//***************************************************************************** // //! Configures the synchronous serial interface. //! //! \param ui32Base specifies the SSI module base address. //! \param ui32SSIClk is the rate of the clock supplied to the SSI module. //! \param ui32Protocol specifies the data transfer protocol. //! \param ui32Mode specifies the mode of operation. //! \param ui32BitRate specifies the clock rate. //! \param ui32DataWidth specifies number of bits transferred per frame. //! //! This function configures the synchronous serial interface. It sets //! the SSI protocol, mode of operation, bit rate, and data width. //! //! The \e ui32Protocol parameter defines the data frame format. The //! \e ui32Protocol parameter can be one of the following values: //! \b SSI_FRF_MOTO_MODE_0, \b SSI_FRF_MOTO_MODE_1, \b SSI_FRF_MOTO_MODE_2, //! \b SSI_FRF_MOTO_MODE_3, \b SSI_FRF_TI, or \b SSI_FRF_NMW. The Motorola //! frame formats encode the following polarity and phase configurations: //! //! <pre> //! Polarity Phase Mode //! 0 0 SSI_FRF_MOTO_MODE_0 //! 0 1 SSI_FRF_MOTO_MODE_1 //! 1 0 SSI_FRF_MOTO_MODE_2 //! 1 1 SSI_FRF_MOTO_MODE_3 //! </pre> //! //! The \e ui32Mode parameter defines the operating mode of the SSI module. //! The SSI module can operate as a master or slave; if it is a slave, the SSI //! can be configured to disable output on its serial output line. The //! \e ui32Mode parameter can be one of the following values: //! \b SSI_MODE_MASTER, \b SSI_MODE_SLAVE, or \b SSI_MODE_SLAVE_OD. //! //! The \e ui32BitRate parameter defines the bit rate for the SSI. This bit //! rate must satisfy the following clock ratio criteria: //! //! - FSSI >= 2 * bit rate (master mode); this speed cannot exceed 25 MHz. //! - FSSI >= 12 * bit rate or 6 * bit rate (slave modes), depending on the //! capability of the specific microcontroller //! //! where FSSI is the frequency of the clock supplied to the SSI module. //! //! The \e ui32DataWidth parameter defines the width of the data transfers and //! can be a value between 4 and 16, inclusive. //! //! The peripheral clock is the same as the processor clock. This value is //! returned by SysCtlClockGet(), or it can be explicitly hard coded if it is //! constant and known (to save the code/execution overhead of a call to //! SysCtlClockGet()). //! //! \return None. // //***************************************************************************** void SSIConfigSetExpClk(uint32_t ui32Base, uint32_t ui32SSIClk, uint32_t ui32Protocol, uint32_t ui32Mode, uint32_t ui32BitRate, uint32_t ui32DataWidth) { uint32_t ui32MaxBitRate; uint32_t ui32RegVal; uint32_t ui32PreDiv; uint32_t ui32SCR; uint32_t ui32SPH_SPO; // // Check the arguments. // ASSERT(SSIBaseValid(ui32Base)); ASSERT((ui32Protocol == SSI_FRF_MOTO_MODE_0) || (ui32Protocol == SSI_FRF_MOTO_MODE_1) || (ui32Protocol == SSI_FRF_MOTO_MODE_2) || (ui32Protocol == SSI_FRF_MOTO_MODE_3) || (ui32Protocol == SSI_FRF_TI) || (ui32Protocol == SSI_FRF_NMW)); ASSERT((ui32Mode == SSI_MODE_MASTER) || (ui32Mode == SSI_MODE_SLAVE) || (ui32Mode == SSI_MODE_SLAVE_OD)); ASSERT(((ui32Mode == SSI_MODE_MASTER) && (ui32BitRate <= (ui32SSIClk / 2))) || ((ui32Mode != SSI_MODE_MASTER) && (ui32BitRate <= (ui32SSIClk / 12)))); ASSERT((ui32SSIClk / ui32BitRate) <= (254 * 256)); ASSERT((ui32DataWidth >= 4) && (ui32DataWidth <= 16)); // // Set the mode. // ui32RegVal = (ui32Mode == SSI_MODE_SLAVE_OD) ? SSI_CR1_SOD : 0; ui32RegVal |= (ui32Mode == SSI_MODE_MASTER) ? 0 : SSI_CR1_MS; HWREG(ui32Base + SSI_O_CR1) = ui32RegVal; // // Set the clock predivider. // ui32MaxBitRate = ui32SSIClk / ui32BitRate; ui32PreDiv = 0; do { ui32PreDiv += 2; ui32SCR = (ui32MaxBitRate / ui32PreDiv) - 1; } while(ui32SCR > 255); HWREG(ui32Base + SSI_O_CPSR) = ui32PreDiv; // // Set protocol and clock rate. // ui32SPH_SPO = (ui32Protocol & 3) << 6; ui32Protocol &= SSI_CR0_FRF_M; ui32RegVal = (ui32SCR << 8) | ui32SPH_SPO | ui32Protocol | (ui32DataWidth - 1); HWREG(ui32Base + SSI_O_CR0) = ui32RegVal; }
