Exemplo n.º 1
0
bool MipsDAGToDAGISel::ReplaceUsesWithZeroReg(MachineRegisterInfo *MRI,
                                              const MachineInstr& MI) {
  unsigned DstReg = 0, ZeroReg = 0;

  // Check if MI is "addiu $dst, $zero, 0" or "daddiu $dst, $zero, 0".
  if ((MI.getOpcode() == Mips::ADDiu) &&
      (MI.getOperand(1).getReg() == Mips::ZERO) &&
      (MI.getOperand(2).getImm() == 0)) {
    DstReg = MI.getOperand(0).getReg();
    ZeroReg = Mips::ZERO;
  } else if ((MI.getOpcode() == Mips::DADDiu) &&
             (MI.getOperand(1).getReg() == Mips::ZERO_64) &&
             (MI.getOperand(2).getImm() == 0)) {
    DstReg = MI.getOperand(0).getReg();
    ZeroReg = Mips::ZERO_64;
  }

  if (!DstReg)
    return false;

  // Replace uses with ZeroReg.
  for (MachineRegisterInfo::use_iterator U = MRI->use_begin(DstReg),
       E = MRI->use_end(); U != E; ++U) {
    MachineOperand &MO = U.getOperand();
    MachineInstr *MI = MO.getParent();

    // Do not replace if it is a phi's operand or is tied to def operand.
    if (MI->isPHI() || MI->isRegTiedToDefOperand(U.getOperandNo()))
      continue;

    MO.setReg(ZeroReg);
  }

  return true;
}
Exemplo n.º 2
0
bool MipsSEDAGToDAGISel::replaceUsesWithZeroReg(MachineRegisterInfo *MRI,
                                                const MachineInstr& MI) {
  unsigned DstReg = 0, ZeroReg = 0;

  // Check if MI is "addiu $dst, $zero, 0" or "daddiu $dst, $zero, 0".
  if ((MI.getOpcode() == Mips::ADDiu) &&
      (MI.getOperand(1).getReg() == Mips::ZERO) &&
      (MI.getOperand(2).getImm() == 0)) {
    DstReg = MI.getOperand(0).getReg();
    ZeroReg = Mips::ZERO;
  } else if ((MI.getOpcode() == Mips::DADDiu) &&
             (MI.getOperand(1).getReg() == Mips::ZERO_64) &&
             (MI.getOperand(2).getImm() == 0)) {
    DstReg = MI.getOperand(0).getReg();
    ZeroReg = Mips::ZERO_64;
  }

  if (!DstReg)
    return false;

  // Replace uses with ZeroReg.
  for (MachineRegisterInfo::use_iterator U = MRI->use_begin(DstReg),
       E = MRI->use_end(); U != E;) {
    MachineOperand &MO = *U;
    unsigned OpNo = U.getOperandNo();
    MachineInstr *MI = MO.getParent();
    ++U;

    // Do not replace if it is a phi's operand or is tied to def operand.
    if (MI->isPHI() || MI->isRegTiedToDefOperand(OpNo) || MI->isPseudo())
      continue;

    // Also, we have to check that the register class of the operand
    // contains the zero register.
    if (!MRI->getRegClass(MO.getReg())->contains(ZeroReg))
      continue;

    MO.setReg(ZeroReg);
  }

  return true;
}
Exemplo n.º 3
0
void SIInstrInfo::moveToVALU(MachineInstr &TopInst) const {
  SmallVector<MachineInstr *, 128> Worklist;
  Worklist.push_back(&TopInst);

  while (!Worklist.empty()) {
    MachineInstr *Inst = Worklist.pop_back_val();
    unsigned NewOpcode = getVALUOp(*Inst);
    if (NewOpcode == AMDGPU::INSTRUCTION_LIST_END)
      continue;

    MachineRegisterInfo &MRI = Inst->getParent()->getParent()->getRegInfo();

