void ff_dnn_free_model_tf(DNNModel **model) { TFModel *tf_model; if (*model){ tf_model = (TFModel *)(*model)->model; if (tf_model->graph){ TF_DeleteGraph(tf_model->graph); } if (tf_model->session){ TF_CloseSession(tf_model->session, tf_model->status); TF_DeleteSession(tf_model->session, tf_model->status); } if (tf_model->status){ TF_DeleteStatus(tf_model->status); } if (tf_model->input_tensor){ TF_DeleteTensor(tf_model->input_tensor); } if (tf_model->output_data){ av_freep(&(tf_model->output_data->data)); } av_freep(&tf_model); av_freep(model); } }
static DNNReturnType set_input_output_tf(void *model, DNNData *input, DNNData *output) { TFModel *tf_model = (TFModel *)model; int64_t input_dims[] = {1, input->height, input->width, input->channels}; TF_SessionOptions *sess_opts; const TF_Operation *init_op = TF_GraphOperationByName(tf_model->graph, "init"); TF_Tensor *output_tensor; // Input operation should be named 'x' tf_model->input.oper = TF_GraphOperationByName(tf_model->graph, "x"); if (!tf_model->input.oper){ return DNN_ERROR; } tf_model->input.index = 0; if (tf_model->input_tensor){ TF_DeleteTensor(tf_model->input_tensor); } tf_model->input_tensor = TF_AllocateTensor(TF_FLOAT, input_dims, 4, input_dims[1] * input_dims[2] * input_dims[3] * sizeof(float)); if (!tf_model->input_tensor){ return DNN_ERROR; } input->data = (float *)TF_TensorData(tf_model->input_tensor); // Output operation should be named 'y' tf_model->output.oper = TF_GraphOperationByName(tf_model->graph, "y"); if (!tf_model->output.oper){ return DNN_ERROR; } tf_model->output.index = 0; if (tf_model->session){ TF_CloseSession(tf_model->session, tf_model->status); TF_DeleteSession(tf_model->session, tf_model->status); } sess_opts = TF_NewSessionOptions(); tf_model->session = TF_NewSession(tf_model->graph, sess_opts, tf_model->status); TF_DeleteSessionOptions(sess_opts); if (TF_GetCode(tf_model->status) != TF_OK) { return DNN_ERROR; } // Run initialization operation with name "init" if it is present in graph if (init_op){ TF_SessionRun(tf_model->session, NULL, NULL, NULL, 0, NULL, NULL, 0, &init_op, 1, NULL, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK) { return DNN_ERROR; } } // Execute network to get output height, width and number of channels TF_SessionRun(tf_model->session, NULL, &tf_model->input, &tf_model->input_tensor, 1, &tf_model->output, &output_tensor, 1, NULL, 0, NULL, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK){ return DNN_ERROR; } else{ output->height = TF_Dim(output_tensor, 1); output->width = TF_Dim(output_tensor, 2); output->channels = TF_Dim(output_tensor, 3); output->data = av_malloc(output->height * output->width * output->channels * sizeof(float)); if (!output->data){ return DNN_ERROR; } tf_model->output_data = output; TF_DeleteTensor(output_tensor); } return DNN_SUCCESS; }