Пример #1
0
PetscErrorCode  KSPSolve_PIPECR(KSP ksp)
{
  PetscErrorCode ierr;
  PetscInt       i;
  PetscScalar    alpha=0.0,beta=0.0,gamma,gammaold=0.0,delta;
  PetscReal      dp   = 0.0;
  Vec            X,B,Z,P,W,Q,U,M,N;
  Mat            Amat,Pmat;
  PetscBool      diagonalscale;

  PetscFunctionBegin;
  ierr = PCGetDiagonalScale(ksp->pc,&diagonalscale);CHKERRQ(ierr);
  if (diagonalscale) SETERRQ1(PetscObjectComm((PetscObject)ksp),PETSC_ERR_SUP,"Krylov method %s does not support diagonal scaling",((PetscObject)ksp)->type_name);

  X = ksp->vec_sol;
  B = ksp->vec_rhs;
  M = ksp->work[0];
  Z = ksp->work[1];
  P = ksp->work[2];
  N = ksp->work[3];
  W = ksp->work[4];
  Q = ksp->work[5];
  U = ksp->work[6];

  ierr = PCGetOperators(ksp->pc,&Amat,&Pmat);CHKERRQ(ierr);

  ksp->its = 0;
  /* we don't have an R vector, so put the (unpreconditioned) residual in w for now */
  if (!ksp->guess_zero) {
    ierr = KSP_MatMult(ksp,Amat,X,W);CHKERRQ(ierr);            /*     w <- b - Ax     */
    ierr = VecAYPX(W,-1.0,B);CHKERRQ(ierr);
  } else {
    ierr = VecCopy(B,W);CHKERRQ(ierr);                         /*     w <- b (x is 0) */
  }
  ierr = KSP_PCApply(ksp,W,U);CHKERRQ(ierr);                   /*     u <- Bw   */

  switch (ksp->normtype) {
  case KSP_NORM_PRECONDITIONED:
    ierr = VecNormBegin(U,NORM_2,&dp);CHKERRQ(ierr);           /*     dp <- u'*u = e'*A'*B'*B*A'*e'     */
    ierr = PetscCommSplitReductionBegin(PetscObjectComm((PetscObject)U));CHKERRQ(ierr);
    ierr = KSP_MatMult(ksp,Amat,U,W);CHKERRQ(ierr);            /*     w <- Au   */
    ierr = VecNormEnd(U,NORM_2,&dp);CHKERRQ(ierr);
    break;
  case KSP_NORM_NONE:
    ierr = KSP_MatMult(ksp,Amat,U,W);CHKERRQ(ierr);
    dp   = 0.0;
    break;
  default: SETERRQ1(PetscObjectComm((PetscObject)ksp),PETSC_ERR_SUP,"%s",KSPNormTypes[ksp->normtype]);
  }
  ierr       = KSPLogResidualHistory(ksp,dp);CHKERRQ(ierr);
  ierr       = KSPMonitor(ksp,0,dp);CHKERRQ(ierr);
  ksp->rnorm = dp;
  ierr       = (*ksp->converged)(ksp,0,dp,&ksp->reason,ksp->cnvP);CHKERRQ(ierr); /* test for convergence */
  if (ksp->reason) PetscFunctionReturn(0);

  i = 0;
  do {
    ierr = KSP_PCApply(ksp,W,M);CHKERRQ(ierr);            /*   m <- Bw       */

    if (i > 0 && ksp->normtype == KSP_NORM_PRECONDITIONED) {
      ierr = VecNormBegin(U,NORM_2,&dp);CHKERRQ(ierr);
    }
    ierr = VecDotBegin(W,U,&gamma);CHKERRQ(ierr);
    ierr = VecDotBegin(M,W,&delta);CHKERRQ(ierr);
    ierr = PetscCommSplitReductionBegin(PetscObjectComm((PetscObject)U));CHKERRQ(ierr);

    ierr = KSP_MatMult(ksp,Amat,M,N);CHKERRQ(ierr);       /*   n <- Am       */

    if (i > 0 && ksp->normtype == KSP_NORM_PRECONDITIONED) {
      ierr = VecNormEnd(U,NORM_2,&dp);CHKERRQ(ierr);
    }
    ierr = VecDotEnd(W,U,&gamma);CHKERRQ(ierr);
    ierr = VecDotEnd(M,W,&delta);CHKERRQ(ierr);

    if (i > 0) {
      if (ksp->normtype == KSP_NORM_NONE) dp = 0.0;
      ksp->rnorm = dp;
      ierr = KSPLogResidualHistory(ksp,dp);CHKERRQ(ierr);
      ierr = KSPMonitor(ksp,i,dp);CHKERRQ(ierr);
      ierr = (*ksp->converged)(ksp,i,dp,&ksp->reason,ksp->cnvP);CHKERRQ(ierr);
      if (ksp->reason) break;
    }

    if (i == 0) {
      alpha = gamma / delta;
      ierr  = VecCopy(N,Z);CHKERRQ(ierr);        /*     z <- n          */
      ierr  = VecCopy(M,Q);CHKERRQ(ierr);        /*     q <- m          */
      ierr  = VecCopy(U,P);CHKERRQ(ierr);        /*     p <- u          */
    } else {
      beta  = gamma / gammaold;
      alpha = gamma / (delta - beta / alpha * gamma);
      ierr  = VecAYPX(Z,beta,N);CHKERRQ(ierr);   /*     z <- n + beta * z   */
      ierr  = VecAYPX(Q,beta,M);CHKERRQ(ierr);   /*     q <- m + beta * q   */
      ierr  = VecAYPX(P,beta,U);CHKERRQ(ierr);   /*     p <- u + beta * p   */
    }
    ierr     = VecAXPY(X, alpha,P);CHKERRQ(ierr); /*     x <- x + alpha * p   */
    ierr     = VecAXPY(U,-alpha,Q);CHKERRQ(ierr); /*     u <- u - alpha * q   */
    ierr     = VecAXPY(W,-alpha,Z);CHKERRQ(ierr); /*     w <- w - alpha * z   */
    gammaold = gamma;
    i++;
    ksp->its = i;