//***************************************************************************** // //! Registers an interrupt handler for the synchronous serial interface. //! //! \param ulBase specifies the SSI module base address. //! \param pfnHandler is a pointer to the function to be called when the //! synchronous serial interface interrupt occurs. //! //! This function registers the handler to be called when an SSI interrupt //! occurs. This function enables the global interrupt in the interrupt //! controller; specific SSI interrupts must be enabled via SSIIntEnable(). If //! necessary, it is the interrupt handler's responsibility to clear the //! interrupt source via SSIIntClear(). //! //! \sa IntRegister() for important information about registering interrupt //! handlers. //! //! \return None. // //***************************************************************************** void SSIIntRegister(unsigned long ulBase, void (*pfnHandler)(void)) { unsigned long ulInt; // // Check the arguments. // ASSERT(SSIBaseValid(ulBase)); // // Determine the interrupt number based on the SSI port. // ulInt = SSIIntNumberGet(ulBase); // // Register the interrupt handler, returning an error if an error occurs. // IntRegister(ulInt, pfnHandler); // // Enable the synchronous serial interface interrupt. // IntEnable(ulInt); }
//***************************************************************************** // //! Unregisters an interrupt handler for the synchronous serial interface. //! //! \param ulBase specifies the SSI module base address. //! //! This function clears the handler to be called when an SSI interrupt //! occurs. This function also masks off the interrupt in the interrupt //! controller so that the interrupt handler no longer is called. //! //! \sa IntRegister() for important information about registering interrupt //! handlers. //! //! \return None. // //***************************************************************************** void SSIIntUnregister(unsigned long ulBase) { unsigned long ulInt; // // Check the arguments. // ASSERT(SSIBaseValid(ulBase)); // // Determine the interrupt number based on the SSI port. // ulInt = SSIIntNumberGet(ulBase); // // Disable the interrupt. // IntDisable(ulInt); // // Unregister the interrupt handler. // IntUnregister(ulInt); }
//***************************************************************************** // //! Unregisters an interrupt handler for the synchronous serial interface. //! //! \param ui32Base specifies the SSI module base address. //! //! This function clears the handler to be called when an SSI interrupt //! occurs. This function also masks off the interrupt in the interrupt //! controller so that the interrupt handler no longer is called. //! //! \sa IntRegister() for important information about registering interrupt //! handlers. //! //! \return None. // //***************************************************************************** void SSIIntUnregister(uint32_t ui32Base) { uint32_t ui32Int; // // Check the arguments. // ASSERT(SSIBaseValid(ui32Base)); // // Determine the interrupt number based on the SSI port. // ui32Int = SSIIntNumberGet(ui32Base); ASSERT(ui32Int != 0); // // Disable the interrupt. // IntDisable(ui32Int); // // Unregister the interrupt handler. // IntUnregister(ui32Int); }
//***************************************************************************** // //! Registers an interrupt handler for the synchronous serial port //! //! \param ui32Base specifies the SSI module base address. //! \param pfnHandler is a pointer to the function to be called when the //! synchronous serial port interrupt occurs. //! //! This sets the handler to be called when an SSI interrupt //! occurs. This will enable the global interrupt in the interrupt controller; //! specific SSI interrupts must be enabled via SSIIntEnable(). If necessary, //! it is the interrupt handler's responsibility to clear the interrupt source //! via SSIIntClear(). //! //! \sa IntRegister() for important information about registering interrupt //! handlers. //! //! \return None // //***************************************************************************** void SSIIntRegister(uint32_t ui32Base, void (*pfnHandler)(void)) { uint32_t ui32Int; // // Check the arguments. // ASSERT(SSIBaseValid(ui32Base)); // // Determine the interrupt number based on the SSI port. // ui32Int = (ui32Base == SSI0_BASE) ? INT_SSI0 : INT_SSI1; // // Register the interrupt handler. // IntRegister(ui32Int, pfnHandler); // // Enable the synchronous serial port interrupt. // IntEnable(ui32Int); }