    // Use the new VALU Opcode.
    const MCInstrDesc &NewDesc = get(NewOpcode);
    Inst->setDesc(NewDesc);

    // Remove any references to SCC. Vector instructions can't read from it, and
    // We're just about to add the implicit use / defs of VCC, and we don't want
    // both.
    for (unsigned i = Inst->getNumOperands() - 1; i > 0; --i) {
      MachineOperand &Op = Inst->getOperand(i);
      if (Op.isReg() && Op.getReg() == AMDGPU::SCC)
        Inst->RemoveOperand(i);
    }

    // Add the implict and explicit register definitions.
    if (NewDesc.ImplicitUses) {
      for (unsigned i = 0; NewDesc.ImplicitUses[i]; ++i) {
        unsigned Reg = NewDesc.ImplicitUses[i];
        Inst->addOperand(MachineOperand::CreateReg(Reg, false, true));
      }
    }

    if (NewDesc.ImplicitDefs) {
      for (unsigned i = 0; NewDesc.ImplicitDefs[i]; ++i) {
        unsigned Reg = NewDesc.ImplicitDefs[i];
        Inst->addOperand(MachineOperand::CreateReg(Reg, true, true));
      }
    }

    legalizeOperands(Inst);

    // Update the destination register class.
    const TargetRegisterClass *NewDstRC = getOpRegClass(*Inst, 0);

    switch (Inst->getOpcode()) {
      // For target instructions, getOpRegClass just returns the virtual
      // register class associated with the operand, so we need to find an
      // equivalent VGPR register class in order to move the instruction to the
      // VALU.
    case AMDGPU::COPY:
    case AMDGPU::PHI:
    case AMDGPU::REG_SEQUENCE:
      if (RI.hasVGPRs(NewDstRC))
        continue;
      NewDstRC = RI.getEquivalentVGPRClass(NewDstRC);
      if (!NewDstRC)
        continue;
      break;
    default:
      break;
    }

    unsigned DstReg = Inst->getOperand(0).getReg();
    unsigned NewDstReg = MRI.createVirtualRegister(NewDstRC);
    MRI.replaceRegWith(DstReg, NewDstReg);

    for (MachineRegisterInfo::use_iterator I = MRI.use_begin(NewDstReg),
           E = MRI.use_end(); I != E; ++I) {
      MachineInstr &UseMI = *I;
      if (!canReadVGPR(UseMI, I.getOperandNo())) {
        Worklist.push_back(&UseMI);
      }
    }
  }
}
Exemplo n.º 4
0
bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) {
  MachineRegisterInfo &MRI = MF.getRegInfo();
  const SIInstrInfo *TII =
      static_cast<const SIInstrInfo *>(MF.getSubtarget().getInstrInfo());
  const SIRegisterInfo &TRI = TII->getRegisterInfo();

  for (MachineFunction::iterator BI = MF.begin(), BE = MF.end();
                                                  BI != BE; ++BI) {

    MachineBasicBlock &MBB = *BI;
    MachineBasicBlock::iterator I, Next;
    for (I = MBB.begin(); I != MBB.end(); I = Next) {
      Next = std::next(I);
      MachineInstr &MI = *I;

      if (!isSafeToFold(MI.getOpcode()))
        continue;

      unsigned OpSize = TII->getOpSize(MI, 1);
      MachineOperand &OpToFold = MI.getOperand(1);
      bool FoldingImm = OpToFold.isImm();

      // FIXME: We could also be folding things like FrameIndexes and
      // TargetIndexes.
      if (!FoldingImm && !OpToFold.isReg())
        continue;

      // Folding immediates with more than one use will increase program size.
      // FIXME: This will also reduce register usage, which may be better
      // in some cases.  A better heuristic is needed.
      if (FoldingImm && !TII->isInlineConstant(OpToFold, OpSize) &&
          !MRI.hasOneUse(MI.getOperand(0).getReg()))
        continue;