    /* if (i%50 == 0) { */
    /*   ierr = KSP_MatMult(ksp,Amat,X,W);CHKERRQ(ierr);            /\*     w <- b - Ax     *\/ */
    /*   ierr = VecAYPX(W,-1.0,B);CHKERRQ(ierr); */
    /*   ierr = KSP_PCApply(ksp,W,U);CHKERRQ(ierr); */
    /*   ierr = KSP_MatMult(ksp,Amat,U,W);CHKERRQ(ierr); */
    /* } */

  } while (i<ksp->max_it);
  if (i >= ksp->max_it) ksp->reason = KSP_DIVERGED_ITS;
  PetscFunctionReturn(0);
}
Пример #2
0
static PetscErrorCode  KSPSolve_CR(KSP ksp)
{
  PetscErrorCode ierr;
  PetscInt       i = 0;
  MatStructure   pflag;
  PetscReal      dp;
  PetscScalar    ai, bi;
  PetscScalar    apq,btop, bbot;
  Vec            X,B,R,RT,P,AP,ART,Q;
  Mat            Amat, Pmat;

  PetscFunctionBegin;
  X   = ksp->vec_sol;
  B   = ksp->vec_rhs;
  R   = ksp->work[0];
  RT  = ksp->work[1];
  P   = ksp->work[2];
  AP  = ksp->work[3];
  ART = ksp->work[4];
  Q   = ksp->work[5];

  /* R is the true residual norm, RT is the preconditioned residual norm */
  ierr = PCGetOperators(ksp->pc,&Amat,&Pmat,&pflag);CHKERRQ(ierr);
  if (!ksp->guess_zero) {
    ierr = KSP_MatMult(ksp,Amat,X,R);CHKERRQ(ierr);     /*   R <- A*X           */
    ierr = VecAYPX(R,-1.0,B);CHKERRQ(ierr);            /*   R <- B-R == B-A*X  */
  } else {
    ierr = VecCopy(B,R);CHKERRQ(ierr);                  /*   R <- B (X is 0)    */
  }
  ierr = KSP_PCApply(ksp,R,P);CHKERRQ(ierr);     /*   P   <- B*R         */
  ierr = KSP_MatMult(ksp,Amat,P,AP);CHKERRQ(ierr);      /*   AP  <- A*P         */
  ierr = VecCopy(P,RT);CHKERRQ(ierr);                   /*   RT  <- P           */
  ierr = VecCopy(AP,ART);CHKERRQ(ierr);                 /*   ART <- AP          */
  ierr = VecDotBegin(RT,ART,&btop);CHKERRQ(ierr);          /*   (RT,ART)           */

  if (ksp->normtype == KSP_NORM_PRECONDITIONED) {
    ierr = VecNormBegin(RT,NORM_2,&dp);CHKERRQ(ierr);        /*   dp <- RT'*RT       */
    ierr = VecDotEnd   (RT,ART,&btop);CHKERRQ(ierr);           /*   (RT,ART)           */
    ierr = VecNormEnd  (RT,NORM_2,&dp);CHKERRQ(ierr);        /*   dp <- RT'*RT       */
  } else if (ksp->normtype == KSP_NORM_UNPRECONDITIONED) {
    ierr = VecNormBegin(R,NORM_2,&dp);CHKERRQ(ierr);         /*   dp <- R'*R         */
    ierr = VecDotEnd   (RT,ART,&btop);CHKERRQ(ierr);          /*   (RT,ART)           */
    ierr = VecNormEnd  (R,NORM_2,&dp);CHKERRQ(ierr);        /*   dp <- RT'*RT       */
  } else if (ksp->normtype == KSP_NORM_NATURAL) {
    ierr = VecDotEnd   (RT,ART,&btop);CHKERRQ(ierr);           /*   (RT,ART)           */
    dp   = PetscSqrtReal(PetscAbsScalar(btop));                  /* dp = sqrt(R,AR)      */
  }
  if (PetscAbsScalar(btop) < 0.0) {
    ksp->reason = KSP_DIVERGED_INDEFINITE_MAT;
    ierr        = PetscInfo(ksp,"diverging due to indefinite or negative definite matrix\n");CHKERRQ(ierr);
    PetscFunctionReturn(0);
  }

  ksp->its   = 0;
  ierr       = KSPMonitor(ksp,0,dp);CHKERRQ(ierr);
  ierr       = PetscObjectSAWsTakeAccess((PetscObject)ksp);CHKERRQ(ierr);
  ksp->rnorm = dp;
  ierr = PetscObjectSAWsGrantAccess((PetscObject)ksp);CHKERRQ(ierr);
  ierr = KSPLogResidualHistory(ksp,dp);CHKERRQ(ierr);
  ierr = (*ksp->converged)(ksp,0,dp,&ksp->reason,ksp->cnvP);CHKERRQ(ierr);
  if (ksp->reason) PetscFunctionReturn(0);

  i = 0;
  do {
    ierr = KSP_PCApply(ksp,AP,Q);CHKERRQ(ierr);  /*   Q <- B* AP          */

    ierr = VecDot(AP,Q,&apq);CHKERRQ(ierr);
    if (PetscRealPart(apq) <= 0.0) {
      ksp->reason = KSP_DIVERGED_INDEFINITE_PC;
      ierr        = PetscInfo(ksp,"KSPSolve_CR:diverging due to indefinite or negative definite PC\n");CHKERRQ(ierr);
      break;
    }
    ai = btop/apq;                                      /* ai = (RT,ART)/(AP,Q)  */