//***************************************************************************** // //! Unregisters an interrupt handler for the synchronous serial port //! //! \param ui32Base specifies the SSI module base address. //! //! This function will clear the handler to be called when a SSI //! interrupt occurs. This will also mask off the interrupt in the interrupt //! controller so that the interrupt handler no longer is called. //! //! \sa IntRegister() for important information about registering interrupt //! handlers. //! //! \return None // //***************************************************************************** void SSIIntUnregister(uint32_t ui32Base) { uint32_t ui32Int; // // Check the arguments. // ASSERT(SSIBaseValid(ui32Base)); // // Determine the interrupt number based on the SSI port. // ui32Int = (ui32Base == SSI0_BASE) ? INT_SSI0 : INT_SSI1; // // Disable the interrupt. // IntDisable(ui32Int); // // Unregister the interrupt handler. // IntUnregister(ui32Int); }
//***************************************************************************** // //! Gets the data clock source for the specified SSI peripheral. //! //! \param ui32Base is the base address of the SSI port. //! //! This function returns the data clock source for the specified SSI. //! //! \note The ability to specify the SSI data clock source varies with the //! Tiva part and SSI in use. Please consult the data sheet for the part //! in use to determine whether this support is available. //! //! \return Returns the current clock source, which will be either //! \b SSI_CLOCK_SYSTEM or \b SSI_CLOCK_PIOSC. // //***************************************************************************** uint32_t SSIClockSourceGet(uint32_t ui32Base) { // // Check the arguments. // ASSERT(SSIBaseValid(ui32Base)); // // Return the SSI clock source. // return(HWREG(ui32Base + SSI_O_CC)); }
//***************************************************************************** // //! Determines whether the SSI transmitter is busy or not. //! //! \param ui32Base is the base address of the SSI port. //! //! This function allows the caller to determine whether all transmitted bytes //! have cleared the transmitter hardware. If \b false is returned, then the //! transmit FIFO is empty and all bits of the last transmitted word have left //! the hardware shift register. //! //! \return Returns \b true if the SSI is transmitting or \b false if all //! transmissions are complete. // //***************************************************************************** bool SSIBusy(uint32_t ui32Base) { // // Check the arguments. // ASSERT(SSIBaseValid(ui32Base)); // // Determine if the SSI is busy. // return((HWREG(ui32Base + SSI_O_SR) & SSI_SR_BSY) ? true : false); }
//***************************************************************************** // //! Disables SSI DMA operation. //! //! \param ui32Base is the base address of the SSI port. //! \param ui32DMAFlags is a bit mask of the DMA features to disable. //! //! This function is used to disable SSI DMA features that were enabled //! by SSIDMAEnable(). The specified SSI DMA features are disabled. The //! \e ui32DMAFlags parameter is the logical OR of any of the following values: //! //! - SSI_DMA_RX - disable DMA for receive //! - SSI_DMA_TX - disable DMA for transmit //! //! \return None. // //***************************************************************************** void SSIDMADisable(uint32_t ui32Base, uint32_t ui32DMAFlags) { // // Check the arguments. // ASSERT(SSIBaseValid(ui32Base)); // // Clear the requested bits in the SSI DMA control register. // HWREG(ui32Base + SSI_O_DMACTL) &= ~ui32DMAFlags; }
