced sensor that isn't present.
        accHardwareToUse = ACC_DEFAULT;
        goto retry;
    }


    if (accHardware == ACC_NONE) {
        return;
    }

    detectedSensors[SENSOR_INDEX_ACC] = accHardware;
    sensorsSet(SENSOR_ACC);
}

static void detectBaro(baroSensor_e baroHardwareToUse)
{
#ifdef BARO
    // Detect what pressure sensors are available. baro->update() is set to sensor-specific update function

    baroSensor_e baroHardware = baroHardwareToUse;

#ifdef USE_BARO_BMP085

    const bmp085Config_t *bmp085Config = NULL;

#if defined(BARO_XCLR_GPIO) && defined(BARO_EOC_GPIO)
    static const bmp085Config_t defaultBMP085Config = {
            .gpioAPB2Peripherals = BARO_APB2_PERIPHERALS,
            .xclrGpioPin = BARO_XCLR_PIN,
            .xclrGpioPort = BARO_XCLR_GPIO,
            .eocGpioPin = BARO_EOC_PIN,
            .eocGpioPort = BARO_EOC_GPIO
    };
    bmp085Config = &defaultBMP085Config;
#endif

#ifdef NAZE
    if (hardwareRevision == NAZE32) {
        bmp085Disable(bmp085Config);
    }
#endif

#endif

    switch (baroHardware) {
        case BARO_DEFAULT:
            ; // fallthough

        case BARO_MS5611:
#ifdef USE_BARO_MS5611
            if (ms5611Detect(&baro)) {
                baroHardware = BARO_MS5611;
                break;
            }
#endif
            ; // fallthough
        case BARO_BMP085:
#ifdef USE_BARO_BMP085
            if (bmp085Detect(bmp085Config, &baro)) {
                baroHardware = BARO_BMP085;
                break;
            }
#endif
        case BARO_NONE:
            baroHardware = BARO_NONE;
            break;
    }

    if (baroHardware == BARO_NONE) {
        return;
    }

    detectedSensors[SENSOR_INDEX_BARO] = baroHardware;
    sensorsSet(SENSOR_BARO);
#endif
}

static void detectMag(magSensor_e magHardwareToUse)
{
    magSensor_e magHardware;

#ifdef USE_MAG_HMC5883
    const hmc5883Config_t *hmc5883Config = 0;

#ifdef NAZE
    static const hmc5883Config_t nazeHmc5883Config_v1_v4 = {
            .gpioAPB2Peripherals = RCC_APB2Periph_GPIOB,
            .gpioPin = Pin_12,
            .gpioPort = GPIOB,

            /* Disabled for v4 needs more work.
            .exti_port_source = GPIO_PortSourceGPIOB,
            .exti_pin_source = GPIO_PinSource12,
            .exti_line = EXTI_Line12,
            .exti_irqn = EXTI15_10_IRQn
            */
    };
    static const hmc5883Config_t nazeHmc5883Config_v5 = {
            .gpioAPB2Peripherals = RCC_APB2Periph_GPIOC,
            .gpioPin = Pin_14,
            .gpioPort = GPIOC,
            .exti_port_source = GPIO_PortSourceGPIOC,
            .exti_line = EXTI_Line14,
            .exti_pin_source = GPIO_PinSource14,
            .exti_irqn = EXTI15_10_IRQn
    };
    if (hardwareRevision < NAZE32_REV5) {
        hmc5883Config = &nazeHmc5883Config_v1_v4;
    } else {
        hmc5883Config = &nazeHmc5883Config_v5;
    }
#endif

#ifdef SPRACINGF3
    static const hmc5883Config_t spRacingF3Hmc5883Config = {
        .gpioAHBPeripherals = RCC_AHBPeriph_GPIOC,
        .gpioPin = Pin_14,
        .gpioPort = GPIOC,
        .exti_port_source = EXTI_PortSourceGPIOC,
        .exti_pin_source = EXTI_PinSource14,
        .exti_line = EXTI_Line14,
        .exti_irqn = EXTI15_10_IRQn
    };

    hmc5883Config = &spRacingF3Hmc5883Config;
#endif

#endif

retry:

    magAlign = ALIGN_DEFAULT;

    switch(magHardwareToUse) {
        case MAG_DEFAULT:
            ; // fallthrough

        case MAG_HMC5883:
#ifdef USE_MAG_HMC5883
            if (hmc5883lDetect(&mag, hmc5883Config)) {
#ifdef MAG_HMC5883_ALIGN
                magAlign = MAG_HMC5883_ALIGN;
#endif
                magHardware = MAG_HMC5883;
                break;
            }
#endif
            ; // fallthrough

        case MAG_AK8975:
#ifdef USE_MAG_AK8975
            if (ak8975detect(&mag)) {
#ifdef MAG_AK8975_ALIGN
                magAlign = MAG_AK8975_ALIGN;
#endif
                magHardware = MAG_AK8975;
                break;
            }
#endif
            ; // fallthrough

        case MAG_NONE:
            magHardware = MAG_NONE;
            break;
    }

    if (magHardware == MAG_NONE && magHardwareToUse != MAG_DEFAULT && magHardwareToUse != MAG_NONE) {
        // Nothing was found and we have a forced sensor that isn't present.
        magHardwareToUse = MAG_DEFAULT;
        goto retry;
    }

    if (magHardware == MAG_NONE) {
        return;
    }

    detectedSensors[SENSOR_INDEX_MAG] = magHardware;
    sensorsSet(SENSOR_MAG);
}

void reconfigureAlignment(sensorAlignmentConfig_t *sensorAlignmentConfig)
{
    if (sensorAlignmentConfig->gyro_align != ALIGN_DEFAULT) {
        gyroAlign = sensorAlignmentConfig->gyro_align;
    }
    if (sensorAlignmentConfig->acc_align != ALIGN_DEFAULT) {
        accAlign = sensorAlignmentConfig->acc_align;
    }
    if (sensorAlignmentConfig->mag_align != ALIGN_DEFAULT) {
        magAlign = sensorAlignmentConfig->mag_align;
    }
}

bool sensorsAutodetect(sensorAlignmentConfig_t *sensorAlignmentConfig, uint16_t gyroLpf, uint8_t accHardwareToUse, uint8_t magHardwareToUse, uint8_t baroHardwareToUse, int16_t magDeclinationFromConfig)
{
    int16_t deg, min;

    memset(&acc, 0, sizeof(acc));
    memset(&gyro, 0, sizeof(gyro));

    if (!detectGyro(gyroLpf)) {
        return false;
    }
    detectAcc(accHardwareToUse);
    detectBaro(baroHardwareToUse);


    // Now time to init things, acc first
    if (sensors(SENSOR_ACC))
        acc.init();
    // this is safe because either mpu6050 or mpu3050 or lg3d20 sets it, and in case of fail, we never get here.
    gyro.init();

    detectMag(magHardwareToUse);

    reconfigureAlignment(sensorAlignmentConfig);

    // FIXME extract to a method to reduce dependencies, maybe move to sensors_compass.c
    if (sensors(SENSOR_MAG)) {
        // calculate magnetic declination
        deg = magDeclinationFromConfig / 100;
        min = magDeclinationFromConfig % 100;

        magneticDeclination = (deg + ((float)min * (1.0f / 60.0f))) * 10; // heading is in 0.1deg units
    } else {
        magneticDeclination = 0.0f; // TODO investigate if this is actually needed if there is no mag sensor or if the value stored in the config should be used.
    }

    return true;
}