    ierr = VecAXPY(X,ai,P);CHKERRQ(ierr);              /*   X   <- X + ai*P     */
    ierr = VecAXPY(RT,-ai,Q);CHKERRQ(ierr);             /*   RT  <- RT - ai*Q    */
    ierr = KSP_MatMult(ksp,Amat,RT,ART);CHKERRQ(ierr);  /*   ART <-   A*RT       */
    bbot = btop;
    ierr = VecDotBegin(RT,ART,&btop);CHKERRQ(ierr);

    if (ksp->normtype == KSP_NORM_PRECONDITIONED) {
      ierr = VecNormBegin(RT,NORM_2,&dp);CHKERRQ(ierr);      /*   dp <- || RT ||      */
      ierr = VecDotEnd   (RT,ART,&btop);CHKERRQ(ierr);
      ierr = VecNormEnd  (RT,NORM_2,&dp);CHKERRQ(ierr);      /*   dp <- || RT ||      */
    } else if (ksp->normtype == KSP_NORM_NATURAL) {
      ierr = VecDotEnd(RT,ART,&btop);CHKERRQ(ierr);
      dp   = PetscSqrtReal(PetscAbsScalar(btop));                /* dp = sqrt(R,AR)       */
    } else if (ksp->normtype == KSP_NORM_NONE) {
      ierr = VecDotEnd(RT,ART,&btop);CHKERRQ(ierr);
      dp   = 0.0;
    } else if (ksp->normtype == KSP_NORM_UNPRECONDITIONED) {
      ierr = VecAXPY(R,ai,AP);CHKERRQ(ierr);           /*   R   <- R - ai*AP    */
      ierr = VecNormBegin(R,NORM_2,&dp);CHKERRQ(ierr);       /*   dp <- R'*R          */
      ierr = VecDotEnd   (RT,ART,&btop);CHKERRQ(ierr);
      ierr = VecNormEnd  (R,NORM_2,&dp);CHKERRQ(ierr);       /*   dp <- R'*R          */
    } else SETERRQ1(PetscObjectComm((PetscObject)ksp),PETSC_ERR_SUP,"KSPNormType of %d not supported",(int)ksp->normtype);
    if (PetscAbsScalar(btop) < 0.0) {
      ksp->reason = KSP_DIVERGED_INDEFINITE_MAT;
      ierr        = PetscInfo(ksp,"diverging due to indefinite or negative definite PC\n");CHKERRQ(ierr);
      break;
    }

    ierr = PetscObjectSAWsTakeAccess((PetscObject)ksp);CHKERRQ(ierr);
    ksp->its++;
    ksp->rnorm = dp;
    ierr       = PetscObjectSAWsGrantAccess((PetscObject)ksp);CHKERRQ(ierr);

    ierr = KSPLogResidualHistory(ksp,dp);CHKERRQ(ierr);
    ierr = KSPMonitor(ksp,i+1,dp);CHKERRQ(ierr);
    ierr = (*ksp->converged)(ksp,i+1,dp,&ksp->reason,ksp->cnvP);CHKERRQ(ierr);
    if (ksp->reason) break;

    bi   = btop/bbot;
    ierr = VecAYPX(P,bi,RT);CHKERRQ(ierr);              /*   P <- RT + Bi P     */
    ierr = VecAYPX(AP,bi,ART);CHKERRQ(ierr);            /*   AP <- ART + Bi AP  */
    i++;
  } while (i<ksp->max_it);
  if (i >= ksp->max_it) ksp->reason =  KSP_DIVERGED_ITS;
  PetscFunctionReturn(0);
}
Пример #3
0
static PetscErrorCode TaoSolve_GPCG(Tao tao)
{
  TAO_GPCG                     *gpcg = (TAO_GPCG *)tao->data;
  PetscErrorCode               ierr;
  PetscInt                     its;
  PetscReal                    actred,f,f_new,gnorm,gdx,stepsize,xtb;
  PetscReal                    xtHx;
  TaoConvergedReason           reason = TAO_CONTINUE_ITERATING;
  TaoLineSearchConvergedReason ls_status = TAOLINESEARCH_CONTINUE_ITERATING;

  PetscFunctionBegin;

  ierr = TaoComputeVariableBounds(tao);CHKERRQ(ierr);
  ierr = VecMedian(tao->XL,tao->solution,tao->XU,tao->solution);CHKERRQ(ierr);
  ierr = TaoLineSearchSetVariableBounds(tao->linesearch,tao->XL,tao->XU);CHKERRQ(ierr);

  /* Using f = .5*x'Hx + x'b + c and g=Hx + b,  compute b,c */
  ierr = TaoComputeHessian(tao,tao->solution,tao->hessian,tao->hessian_pre);CHKERRQ(ierr);
  ierr = TaoComputeObjectiveAndGradient(tao,tao->solution,&f,tao->gradient);CHKERRQ(ierr);
  ierr = VecCopy(tao->gradient, gpcg->B);CHKERRQ(ierr);
  ierr = MatMult(tao->hessian,tao->solution,gpcg->Work);CHKERRQ(ierr);
  ierr = VecDot(gpcg->Work, tao->solution, &xtHx);CHKERRQ(ierr);
  ierr = VecAXPY(gpcg->B,-1.0,gpcg->Work);CHKERRQ(ierr);
  ierr = VecDot(gpcg->B,tao->solution,&xtb);CHKERRQ(ierr);
  gpcg->c=f-xtHx/2.0-xtb;
  if (gpcg->Free_Local) {
      ierr = ISDestroy(&gpcg->Free_Local);CHKERRQ(ierr);
  }
  ierr = VecWhichBetween(tao->XL,tao->solution,tao->XU,&gpcg->Free_Local);CHKERRQ(ierr);

  /* Project the gradient and calculate the norm */
  ierr = VecCopy(tao->gradient,gpcg->G_New);CHKERRQ(ierr);
  ierr = VecBoundGradientProjection(tao->gradient,tao->solution,tao->XL,tao->XU,gpcg->PG);CHKERRQ(ierr);
  ierr = VecNorm(gpcg->PG,NORM_2,&gpcg->gnorm);CHKERRQ(ierr);
  tao->step=1.0;
  gpcg->f = f;