//***************************************************************************** // //! Clears SSI interrupt sources. //! //! \param ui32Base specifies the SSI module base address. //! \param ui32IntFlags is a bit mask of the interrupt sources to be cleared. //! //! This function clears the specified SSI interrupt sources so that they no //! longer assert. This function must be called in the interrupt handler to //! keep the interrupts from being triggered again immediately upon exit. The //! \e ui32IntFlags parameter can consist of either or both the \b SSI_RXTO and //! \b SSI_RXOR values. //! //! \note Because there is a write buffer in the Cortex-M processor, it may //! take several clock cycles before the interrupt source is actually cleared. //! Therefore, it is recommended that the interrupt source be cleared early in //! the interrupt handler (as opposed to the very last action) to avoid //! returning from the interrupt handler before the interrupt source is //! actually cleared. Failure to do so may result in the interrupt handler //! being immediately reentered (because the interrupt controller still sees //! the interrupt source asserted). //! //! \return None. // //***************************************************************************** void SSIIntClear(uint32_t ui32Base, uint32_t ui32IntFlags) { // // Check the arguments. // ASSERT(SSIBaseValid(ui32Base)); // // Clear the requested interrupt sources. // HWREG(ui32Base + SSI_O_ICR) = ui32IntFlags; }
//***************************************************************************** // //! Disables individual SSI interrupt sources. //! //! \param ui32Base specifies the SSI module base address. //! \param ui32IntFlags is a bit mask of the interrupt sources to be disabled. //! //! This function disables the indicated SSI interrupt sources. The //! \e ui32IntFlags parameter can be any of the \b SSI_TXFF, \b SSI_RXFF, //! \b SSI_RXTO, or \b SSI_RXOR values. //! //! \return None. // //***************************************************************************** void SSIIntDisable(uint32_t ui32Base, uint32_t ui32IntFlags) { // // Check the arguments. // ASSERT(SSIBaseValid(ui32Base)); // // Disable the specified interrupts. // HWREG(ui32Base + SSI_O_IM) &= ~(ui32IntFlags); }
//***************************************************************************** // //! Enables the synchronous serial interface. //! //! \param ui32Base specifies the SSI module base address. //! //! This function enables operation of the synchronous serial interface. The //! synchronous serial interface must be configured before it is enabled. //! //! \return None. // //***************************************************************************** void SSIEnable(uint32_t ui32Base) { // // Check the arguments. // ASSERT(SSIBaseValid(ui32Base)); // // Read-modify-write the enable bit. // HWREG(ui32Base + SSI_O_CR1) |= SSI_CR1_SSE; }
//***************************************************************************** // //! Gets the data clock source for the specified SSI peripheral. //! //! \param ulBase is the base address of the SSI port. //! //! This function returns the data clock source for the specified SSI. The //! possible data clock source are the system clock (\b SSI_CLOCK_SYSTEM) or //! the precision internal oscillator (\b SSI_CLOCK_PIOSC). //! //! \note The ability to specify the SSI data clock source varies with the //! Stellaris part and SSI in use. Please consult the data sheet for the part //! in use to determine whether this support is available. //! //! \return None. // //***************************************************************************** unsigned long SSIClockSourceGet(unsigned long ulBase) { // // Check the arguments. // ASSERT(SSIBaseValid(ulBase)); // // Return the SSI clock source. // return(HWREG(ulBase + SSI_O_CC)); }
//***************************************************************************** // //! Determines whether the SSI transmitter is busy or not. //! //! \param ulBase is the base address of the SSI port. //! //! This function allows the caller to determine whether all transmitted bytes //! have cleared the transmitter hardware. If \b false is returned, then the //! transmit FIFO is empty and all bits of the last transmitted word have left //! the hardware shift register. //! //! \return Returns \b true if the SSI is transmitting or \b false if all //! transmissions are complete. // //***************************************************************************** tBoolean SSIBusy(unsigned long ulBase) { // // Check the arguments. // ASSERT(SSIBaseValid(ulBase)); // // Determine if the SSI is busy. // return((HWREG(ulBase + SSI_O_SR) & SSI_SR_BSY) ? true : false); }