      // FIXME: Fold operands with subregs.
      if (OpToFold.isReg() &&
          (!TargetRegisterInfo::isVirtualRegister(OpToFold.getReg()) ||
           OpToFold.getSubReg()))
        continue;


      // We need mutate the operands of new mov instructions to add implicit
      // uses of EXEC, but adding them invalidates the use_iterator, so defer
      // this.
      SmallVector<MachineInstr *, 4> CopiesToReplace;

      std::vector<FoldCandidate> FoldList;
      for (MachineRegisterInfo::use_iterator
           Use = MRI.use_begin(MI.getOperand(0).getReg()), E = MRI.use_end();
           Use != E; ++Use) {

        MachineInstr *UseMI = Use->getParent();

        foldOperand(OpToFold, UseMI, Use.getOperandNo(), FoldList,
                    CopiesToReplace, TII, TRI, MRI);
      }

      // Make sure we add EXEC uses to any new v_mov instructions created.
      for (MachineInstr *Copy : CopiesToReplace)
        Copy->addImplicitDefUseOperands(MF);

      for (FoldCandidate &Fold : FoldList) {
        if (updateOperand(Fold, TRI)) {
          // Clear kill flags.
          if (!Fold.isImm()) {
            assert(Fold.OpToFold && Fold.OpToFold->isReg());
            Fold.OpToFold->setIsKill(false);
          }
          DEBUG(dbgs() << "Folded source from " << MI << " into OpNo " <<
                Fold.UseOpNo << " of " << *Fold.UseMI << '\n');
        }
      }
    }
  }
  return false;
}
Exemplo n.º 5
0
static void foldOperand(MachineOperand &OpToFold, MachineInstr *UseMI,
                        unsigned UseOpIdx,
                        std::vector<FoldCandidate> &FoldList,
                        SmallVectorImpl<MachineInstr *> &CopiesToReplace,
                        const SIInstrInfo *TII, const SIRegisterInfo &TRI,
                        MachineRegisterInfo &MRI) {
  const MachineOperand &UseOp = UseMI->getOperand(UseOpIdx);

  // FIXME: Fold operands with subregs.
  if (UseOp.isReg() && ((UseOp.getSubReg() && OpToFold.isReg()) ||
      UseOp.isImplicit())) {
    return;
  }

  bool FoldingImm = OpToFold.isImm();
  APInt Imm;

  if (FoldingImm) {
    unsigned UseReg = UseOp.getReg();
    const TargetRegisterClass *UseRC
      = TargetRegisterInfo::isVirtualRegister(UseReg) ?
      MRI.getRegClass(UseReg) :
      TRI.getPhysRegClass(UseReg);

    Imm = APInt(64, OpToFold.getImm());

    const MCInstrDesc &FoldDesc = TII->get(OpToFold.getParent()->getOpcode());
    const TargetRegisterClass *FoldRC =
        TRI.getRegClass(FoldDesc.OpInfo[0].RegClass);

    // Split 64-bit constants into 32-bits for folding.
    if (FoldRC->getSize() == 8 && UseOp.getSubReg()) {
      if (UseRC->getSize() != 8)
        return;

      if (UseOp.getSubReg() == AMDGPU::sub0) {
        Imm = Imm.getLoBits(32);
      } else {
        assert(UseOp.getSubReg() == AMDGPU::sub1);
        Imm = Imm.getHiBits(32);
      }
    }

    // In order to fold immediates into copies, we need to change the
    // copy to a MOV.
    if (UseMI->getOpcode() == AMDGPU::COPY) {
      unsigned DestReg = UseMI->getOperand(0).getReg();
      const TargetRegisterClass *DestRC
        = TargetRegisterInfo::isVirtualRegister(DestReg) ?
        MRI.getRegClass(DestReg) :
        TRI.getPhysRegClass(DestReg);

      unsigned MovOp = TII->getMovOpcode(DestRC);
      if (MovOp == AMDGPU::COPY)
        return;

      UseMI->setDesc(TII->get(MovOp));
      CopiesToReplace.push_back(UseMI);
    }
  }