    /* Check Stopping Condition      */
  ierr=TaoMonitor(tao,tao->niter,f,gpcg->gnorm,0.0,tao->step,&reason);CHKERRQ(ierr);

  while (reason == TAO_CONTINUE_ITERATING){
    tao->ksp_its=0;

    ierr = GPCGGradProjections(tao);CHKERRQ(ierr);
    ierr = ISGetSize(gpcg->Free_Local,&gpcg->n_free);CHKERRQ(ierr);

    f=gpcg->f; gnorm=gpcg->gnorm;

    ierr = KSPReset(tao->ksp);CHKERRQ(ierr);

    if (gpcg->n_free > 0){
      /* Create a reduced linear system */
      ierr = VecDestroy(&gpcg->R);CHKERRQ(ierr);
      ierr = VecDestroy(&gpcg->DXFree);CHKERRQ(ierr);
      ierr = TaoVecGetSubVec(tao->gradient,gpcg->Free_Local, tao->subset_type, 0.0, &gpcg->R);CHKERRQ(ierr);
      ierr = VecScale(gpcg->R, -1.0);CHKERRQ(ierr);
      ierr = TaoVecGetSubVec(tao->stepdirection,gpcg->Free_Local,tao->subset_type, 0.0, &gpcg->DXFree);CHKERRQ(ierr);
      ierr = VecSet(gpcg->DXFree,0.0);CHKERRQ(ierr);

      ierr = TaoMatGetSubMat(tao->hessian, gpcg->Free_Local, gpcg->Work, tao->subset_type, &gpcg->Hsub);CHKERRQ(ierr);

      if (tao->hessian_pre == tao->hessian) {
        ierr = MatDestroy(&gpcg->Hsub_pre);CHKERRQ(ierr);
        ierr = PetscObjectReference((PetscObject)gpcg->Hsub);CHKERRQ(ierr);
        gpcg->Hsub_pre = gpcg->Hsub;
      }  else {
        ierr = TaoMatGetSubMat(tao->hessian, gpcg->Free_Local, gpcg->Work, tao->subset_type, &gpcg->Hsub_pre);CHKERRQ(ierr);
      }

      ierr = KSPReset(tao->ksp);CHKERRQ(ierr);
      ierr = KSPSetOperators(tao->ksp,gpcg->Hsub,gpcg->Hsub_pre);CHKERRQ(ierr);

      ierr = KSPSolve(tao->ksp,gpcg->R,gpcg->DXFree);CHKERRQ(ierr);
      ierr = KSPGetIterationNumber(tao->ksp,&its);CHKERRQ(ierr);
      tao->ksp_its+=its;
      tao->ksp_tot_its+=its;
      ierr = VecSet(tao->stepdirection,0.0);CHKERRQ(ierr);
      ierr = VecISAXPY(tao->stepdirection,gpcg->Free_Local,1.0,gpcg->DXFree);CHKERRQ(ierr);

      ierr = VecDot(tao->stepdirection,tao->gradient,&gdx);CHKERRQ(ierr);
      ierr = TaoLineSearchSetInitialStepLength(tao->linesearch,1.0);CHKERRQ(ierr);
      f_new=f;
      ierr = TaoLineSearchApply(tao->linesearch,tao->solution,&f_new,tao->gradient,tao->stepdirection,&stepsize,&ls_status);CHKERRQ(ierr);

      actred = f_new - f;

      /* Evaluate the function and gradient at the new point */
      ierr = VecBoundGradientProjection(tao->gradient,tao->solution,tao->XL,tao->XU, gpcg->PG);CHKERRQ(ierr);
      ierr = VecNorm(gpcg->PG, NORM_2, &gnorm);CHKERRQ(ierr);
      f=f_new;
      ierr = ISDestroy(&gpcg->Free_Local);CHKERRQ(ierr);
      ierr = VecWhichBetween(tao->XL,tao->solution,tao->XU,&gpcg->Free_Local);CHKERRQ(ierr);
    } else {
      actred = 0; gpcg->step=1.0;
      /* if there were no free variables, no cg method */
    }

    tao->niter++;
    ierr = TaoMonitor(tao,tao->niter,f,gnorm,0.0,gpcg->step,&reason);CHKERRQ(ierr);
    gpcg->f=f;gpcg->gnorm=gnorm; gpcg->actred=actred;
    if (reason!=TAO_CONTINUE_ITERATING) break;
  }  /* END MAIN LOOP  */

  PetscFunctionReturn(0);
}
Пример #4
0
PetscErrorCode KSPSolve_NASH(KSP ksp)
{
#ifdef PETSC_USE_COMPLEX
  SETERRQ(((PetscObject)ksp)->comm,PETSC_ERR_SUP, "NASH is not available for complex systems");
#else
  KSP_NASH       *cg = (KSP_NASH *)ksp->data;
  PetscErrorCode ierr;
  MatStructure   pflag;
  Mat            Qmat, Mmat;
  Vec            r, z, p, d;
  PC             pc;

  PetscReal      norm_r, norm_d, norm_dp1, norm_p, dMp;
  PetscReal      alpha, beta, kappa, rz, rzm1;
  PetscReal      rr, r2, step;

  PetscInt       max_cg_its;

  PetscBool      diagonalscale;

  PetscFunctionBegin;
  /***************************************************************************/
  /* Check the arguments and parameters.                                     */
  /***************************************************************************/

  ierr = PCGetDiagonalScale(ksp->pc, &diagonalscale);CHKERRQ(ierr);
  if (diagonalscale) SETERRQ1(((PetscObject)ksp)->comm,PETSC_ERR_SUP, "Krylov method %s does not support diagonal scaling", ((PetscObject)ksp)->type_name);
  if (cg->radius < 0.0) SETERRQ(((PetscObject)ksp)->comm,PETSC_ERR_ARG_OUTOFRANGE, "Input error: radius < 0");