//***************************************************************************** // //! Clears SSI interrupt sources. //! //! \param ulBase specifies the SSI module base address. //! \param ulIntFlags is a bit mask of the interrupt sources to be cleared. //! //! This function clears the specified SSI interrupt sources so that they no //! longer assert. This function must be called in the interrupt handler to //! keep the interrupts from being triggered again immediately upon exit. The //! \e ulIntFlags parameter can consist of either or both the \b SSI_RXTO and //! \b SSI_RXOR values. //! //! \note Because there is a write buffer in the Cortex-M processor, it may //! take several clock cycles before the interrupt source is actually cleared. //! Therefore, it is recommended that the interrupt source be cleared early in //! the interrupt handler (as opposed to the very last action) to avoid //! returning from the interrupt handler before the interrupt source is //! actually cleared. Failure to do so may result in the interrupt handler //! being immediately reentered (because the interrupt controller still sees //! the interrupt source asserted). //! //! \return None. // //***************************************************************************** void SSIIntClear(unsigned long ulBase, unsigned long ulIntFlags) { // // Check the arguments. // ASSERT(SSIBaseValid(ulBase)); // // Clear the requested interrupt sources. // HWREG(ulBase + SSI_O_ICR) = ulIntFlags; }
//***************************************************************************** // //! Disables SSI DMA operation. //! //! \param ulBase is the base address of the SSI port. //! \param ulDMAFlags is a bit mask of the DMA features to disable. //! //! This function is used to disable SSI DMA features that were enabled //! by SSIDMAEnable(). The specified SSI DMA features are disabled. The //! \e ulDMAFlags parameter is the logical OR of any of the following values: //! //! - SSI_DMA_RX - disable DMA for receive //! - SSI_DMA_TX - disable DMA for transmit //! //! \return None. // //***************************************************************************** void SSIDMADisable(unsigned long ulBase, unsigned long ulDMAFlags) { // // Check the arguments. // ASSERT(SSIBaseValid(ulBase)); // // Clear the requested bits in the SSI DMA control register. // HWREG(ulBase + SSI_O_DMACTL) &= ~ulDMAFlags; }
//***************************************************************************** // //! Disables individual SSI interrupt sources. //! //! \param ulBase specifies the SSI module base address. //! \param ulIntFlags is a bit mask of the interrupt sources to be disabled. //! //! This function disables the indicated SSI interrupt sources. The //! \e ulIntFlags parameter can be any of the \b SSI_TXFF, \b SSI_RXFF, //! \b SSI_RXTO, or \b SSI_RXOR values. //! //! \return None. // //***************************************************************************** void SSIIntDisable(unsigned long ulBase, unsigned long ulIntFlags) { // // Check the arguments. // ASSERT(SSIBaseValid(ulBase)); // // Disable the specified interrupts. // HWREG(ulBase + SSI_O_IM) &= ~(ulIntFlags); }
//***************************************************************************** // //! Disables the synchronous serial interface. //! //! \param ulBase specifies the SSI module base address. //! //! This function disables operation of the synchronous serial interface. //! //! \return None. // //***************************************************************************** void SSIDisable(unsigned long ulBase) { // // Check the arguments. // ASSERT(SSIBaseValid(ulBase)); // // Read-modify-write the enable bit. // HWREG(ulBase + SSI_O_CR1) &= ~(SSI_CR1_SSE); }