  // Special case for REG_SEQUENCE: We can't fold literals into
  // REG_SEQUENCE instructions, so we have to fold them into the
  // uses of REG_SEQUENCE.
  if (UseMI->getOpcode() == AMDGPU::REG_SEQUENCE) {
    unsigned RegSeqDstReg = UseMI->getOperand(0).getReg();
    unsigned RegSeqDstSubReg = UseMI->getOperand(UseOpIdx + 1).getImm();

    for (MachineRegisterInfo::use_iterator
         RSUse = MRI.use_begin(RegSeqDstReg),
         RSE = MRI.use_end(); RSUse != RSE; ++RSUse) {

      MachineInstr *RSUseMI = RSUse->getParent();
      if (RSUse->getSubReg() != RegSeqDstSubReg)
        continue;

      foldOperand(OpToFold, RSUseMI, RSUse.getOperandNo(), FoldList,
                  CopiesToReplace, TII, TRI, MRI);
    }
    return;
  }

  const MCInstrDesc &UseDesc = UseMI->getDesc();

  // Don't fold into target independent nodes.  Target independent opcodes
  // don't have defined register classes.
  if (UseDesc.isVariadic() ||
      UseDesc.OpInfo[UseOpIdx].RegClass == -1)
    return;

  if (FoldingImm) {
    MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue());
    tryAddToFoldList(FoldList, UseMI, UseOpIdx, &ImmOp, TII);
    return;
  }

  tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII);

  // FIXME: We could try to change the instruction from 64-bit to 32-bit
  // to enable more folding opportunites.  The shrink operands pass
  // already does this.
  return;
}
Exemplo n.º 6
0
void SIFoldOperands::foldInstOperand(MachineInstr &MI,
                                     MachineOperand &OpToFold) const {
  // We need mutate the operands of new mov instructions to add implicit
  // uses of EXEC, but adding them invalidates the use_iterator, so defer
  // this.
  SmallVector<MachineInstr *, 4> CopiesToReplace;
  SmallVector<FoldCandidate, 4> FoldList;
  MachineOperand &Dst = MI.getOperand(0);

  bool FoldingImm = OpToFold.isImm() || OpToFold.isFI();
  if (FoldingImm) {
    unsigned NumLiteralUses = 0;
    MachineOperand *NonInlineUse = nullptr;
    int NonInlineUseOpNo = -1;

    MachineRegisterInfo::use_iterator NextUse, NextInstUse;
    for (MachineRegisterInfo::use_iterator
           Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end();
         Use != E; Use = NextUse) {
      NextUse = std::next(Use);
      MachineInstr *UseMI = Use->getParent();
      unsigned OpNo = Use.getOperandNo();

      // Folding the immediate may reveal operations that can be constant
      // folded or replaced with a copy. This can happen for example after
      // frame indices are lowered to constants or from splitting 64-bit
      // constants.
      //
      // We may also encounter cases where one or both operands are
      // immediates materialized into a register, which would ordinarily not
      // be folded due to multiple uses or operand constraints.

      if (OpToFold.isImm() && tryConstantFoldOp(*MRI, TII, UseMI, &OpToFold)) {
        DEBUG(dbgs() << "Constant folded " << *UseMI <<'\n');

        // Some constant folding cases change the same immediate's use to a new
        // instruction, e.g. and x, 0 -> 0. Make sure we re-visit the user
        // again. The same constant folded instruction could also have a second
        // use operand.
        NextUse = MRI->use_begin(Dst.getReg());
        continue;
      }

      // Try to fold any inline immediate uses, and then only fold other
      // constants if they have one use.
      //
      // The legality of the inline immediate must be checked based on the use
      // operand, not the defining instruction, because 32-bit instructions
      // with 32-bit inline immediate sources may be used to materialize
      // constants used in 16-bit operands.
      //
      // e.g. it is unsafe to fold:
      //  s_mov_b32 s0, 1.0    // materializes 0x3f800000
      //  v_add_f16 v0, v1, s0 // 1.0 f16 inline immediate sees 0x00003c00