  /***************************************************************************/
  /* Get the workspace vectors and initialize variables                      */
  /***************************************************************************/

  r2 = cg->radius * cg->radius;
  r  = ksp->work[0];
  z  = ksp->work[1];
  p  = ksp->work[2];
  d  = ksp->vec_sol;
  pc = ksp->pc;

  ierr = PCGetOperators(pc, &Qmat, &Mmat, &pflag);CHKERRQ(ierr);

  ierr = VecGetSize(d, &max_cg_its);CHKERRQ(ierr);
  max_cg_its = PetscMin(max_cg_its, ksp->max_it);
  ksp->its = 0;

  /***************************************************************************/
  /* Initialize objective function and direction.                            */
  /***************************************************************************/

  cg->o_fcn = 0.0;

  ierr = VecSet(d, 0.0);CHKERRQ(ierr);			/* d = 0             */
  cg->norm_d = 0.0;

  /***************************************************************************/
  /* Begin the conjugate gradient method.  Check the right-hand side for     */
  /* numerical problems.  The check for not-a-number and infinite values     */
  /* need be performed only once.                                            */
  /***************************************************************************/

  ierr = VecCopy(ksp->vec_rhs, r);CHKERRQ(ierr);	/* r = -grad         */
  ierr = VecDot(r, r, &rr);CHKERRQ(ierr);		/* rr = r^T r        */
  if (PetscIsInfOrNanScalar(rr)) {
    /*************************************************************************/
    /* The right-hand side contains not-a-number or an infinite value.       */
    /* The gradient step does not work; return a zero value for the step.    */
    /*************************************************************************/

    ksp->reason = KSP_DIVERGED_NAN;
    ierr = PetscInfo1(ksp, "KSPSolve_NASH: bad right-hand side: rr=%g\n", rr);CHKERRQ(ierr);
    PetscFunctionReturn(0);
  }

  /***************************************************************************/
  /* Check the preconditioner for numerical problems and for positive        */
  /* definiteness.  The check for not-a-number and infinite values need be   */
  /* performed only once.                                                    */
  /***************************************************************************/

  ierr = KSP_PCApply(ksp, r, z);CHKERRQ(ierr);		/* z = inv(M) r      */
  ierr = VecDot(r, z, &rz);CHKERRQ(ierr);		/* rz = r^T inv(M) r */
  if (PetscIsInfOrNanScalar(rz)) {
    /*************************************************************************/
    /* The preconditioner contains not-a-number or an infinite value.        */
    /* Return the gradient direction intersected with the trust region.      */
    /*************************************************************************/

    ksp->reason = KSP_DIVERGED_NAN;
    ierr = PetscInfo1(ksp, "KSPSolve_NASH: bad preconditioner: rz=%g\n", rz);CHKERRQ(ierr);

    if (cg->radius) {
      if (r2 >= rr) {
        alpha = 1.0;
        cg->norm_d = PetscSqrtReal(rr);
      }
      else {
        alpha = PetscSqrtReal(r2 / rr);
        cg->norm_d = cg->radius;
      }

      ierr = VecAXPY(d, alpha, r);CHKERRQ(ierr);	/* d = d + alpha r   */

      /***********************************************************************/
      /* Compute objective function.                                         */
      /***********************************************************************/

      ierr = KSP_MatMult(ksp, Qmat, d, z);CHKERRQ(ierr);
      ierr = VecAYPX(z, -0.5, ksp->vec_rhs);CHKERRQ(ierr);
      ierr = VecDot(d, z, &cg->o_fcn);CHKERRQ(ierr);
      cg->o_fcn = -cg->o_fcn;
      ++ksp->its;
    }
    PetscFunctionReturn(0);
  }

  if (rz < 0.0) {
    /*************************************************************************/
    /* The preconditioner is indefinite.  Because this is the first          */
    /* and we do not have a direction yet, we use the gradient step.  Note   */
    /* that we cannot use the preconditioned norm when computing the step    */
    /* because the matrix is indefinite.                                     */
    /*************************************************************************/

    ksp->reason = KSP_DIVERGED_INDEFINITE_PC;
    ierr = PetscInfo1(ksp, "KSPSolve_NASH: indefinite preconditioner: rz=%g\n", rz);CHKERRQ(ierr);

    if (cg->radius) {
      if (r2 >= rr) {
        alpha = 1.0;
        cg->norm_d = PetscSqrtReal(rr);
      }
      else {
        alpha = PetscSqrtReal(r2 / rr);
        cg->norm_d = cg->radius;
      }

      ierr = VecAXPY(d, alpha, r);CHKERRQ(ierr);	/* d = d + alpha r   */

      /***********************************************************************/
      /* Compute objective function.                                         */
      /***********************************************************************/

      ierr = KSP_MatMult(ksp, Qmat, d, z);CHKERRQ(ierr);
      ierr = VecAYPX(z, -0.5, ksp->vec_rhs);CHKERRQ(ierr);
      ierr = VecDot(d, z, &cg->o_fcn);CHKERRQ(ierr);
      cg->o_fcn = -cg->o_fcn;
      ++ksp->its;
    }
    PetscFunctionReturn(0);
  }

  /***************************************************************************/
  /* As far as we know, the preconditioner is positive semidefinite.         */
  /* Compute and log the residual.  Check convergence because this           */
  /* initializes things, but do not terminate until at least one conjugate   */
  /* gradient iteration has been performed.                                  */
  /***************************************************************************/

  switch(ksp->normtype) {
  case KSP_NORM_PRECONDITIONED:
    ierr = VecNorm(z, NORM_2, &norm_r);CHKERRQ(ierr);	/* norm_r = |z|      */
    break;

  case KSP_NORM_UNPRECONDITIONED:
    norm_r = PetscSqrtReal(rr);					/* norm_r = |r|      */
    break;

  case KSP_NORM_NATURAL:
    norm_r = PetscSqrtReal(rz);					/* norm_r = |r|_M    */
    break;

  default:
    norm_r = 0.0;
    break;
  }

  KSPLogResidualHistory(ksp, norm_r);
  ierr = KSPMonitor(ksp, ksp->its, norm_r);CHKERRQ(ierr);
  ksp->rnorm = norm_r;

  ierr = (*ksp->converged)(ksp, ksp->its, norm_r, &ksp->reason, ksp->cnvP);CHKERRQ(ierr);