//***************************************************************************** // //! Sets the data clock source for the specified SSI peripheral. //! //! \param ulBase is the base address of the SSI port. //! \param ulSource is the baud clock source for the SSI. //! //! This function allows the baud clock source for the SSI to be selected. //! The possible clock source are the system clock (\b SSI_CLOCK_SYSTEM) or //! the precision internal oscillator (\b SSI_CLOCK_PIOSC). //! //! Changing the baud clock source changes the data rate generated by the //! SSI. Therefore, the data rate should be reconfigured after any change to //! the SSI clock source. //! //! \note The ability to specify the SSI baud clock source varies with the //! Stellaris part and SSI in use. Please consult the data sheet for the part //! in use to determine whether this support is available. //! //! \return None. // //***************************************************************************** void SSIClockSourceSet(unsigned long ulBase, unsigned long ulSource) { // // Check the arguments. // ASSERT(SSIBaseValid(ulBase)); ASSERT((ulSource == SSI_CLOCK_SYSTEM) || (ulSource == SSI_CLOCK_PIOSC)); // // Set the SSI clock source. // HWREG(ulBase + SSI_O_CC) = ulSource; }
//***************************************************************************** // //! Sets the data clock source for the specified SSI peripheral. //! //! \param ui32Base is the base address of the SSI port. //! \param ui32Source is the baud clock source for the SSI. //! //! This function allows the baud clock source for the SSI to be selected. //! The possible clock source are the system clock (\b SSI_CLOCK_SYSTEM) or //! the precision internal oscillator (\b SSI_CLOCK_PIOSC). //! //! Changing the baud clock source changes the data rate generated by the //! SSI. Therefore, the data rate should be reconfigured after any change to //! the SSI clock source. //! //! \note The ability to specify the SSI baud clock source varies with the //! Tiva part and SSI in use. Please consult the data sheet for the part //! in use to determine whether this support is available. //! //! \return None. // //***************************************************************************** void SSIClockSourceSet(uint32_t ui32Base, uint32_t ui32Source) { // // Check the arguments. // ASSERT(SSIBaseValid(ui32Base)); ASSERT((ui32Source == SSI_CLOCK_SYSTEM) || (ui32Source == SSI_CLOCK_PIOSC)); // // Set the SSI clock source. // HWREG(ui32Base + SSI_O_CC) = ui32Source; }
//***************************************************************************** // //! Gets a data element from the SSI receive FIFO. //! //! \param ulBase specifies the SSI module base address. //! \param pulData is a pointer to a storage location for data that was //! received over the SSI interface. //! //! This function gets received data from the receive FIFO of the specified //! SSI module and places that data into the location specified by the //! \e pulData parameter. If there is no data available, this function waits //! until data is received before returning. //! //! \note Only the lower N bits of the value written to \e pulData contain //! valid data, where N is the data width as configured by //! SSIConfigSetExpClk(). For example, if the interface is configured for //! 8-bit data width, only the lower 8 bits of the value written to \e pulData //! contain valid data. //! //! \return None. // //***************************************************************************** void SSIDataGet(unsigned long ulBase, unsigned long *pulData) { // // Check the arguments. // ASSERT(SSIBaseValid(ulBase)); // // Wait until there is data to be read. // while(!(HWREG(ulBase + SSI_O_SR) & SSI_SR_RNE)) { } // // Read data from SSI. // *pulData = HWREG(ulBase + SSI_O_DR); }
//***************************************************************************** // //! Gets a data element from the SSI receive FIFO // //***************************************************************************** void SSIDataGet(uint32_t ui32Base, uint32_t *pui32Data) { // // Check the arguments. // ASSERT(SSIBaseValid(ui32Base)); // // Wait until there is data to be read. // while(!(HWREG(ui32Base + SSI_O_SR) & SSI_SR_RNE)) { } // // Read data from SSI. // *pui32Data = HWREG(ui32Base + SSI_O_DR); }