      // Folding immediates with more than one use will increase program size.
      // FIXME: This will also reduce register usage, which may be better
      // in some cases. A better heuristic is needed.
      if (isInlineConstantIfFolded(TII, *UseMI, OpNo, OpToFold)) {
        foldOperand(OpToFold, UseMI, OpNo, FoldList, CopiesToReplace);
      } else {
        if (++NumLiteralUses == 1) {
          NonInlineUse = &*Use;
          NonInlineUseOpNo = OpNo;
        }
      }
    }

    if (NumLiteralUses == 1) {
      MachineInstr *UseMI = NonInlineUse->getParent();
      foldOperand(OpToFold, UseMI, NonInlineUseOpNo, FoldList, CopiesToReplace);
    }
  } else {
    // Folding register.
    for (MachineRegisterInfo::use_iterator
           Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end();
         Use != E; ++Use) {
      MachineInstr *UseMI = Use->getParent();

      foldOperand(OpToFold, UseMI, Use.getOperandNo(),
                  FoldList, CopiesToReplace);
    }
  }

  MachineFunction *MF = MI.getParent()->getParent();
  // Make sure we add EXEC uses to any new v_mov instructions created.
  for (MachineInstr *Copy : CopiesToReplace)
    Copy->addImplicitDefUseOperands(*MF);

  for (FoldCandidate &Fold : FoldList) {
    if (updateOperand(Fold, *TRI)) {
      // Clear kill flags.
      if (Fold.isReg()) {
        assert(Fold.OpToFold && Fold.OpToFold->isReg());
        // FIXME: Probably shouldn't bother trying to fold if not an
        // SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR
        // copies.
        MRI->clearKillFlags(Fold.OpToFold->getReg());
      }
      DEBUG(dbgs() << "Folded source from " << MI << " into OpNo " <<
            static_cast<int>(Fold.UseOpNo) << " of " << *Fold.UseMI << '\n');
      tryFoldInst(TII, Fold.UseMI);
    } else if (Fold.isCommuted()) {
      // Restoring instruction's original operand order if fold has failed.
      TII->commuteInstruction(*Fold.UseMI, false);
    }
  }
}
Exemplo n.º 7
0
void SIFoldOperands::foldOperand(
  MachineOperand &OpToFold,
  MachineInstr *UseMI,
  unsigned UseOpIdx,
  SmallVectorImpl<FoldCandidate> &FoldList,
  SmallVectorImpl<MachineInstr *> &CopiesToReplace) const {
  const MachineOperand &UseOp = UseMI->getOperand(UseOpIdx);

  if (!isUseSafeToFold(TII, *UseMI, UseOp))
    return;

  // FIXME: Fold operands with subregs.
  if (UseOp.isReg() && OpToFold.isReg()) {
    if (UseOp.isImplicit() || UseOp.getSubReg() != AMDGPU::NoSubRegister)
      return;

    // Don't fold subregister extracts into tied operands, only if it is a full
    // copy since a subregister use tied to a full register def doesn't really
    // make sense. e.g. don't fold:
    //
    // %vreg1 = COPY %vreg0:sub1
    // %vreg2<tied3> = V_MAC_{F16, F32} %vreg3, %vreg4, %vreg1<tied0>
    //
    //  into
    // %vreg2<tied3> = V_MAC_{F16, F32} %vreg3, %vreg4, %vreg0:sub1<tied0>
    if (UseOp.isTied() && OpToFold.getSubReg() != AMDGPU::NoSubRegister)
      return;
  }