  /***************************************************************************/
  /* Compute the first direction and update the iteration.                   */
  /***************************************************************************/

  ierr = VecCopy(z, p);CHKERRQ(ierr);			/* p = z             */
  ierr = KSP_MatMult(ksp, Qmat, p, z);CHKERRQ(ierr);	/* z = Q * p         */
  ++ksp->its;

  /***************************************************************************/
  /* Check the matrix for numerical problems.                                */
  /***************************************************************************/

  ierr = VecDot(p, z, &kappa);CHKERRQ(ierr);		/* kappa = p^T Q p   */
  if (PetscIsInfOrNanScalar(kappa)) {
    /*************************************************************************/
    /* The matrix produced not-a-number or an infinite value.  In this case, */
    /* we must stop and use the gradient direction.  This condition need     */
    /* only be checked once.                                                 */
    /*************************************************************************/

    ksp->reason = KSP_DIVERGED_NAN;
    ierr = PetscInfo1(ksp, "KSPSolve_NASH: bad matrix: kappa=%g\n", kappa);CHKERRQ(ierr);

    if (cg->radius) {
      if (r2 >= rr) {
        alpha = 1.0;
        cg->norm_d = PetscSqrtReal(rr);
      }
      else {
        alpha = PetscSqrtReal(r2 / rr);
        cg->norm_d = cg->radius;
      }

      ierr = VecAXPY(d, alpha, r);CHKERRQ(ierr);	/* d = d + alpha r   */

      /***********************************************************************/
      /* Compute objective function.                                         */
      /***********************************************************************/

      ierr = KSP_MatMult(ksp, Qmat, d, z);CHKERRQ(ierr);
      ierr = VecAYPX(z, -0.5, ksp->vec_rhs);CHKERRQ(ierr);
      ierr = VecDot(d, z, &cg->o_fcn);CHKERRQ(ierr);
      cg->o_fcn = -cg->o_fcn;
      ++ksp->its;
    }
    PetscFunctionReturn(0);
  }

  /***************************************************************************/
  /* Initialize variables for calculating the norm of the direction.         */
  /***************************************************************************/

  dMp = 0.0;
  norm_d = 0.0;
  switch(cg->dtype) {
  case NASH_PRECONDITIONED_DIRECTION:
    norm_p = rz;
    break;

  default:
    ierr = VecDot(p, p, &norm_p);CHKERRQ(ierr);
    break;
  }

  /***************************************************************************/
  /* Check for negative curvature.                                           */
  /***************************************************************************/

  if (kappa <= 0.0) {
    /*************************************************************************/
    /* In this case, the matrix is indefinite and we have encountered a      */
    /* direction of negative curvature.  Because negative curvature occurs   */
    /* during the first step, we must follow a direction.                    */
    /*************************************************************************/

    ksp->reason = KSP_CONVERGED_CG_NEG_CURVE;
    ierr = PetscInfo1(ksp, "KSPSolve_NASH: negative curvature: kappa=%g\n", kappa);CHKERRQ(ierr);

    if (cg->radius && norm_p > 0.0) {
      /***********************************************************************/
      /* Follow direction of negative curvature to the boundary of the       */
      /* trust region.                                                       */
      /***********************************************************************/

      step = PetscSqrtReal(r2 / norm_p);
      cg->norm_d = cg->radius;

      ierr = VecAXPY(d, step, p);CHKERRQ(ierr);	/* d = d + step p    */

      /***********************************************************************/
      /* Update objective function.                                          */
      /***********************************************************************/

      cg->o_fcn += step * (0.5 * step * kappa - rz);
    }
    else if (cg->radius) {
      /***********************************************************************/
      /* The norm of the preconditioned direction is zero; use the gradient  */
      /* step.                                                               */
      /***********************************************************************/

      if (r2 >= rr) {
        alpha = 1.0;
        cg->norm_d = PetscSqrtReal(rr);
      }
      else {
        alpha = PetscSqrtReal(r2 / rr);
        cg->norm_d = cg->radius;
      }

      ierr = VecAXPY(d, alpha, r);CHKERRQ(ierr);	/* d = d + alpha r   */

      /***********************************************************************/
      /* Compute objective function.                                         */
      /***********************************************************************/

      ierr = KSP_MatMult(ksp, Qmat, d, z);CHKERRQ(ierr);
      ierr = VecAYPX(z, -0.5, ksp->vec_rhs);CHKERRQ(ierr);
      ierr = VecDot(d, z, &cg->o_fcn);CHKERRQ(ierr);
      cg->o_fcn = -cg->o_fcn;
      ++ksp->its;
    }
    PetscFunctionReturn(0);
  }

  /***************************************************************************/
  /* Run the conjugate gradient method until either the problem is solved,   */
  /* we encounter the boundary of the trust region, or the conjugate         */
  /* gradient method breaks down.                                            */
  /***************************************************************************/

  while(1) {
    /*************************************************************************/
    /* Know that kappa is nonzero, because we have not broken down, so we    */
    /* can compute the steplength.                                           */
    /*************************************************************************/

    alpha = rz / kappa;