//***************************************************************************** // //! Gets a data element from the SSI receive FIFO. //! //! \param ulBase specifies the SSI module base address. //! \param pulData is a pointer to a storage location for data that was //! received over the SSI interface. //! //! This function gets received data from the receive FIFO of the specified SSI //! module and places that data into the location specified by the \e ulData //! parameter. If there is no data in the FIFO, then this function returns a //! zero. //! //! This function replaces the original SSIDataNonBlockingGet() API and //! performs the same actions. A macro is provided in <tt>ssi.h</tt> to map //! the original API to this API. //! //! \note Only the lower N bits of the value written to \e pulData contain //! valid data, where N is the data width as configured by //! SSIConfigSetExpClk(). For example, if the interface is configured for //! 8-bit data width, only the lower 8 bits of the value written to \e pulData //! contain valid data. //! //! \return Returns the number of elements read from the SSI receive FIFO. // //***************************************************************************** long SSIDataGetNonBlocking(unsigned long ulBase, unsigned long *pulData) { // // Check the arguments. // ASSERT(SSIBaseValid(ulBase)); // // Check for data to read. // if(HWREG(ulBase + SSI_O_SR) & SSI_SR_RNE) { *pulData = HWREG(ulBase + SSI_O_DR); return(1); } else { return(0); } }
//***************************************************************************** // //! Gets the current interrupt status. //! //! \param ulBase specifies the SSI module base address. //! \param bMasked is \b false if the raw interrupt status is required or //! \b true if the masked interrupt status is required. //! //! This function returns the interrupt status for the SSI module. Either the //! raw interrupt status or the status of interrupts that are allowed to //! reflect to the processor can be returned. //! //! \return The current interrupt status, enumerated as a bit field of //! \b SSI_TXFF, \b SSI_RXFF, \b SSI_RXTO, and \b SSI_RXOR. // //***************************************************************************** unsigned long SSIIntStatus(unsigned long ulBase, tBoolean bMasked) { // // Check the arguments. // ASSERT(SSIBaseValid(ulBase)); // // Return either the interrupt status or the raw interrupt status as // requested. // if(bMasked) { return(HWREG(ulBase + SSI_O_MIS)); } else { return(HWREG(ulBase + SSI_O_RIS)); } }
//***************************************************************************** // //! Gets the current interrupt status. //! //! \param ui32Base specifies the SSI module base address. //! \param bMasked is \b false if the raw interrupt status is required or //! \b true if the masked interrupt status is required. //! //! This function returns the interrupt status for the SSI module. Either the //! raw interrupt status or the status of interrupts that are allowed to //! reflect to the processor can be returned. //! //! \return The current interrupt status, enumerated as a bit field of //! \b SSI_TXFF, \b SSI_RXFF, \b SSI_RXTO, and \b SSI_RXOR. // //***************************************************************************** uint32_t SSIIntStatus(uint32_t ui32Base, bool bMasked) { // // Check the arguments. // ASSERT(SSIBaseValid(ui32Base)); // // Return either the interrupt status or the raw interrupt status as // requested. // if(bMasked) { return(HWREG(ui32Base + SSI_O_MIS)); } else { return(HWREG(ui32Base + SSI_O_RIS)); } }
//***************************************************************************** // //! Gets a data element from the SSI receive FIFO //! //! \param ui32Base specifies the SSI module base address. //! \param pui32Data is a pointer to a storage location for data that was //! received over the SSI interface. //! //! This function gets received data from the receive FIFO of the specified SSI //! module and places that data into the location specified by the \e ui32Data //! parameter. If there is no data in the FIFO, then this function returns a //! zero. //! //! \note Only the lower N bits of the value written to \e pui32Data contain //! valid data, where N is the data width as configured by \sa //! SSIConfigSetExpClk(). For example, if the interface is configured for //! 8-bit data width, only the lower 8 bits of the value written to \e pui32Data //! contain valid data. //! //! \return Returns the number of elements read from the SSI receive FIFO. // //***************************************************************************** int32_t SSIDataGetNonBlocking(uint32_t ui32Base, uint32_t *pui32Data) { // // Check the arguments. // ASSERT(SSIBaseValid(ui32Base)); // // Check for data to read. // if(HWREG(ui32Base + SSI_O_SR) & SSI_SR_RNE) { *pui32Data = HWREG(ui32Base + SSI_O_DR); return(1); } else { return(0); } }