  // Special case for REG_SEQUENCE: We can't fold literals into
  // REG_SEQUENCE instructions, so we have to fold them into the
  // uses of REG_SEQUENCE.
  if (UseMI->isRegSequence()) {
    unsigned RegSeqDstReg = UseMI->getOperand(0).getReg();
    unsigned RegSeqDstSubReg = UseMI->getOperand(UseOpIdx + 1).getImm();

    for (MachineRegisterInfo::use_iterator
           RSUse = MRI->use_begin(RegSeqDstReg), RSE = MRI->use_end();
         RSUse != RSE; ++RSUse) {

      MachineInstr *RSUseMI = RSUse->getParent();
      if (RSUse->getSubReg() != RegSeqDstSubReg)
        continue;

      foldOperand(OpToFold, RSUseMI, RSUse.getOperandNo(), FoldList,
                  CopiesToReplace);
    }

    return;
  }


  bool FoldingImm = OpToFold.isImm();

  // In order to fold immediates into copies, we need to change the
  // copy to a MOV.
  if (FoldingImm && UseMI->isCopy()) {
    unsigned DestReg = UseMI->getOperand(0).getReg();
    const TargetRegisterClass *DestRC
      = TargetRegisterInfo::isVirtualRegister(DestReg) ?
      MRI->getRegClass(DestReg) :
      TRI->getPhysRegClass(DestReg);

    unsigned MovOp = TII->getMovOpcode(DestRC);
    if (MovOp == AMDGPU::COPY)
      return;

    UseMI->setDesc(TII->get(MovOp));
    CopiesToReplace.push_back(UseMI);
  } else {
    const MCInstrDesc &UseDesc = UseMI->getDesc();

    // Don't fold into target independent nodes.  Target independent opcodes
    // don't have defined register classes.
    if (UseDesc.isVariadic() ||
        UseDesc.OpInfo[UseOpIdx].RegClass == -1)
      return;
  }

  if (!FoldingImm) {
    tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII);

    // FIXME: We could try to change the instruction from 64-bit to 32-bit
    // to enable more folding opportunites.  The shrink operands pass
    // already does this.
    return;
  }


  const MCInstrDesc &FoldDesc = OpToFold.getParent()->getDesc();
  const TargetRegisterClass *FoldRC =
    TRI->getRegClass(FoldDesc.OpInfo[0].RegClass);


  // Split 64-bit constants into 32-bits for folding.
  if (UseOp.getSubReg() && AMDGPU::getRegBitWidth(FoldRC->getID()) == 64) {
    unsigned UseReg = UseOp.getReg();
    const TargetRegisterClass *UseRC
      = TargetRegisterInfo::isVirtualRegister(UseReg) ?
      MRI->getRegClass(UseReg) :
      TRI->getPhysRegClass(UseReg);

    if (AMDGPU::getRegBitWidth(UseRC->getID()) != 64)
      return;

    APInt Imm(64, OpToFold.getImm());
    if (UseOp.getSubReg() == AMDGPU::sub0) {
      Imm = Imm.getLoBits(32);
    } else {
      assert(UseOp.getSubReg() == AMDGPU::sub1);
      Imm = Imm.getHiBits(32);
    }

    MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue());
    tryAddToFoldList(FoldList, UseMI, UseOpIdx, &ImmOp, TII);
    return;
  }



  tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII);
}
Exemplo n.º 8
0
bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) {
  if (skipFunction(*MF.getFunction()))
    return false;

  const SISubtarget &ST = MF.getSubtarget<SISubtarget>();

  MachineRegisterInfo &MRI = MF.getRegInfo();
  const SIInstrInfo *TII = ST.getInstrInfo();
  const SIRegisterInfo &TRI = TII->getRegisterInfo();

  for (MachineFunction::iterator BI = MF.begin(), BE = MF.end();
                                                  BI != BE; ++BI) {

    MachineBasicBlock &MBB = *BI;
    MachineBasicBlock::iterator I, Next;
    for (I = MBB.begin(); I != MBB.end(); I = Next) {
      Next = std::next(I);
      MachineInstr &MI = *I;

      if (!isSafeToFold(MI))
        continue;

      unsigned OpSize = TII->getOpSize(MI, 1);
      MachineOperand &OpToFold = MI.getOperand(1);
      bool FoldingImm = OpToFold.isImm() || OpToFold.isFI();