    /*************************************************************************/
    /* Compute the steplength and check for intersection with the trust      */
    /* region.                                                               */
    /*************************************************************************/

    norm_dp1 = norm_d + alpha*(2.0*dMp + alpha*norm_p);
    if (cg->radius && norm_dp1 >= r2) {
      /***********************************************************************/
      /* In this case, the matrix is positive definite as far as we know.    */
      /* However, the full step goes beyond the trust region.                */
      /***********************************************************************/

      ksp->reason = KSP_CONVERGED_CG_CONSTRAINED;
      ierr = PetscInfo1(ksp, "KSPSolve_NASH: constrained step: radius=%g\n", cg->radius);CHKERRQ(ierr);

      if (norm_p > 0.0) {
	/*********************************************************************/
	/* Follow the direction to the boundary of the trust region.         */
	/*********************************************************************/

        step = (PetscSqrtReal(dMp*dMp+norm_p*(r2-norm_d))-dMp)/norm_p;
        cg->norm_d = cg->radius;

        ierr = VecAXPY(d, step, p);CHKERRQ(ierr);	/* d = d + step p    */

        /*********************************************************************/
        /* Update objective function.                                        */
        /*********************************************************************/

        cg->o_fcn += step * (0.5 * step * kappa - rz);
      }
      else {
        /*********************************************************************/
        /* The norm of the direction is zero; there is nothing to follow.    */
        /*********************************************************************/
      }
      break;
    }

    /*************************************************************************/
    /* Now we can update the direction and residual.                         */
    /*************************************************************************/

    ierr = VecAXPY(d, alpha, p);CHKERRQ(ierr);		/* d = d + alpha p   */
    ierr = VecAXPY(r, -alpha, z);			/* r = r - alpha Q p */
    ierr = KSP_PCApply(ksp, r, z);CHKERRQ(ierr);	/* z = inv(M) r      */

    switch(cg->dtype) {
    case NASH_PRECONDITIONED_DIRECTION:
      norm_d = norm_dp1;
      break;

    default:
      ierr = VecDot(d, d, &norm_d);CHKERRQ(ierr);
      break;
    }
    cg->norm_d = PetscSqrtReal(norm_d);

    /*************************************************************************/
    /* Update objective function.                                            */
    /*************************************************************************/

    cg->o_fcn -= 0.5 * alpha * rz;

    /*************************************************************************/
    /* Check that the preconditioner appears positive semidefinite.          */
    /*************************************************************************/

    rzm1 = rz;
    ierr = VecDot(r, z, &rz);CHKERRQ(ierr);		/* rz = r^T z        */
    if (rz < 0.0) {
      /***********************************************************************/
      /* The preconditioner is indefinite.                                   */
      /***********************************************************************/

      ksp->reason = KSP_DIVERGED_INDEFINITE_PC;
      ierr = PetscInfo1(ksp, "KSPSolve_NASH: cg indefinite preconditioner: rz=%g\n", rz);CHKERRQ(ierr);
      break;
    }

    /*************************************************************************/
    /* As far as we know, the preconditioner is positive semidefinite.       */
    /* Compute the residual and check for convergence.                       */
    /*************************************************************************/

    switch(ksp->normtype) {
    case KSP_NORM_PRECONDITIONED:
      ierr = VecNorm(z, NORM_2, &norm_r);CHKERRQ(ierr);/* norm_r = |z|      */
      break;

    case KSP_NORM_UNPRECONDITIONED:
      ierr = VecNorm(r, NORM_2, &norm_r);CHKERRQ(ierr);/* norm_r = |r|      */
      break;

    case KSP_NORM_NATURAL:
      norm_r = PetscSqrtReal(rz);				/* norm_r = |r|_M    */
      break;

    default:
      norm_r = 0.;
      break;
    }

    KSPLogResidualHistory(ksp, norm_r);
    ierr = KSPMonitor(ksp, ksp->its, norm_r);CHKERRQ(ierr);
    ksp->rnorm = norm_r;
  
    ierr = (*ksp->converged)(ksp, ksp->its, norm_r, &ksp->reason, ksp->cnvP);CHKERRQ(ierr);
    if (ksp->reason) {
      /***********************************************************************/
      /* The method has converged.                                           */
      /***********************************************************************/

      ierr = PetscInfo2(ksp, "KSPSolve_NASH: truncated step: rnorm=%g, radius=%g\n", norm_r, cg->radius);CHKERRQ(ierr);
      break;
    }

    /*************************************************************************/
    /* We have not converged yet.  Check for breakdown.                      */
    /*************************************************************************/

    beta = rz / rzm1;
    if (fabs(beta) <= 0.0) {
      /***********************************************************************/
      /* Conjugate gradients has broken down.                                */
      /***********************************************************************/

      ksp->reason = KSP_DIVERGED_BREAKDOWN;
      ierr = PetscInfo1(ksp, "KSPSolve_NASH: breakdown: beta=%g\n", beta);CHKERRQ(ierr);
      break;
    }

    /*************************************************************************/
    /* Check iteration limit.                                                */
    /*************************************************************************/

    if (ksp->its >= max_cg_its) {
      ksp->reason = KSP_DIVERGED_ITS;
      ierr = PetscInfo1(ksp, "KSPSolve_NASH: iterlim: its=%d\n", ksp->its);CHKERRQ(ierr);
      break;
    }

    /*************************************************************************/
    /* Update p and the norms.                                               */
    /*************************************************************************/

    ierr = VecAYPX(p, beta, z);CHKERRQ(ierr);          /* p = z + beta p    */

    switch(cg->dtype) {
    case NASH_PRECONDITIONED_DIRECTION:
      dMp = beta*(dMp + alpha*norm_p);
      norm_p = beta*(rzm1 + beta*norm_p);
      break;

    default:
      ierr = VecDot(d, p, &dMp);CHKERRQ(ierr);
      ierr = VecDot(p, p, &norm_p);CHKERRQ(ierr);
      break;
    }

    /*************************************************************************/
    /* Compute the new direction and update the iteration.                   */
    /*************************************************************************/

    ierr = KSP_MatMult(ksp, Qmat, p, z);CHKERRQ(ierr);	/* z = Q * p         */
    ierr = VecDot(p, z, &kappa);CHKERRQ(ierr);		/* kappa = p^T Q p   */
    ++ksp->its;