//***************************************************************************** // //! Puts a data element into the SSI transmit FIFO. //! //! \param ulBase specifies the SSI module base address. //! \param ulData is the data to be transmitted over the SSI interface. //! //! This function places the supplied data into the transmit FIFO of the //! specified SSI module. If there is no space available in the transmit FIFO, //! this function waits until there is space available before returning. //! //! \note The upper 32 - N bits of \e ulData are discarded by the hardware, //! where N is the data width as configured by SSIConfigSetExpClk(). For //! example, if the interface is configured for 8-bit data width, the upper 24 //! bits of \e ulData are discarded. //! //! \return None. // //***************************************************************************** void SSIDataPut(unsigned long ulBase, unsigned long ulData) { // // Check the arguments. // ASSERT(SSIBaseValid(ulBase)); ASSERT((ulData & (0xfffffffe << (HWREG(ulBase + SSI_O_CR0) & SSI_CR0_DSS_M))) == 0); // // Wait until there is space. // while(!(HWREG(ulBase + SSI_O_SR) & SSI_SR_TNF)) { } // // Write the data to the SSI. // HWREG(ulBase + SSI_O_DR) = ulData; }
//***************************************************************************** // //! Puts a data element into the SSI transmit FIFO. //! //! \param ulBase specifies the SSI module base address. //! \param ulData is the data to be transmitted over the SSI interface. //! //! This function places the supplied data into the transmit FIFO of the //! specified SSI module. If there is no space in the FIFO, then this function //! returns a zero. //! //! This function replaces the original SSIDataNonBlockingPut() API and //! performs the same actions. A macro is provided in <tt>ssi.h</tt> to map //! the original API to this API. //! //! \note The upper 32 - N bits of \e ulData are discarded by the hardware, //! where N is the data width as configured by SSIConfigSetExpClk(). For //! example, if the interface is configured for 8-bit data width, the upper 24 //! bits of \e ulData are discarded. //! //! \return Returns the number of elements written to the SSI transmit FIFO. // //***************************************************************************** long SSIDataPutNonBlocking(unsigned long ulBase, unsigned long ulData) { // // Check the arguments. // ASSERT(SSIBaseValid(ulBase)); ASSERT((ulData & (0xfffffffe << (HWREG(ulBase + SSI_O_CR0) & SSI_CR0_DSS_M))) == 0); // // Check for space to write. // if(HWREG(ulBase + SSI_O_SR) & SSI_SR_TNF) { HWREG(ulBase + SSI_O_DR) = ulData; return(1); } else { return(0); } }
//***************************************************************************** // //! Returns the interrupt number of SSI module . //! //! \param ui32Base is the base address of the SSI module. //! //! This function returns the interrupt number for the SSI module with the base //! address passed in the \e ui32Base parameter. //! //! \return Returns an SSI interrupt number, or 0 if the interrupt does not //! exist. // //***************************************************************************** static uint32_t SSIIntNumberGet(uint32_t ui32Base) { uint_fast8_t ui8Idx, ui8Rows; const uint32_t (*ppui32SSIIntMap)[2]; // // Check the arguments. // ASSERT(SSIBaseValid(ui32Base)); ppui32SSIIntMap = g_ppui32SSIIntMap; ui8Rows = g_ui8SSIIntMapRows; // // Loop through the table that maps SSI base addresses to interrupt // numbers. // for(ui8Idx = 0; ui8Idx < ui8Rows; ui8Idx++) { // // See if this base address matches. // if(ppui32SSIIntMap[ui8Idx][0] == ui32Base) { // // Return the corresponding interrupt number. // return(ppui32SSIIntMap[ui8Idx][1]); } } // // The base address could not be found, so return an error. // return(0); }