      // FIXME: We could also be folding things like FrameIndexes and
      // TargetIndexes.
      if (!FoldingImm && !OpToFold.isReg())
        continue;

      // Folding immediates with more than one use will increase program size.
      // FIXME: This will also reduce register usage, which may be better
      // in some cases.  A better heuristic is needed.
      if (FoldingImm && !TII->isInlineConstant(OpToFold, OpSize) &&
          !MRI.hasOneUse(MI.getOperand(0).getReg()))
        continue;

      if (OpToFold.isReg() &&
          !TargetRegisterInfo::isVirtualRegister(OpToFold.getReg()))
        continue;

      // Prevent folding operands backwards in the function. For example,
      // the COPY opcode must not be replaced by 1 in this example:
      //
      //    %vreg3<def> = COPY %VGPR0; VGPR_32:%vreg3
      //    ...
      //    %VGPR0<def> = V_MOV_B32_e32 1, %EXEC<imp-use>
      MachineOperand &Dst = MI.getOperand(0);
      if (Dst.isReg() &&
          !TargetRegisterInfo::isVirtualRegister(Dst.getReg()))
        continue;

      // We need mutate the operands of new mov instructions to add implicit
      // uses of EXEC, but adding them invalidates the use_iterator, so defer
      // this.
      SmallVector<MachineInstr *, 4> CopiesToReplace;

      std::vector<FoldCandidate> FoldList;
      for (MachineRegisterInfo::use_iterator
           Use = MRI.use_begin(MI.getOperand(0).getReg()), E = MRI.use_end();
           Use != E; ++Use) {

        MachineInstr *UseMI = Use->getParent();

        foldOperand(OpToFold, UseMI, Use.getOperandNo(), FoldList,
                    CopiesToReplace, TII, TRI, MRI);
      }

      // Make sure we add EXEC uses to any new v_mov instructions created.
      for (MachineInstr *Copy : CopiesToReplace)
        Copy->addImplicitDefUseOperands(MF);

      for (FoldCandidate &Fold : FoldList) {
        if (updateOperand(Fold, TRI)) {
          // Clear kill flags.
          if (Fold.isReg()) {
            assert(Fold.OpToFold && Fold.OpToFold->isReg());
            // FIXME: Probably shouldn't bother trying to fold if not an
            // SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR
            // copies.
            MRI.clearKillFlags(Fold.OpToFold->getReg());
          }
          DEBUG(dbgs() << "Folded source from " << MI << " into OpNo " <<
                Fold.UseOpNo << " of " << *Fold.UseMI << '\n');

          // Folding the immediate may reveal operations that can be constant
          // folded or replaced with a copy. This can happen for example after
          // frame indices are lowered to constants or from splitting 64-bit
          // constants.
          tryConstantFoldOp(MRI, TII, Fold.UseMI);
        }
      }
    }
  }
  return false;
}
Exemplo n.º 9
0
bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) {
  MachineRegisterInfo &MRI = MF.getRegInfo();
  const SIInstrInfo *TII =
      static_cast<const SIInstrInfo *>(MF.getSubtarget().getInstrInfo());
  const SIRegisterInfo &TRI = TII->getRegisterInfo();

  for (MachineFunction::iterator BI = MF.begin(), BE = MF.end();
                                                  BI != BE; ++BI) {

    MachineBasicBlock &MBB = *BI;
    MachineBasicBlock::iterator I, Next;
    for (I = MBB.begin(); I != MBB.end(); I = Next) {
      Next = std::next(I);
      MachineInstr &MI = *I;

      if (!isSafeToFold(MI.getOpcode()))
        continue;

      unsigned OpSize = TII->getOpSize(MI, 1);
      MachineOperand &OpToFold = MI.getOperand(1);
      bool FoldingImm = OpToFold.isImm();

      // FIXME: We could also be folding things like FrameIndexes and
      // TargetIndexes.
      if (!FoldingImm && !OpToFold.isReg())
        continue;

      // Folding immediates with more than one use will increase program size.
      // FIXME: This will also reduce register usage, which may be better
      // in some cases.  A better heuristic is needed.
      if (FoldingImm && !TII->isInlineConstant(OpToFold, OpSize) &&
          !MRI.hasOneUse(MI.getOperand(0).getReg()))
        continue;

      // FIXME: Fold operands with subregs.
      if (OpToFold.isReg() &&
          (!TargetRegisterInfo::isVirtualRegister(OpToFold.getReg()) ||
           OpToFold.getSubReg()))
        continue;

      std::vector<FoldCandidate> FoldList;
      for (MachineRegisterInfo::use_iterator
           Use = MRI.use_begin(MI.getOperand(0).getReg()), E = MRI.use_end();
           Use != E; ++Use) {

        MachineInstr *UseMI = Use->getParent();
        const MachineOperand &UseOp = UseMI->getOperand(Use.getOperandNo());

        // FIXME: Fold operands with subregs.
        if (UseOp.isReg() && ((UseOp.getSubReg() && OpToFold.isReg()) ||
            UseOp.isImplicit())) {
          continue;
        }

        APInt Imm;

        if (FoldingImm) {
          unsigned UseReg = UseOp.getReg();
          const TargetRegisterClass *UseRC
            = TargetRegisterInfo::isVirtualRegister(UseReg) ?
            MRI.getRegClass(UseReg) :
            TRI.getRegClass(UseReg);

          Imm = APInt(64, OpToFold.getImm());

          // Split 64-bit constants into 32-bits for folding.
          if (UseOp.getSubReg()) {
            if (UseRC->getSize() != 8)
              continue;

            if (UseOp.getSubReg() == AMDGPU::sub0) {
              Imm = Imm.getLoBits(32);
            } else {
              assert(UseOp.getSubReg() == AMDGPU::sub1);
              Imm = Imm.getHiBits(32);
            }
          }

          // In order to fold immediates into copies, we need to change the
          // copy to a MOV.
          if (UseMI->getOpcode() == AMDGPU::COPY) {
            unsigned DestReg = UseMI->getOperand(0).getReg();
            const TargetRegisterClass *DestRC
              = TargetRegisterInfo::isVirtualRegister(DestReg) ?
              MRI.getRegClass(DestReg) :
              TRI.getRegClass(DestReg);

            unsigned MovOp = TII->getMovOpcode(DestRC);
            if (MovOp == AMDGPU::COPY)
              continue;

            UseMI->setDesc(TII->get(MovOp));
          }
        }

        const MCInstrDesc &UseDesc = UseMI->getDesc();

        // Don't fold into target independent nodes.  Target independent opcodes
        // don't have defined register classes.
        if (UseDesc.isVariadic() ||
            UseDesc.OpInfo[Use.getOperandNo()].RegClass == -1)
          continue;

        if (FoldingImm) {
          MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue());
          tryAddToFoldList(FoldList, UseMI, Use.getOperandNo(), &ImmOp, TII);
          continue;
        }

        tryAddToFoldList(FoldList, UseMI, Use.getOperandNo(), &OpToFold, TII);

        // FIXME: We could try to change the instruction from 64-bit to 32-bit
        // to enable more folding opportunites.  The shrink operands pass
        // already does this.
      }

      for (FoldCandidate &Fold : FoldList) {
        if (updateOperand(Fold, TRI)) {
          // Clear kill flags.
          if (!Fold.isImm()) {
            assert(Fold.OpToFold && Fold.OpToFold->isReg());
            Fold.OpToFold->setIsKill(false);
          }
          DEBUG(dbgs() << "Folded source from " << MI << " into OpNo " <<
                Fold.UseOpNo << " of " << *Fold.UseMI << '\n');
        }
      }
    }
  }
  return false;
}