    /*************************************************************************/
    /* Check for negative curvature.                                         */
    /*************************************************************************/

    if (kappa <= 0.0) {
      /***********************************************************************/
      /* In this case, the matrix is indefinite and we have encountered      */
      /* a direction of negative curvature.  Stop at the base.               */
      /***********************************************************************/

      ksp->reason = KSP_CONVERGED_CG_NEG_CURVE;
      ierr = PetscInfo1(ksp, "KSPSolve_NASH: negative curvature: kappa=%g\n", kappa);CHKERRQ(ierr);
      break;
    }
  }

  PetscFunctionReturn(0);
#endif
}
Пример #5
0
static PetscErrorCode TaoSolve_BQPIP(Tao tao)
{
  TAO_BQPIP          *qp = (TAO_BQPIP*)tao->data;
  PetscErrorCode     ierr;
  PetscInt           iter=0,its;
  PetscReal          d1,d2,ksptol,sigma;
  PetscReal          sigmamu;
  PetscReal          dstep,pstep,step=0;
  PetscReal          gap[4];
  TaoConvergedReason reason;

  PetscFunctionBegin;
  qp->dobj           = 0.0;
  qp->pobj           = 1.0;
  qp->gap            = 10.0;
  qp->rgap           = 1.0;
  qp->mu             = 1.0;
  qp->sigma          = 1.0;
  qp->dinfeas        = 1.0;
  qp->psteplength    = 0.0;
  qp->dsteplength    = 0.0;

  /* Tighten infinite bounds, things break when we don't do this
    -- see test_bqpip.c
  */
  ierr = VecSet(qp->XU,1.0e20);CHKERRQ(ierr);
  ierr = VecSet(qp->XL,-1.0e20);CHKERRQ(ierr);
  ierr = VecPointwiseMax(qp->XL,qp->XL,tao->XL);CHKERRQ(ierr);
  ierr = VecPointwiseMin(qp->XU,qp->XU,tao->XU);CHKERRQ(ierr);

  ierr = TaoComputeObjectiveAndGradient(tao,tao->solution,&qp->c,qp->C0);CHKERRQ(ierr);
  ierr = TaoComputeHessian(tao,tao->solution,tao->hessian,tao->hessian_pre);CHKERRQ(ierr);
  ierr = MatMult(tao->hessian, tao->solution, qp->Work);CHKERRQ(ierr);
  ierr = VecDot(tao->solution, qp->Work, &d1);CHKERRQ(ierr);
  ierr = VecAXPY(qp->C0, -1.0, qp->Work);CHKERRQ(ierr);
  ierr = VecDot(qp->C0, tao->solution, &d2);CHKERRQ(ierr);
  qp->c -= (d1/2.0+d2);
  ierr = MatGetDiagonal(tao->hessian, qp->HDiag);CHKERRQ(ierr);

  ierr = QPIPSetInitialPoint(qp,tao);CHKERRQ(ierr);
  ierr = QPIPComputeResidual(qp,tao);CHKERRQ(ierr);

  /* Enter main loop */
  while (1){

    /* Check Stopping Condition      */
    ierr = TaoMonitor(tao,iter++,qp->pobj,PetscSqrtScalar(qp->gap + qp->dinfeas),
                            qp->pinfeas, step, &reason);CHKERRQ(ierr);
    if (reason != TAO_CONTINUE_ITERATING) break;

    /*
       Dual Infeasibility Direction should already be in the right
       hand side from computing the residuals
    */

    ierr = QPIPComputeNormFromCentralPath(qp,&d1);CHKERRQ(ierr);

    if (iter > 0 && (qp->rnorm>5*qp->mu || d1*d1>qp->m*qp->mu*qp->mu) ) {
      sigma=1.0;sigmamu=qp->mu;
      sigma=0.0;sigmamu=0;
    } else {
      sigma=0.0;sigmamu=0;
    }
    ierr = VecSet(qp->DZ, sigmamu);CHKERRQ(ierr);
    ierr = VecSet(qp->DS, sigmamu);CHKERRQ(ierr);

    if (sigmamu !=0){
      ierr = VecPointwiseDivide(qp->DZ, qp->DZ, qp->G);CHKERRQ(ierr);
      ierr = VecPointwiseDivide(qp->DS, qp->DS, qp->T);CHKERRQ(ierr);
      ierr = VecCopy(qp->DZ,qp->RHS2);CHKERRQ(ierr);
      ierr = VecAXPY(qp->RHS2, 1.0, qp->DS);CHKERRQ(ierr);
    } else {
      ierr = VecZeroEntries(qp->RHS2);CHKERRQ(ierr);
    }


    /*
       Compute the Primal Infeasiblitiy RHS and the
       Diagonal Matrix to be added to H and store in Work
    */
    ierr = VecPointwiseDivide(qp->DiagAxpy, qp->Z, qp->G);CHKERRQ(ierr);
    ierr = VecPointwiseMult(qp->GZwork, qp->DiagAxpy, qp->R3);CHKERRQ(ierr);
    ierr = VecAXPY(qp->RHS, -1.0, qp->GZwork);CHKERRQ(ierr);

    ierr = VecPointwiseDivide(qp->TSwork, qp->S, qp->T);CHKERRQ(ierr);
    ierr = VecAXPY(qp->DiagAxpy, 1.0, qp->TSwork);CHKERRQ(ierr);
    ierr = VecPointwiseMult(qp->TSwork, qp->TSwork, qp->R5);CHKERRQ(ierr);
    ierr = VecAXPY(qp->RHS, -1.0, qp->TSwork);CHKERRQ(ierr);
    ierr = VecAXPY(qp->RHS2, 1.0, qp->RHS);CHKERRQ(ierr);

    /*  Determine the solving tolerance */
    ksptol = qp->mu/10.0;
    ksptol = PetscMin(ksptol,0.001);

    ierr = MatDiagonalSet(tao->hessian, qp->DiagAxpy, ADD_VALUES);CHKERRQ(ierr);
    ierr = MatAssemblyBegin(tao->hessian,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
    ierr = MatAssemblyEnd(tao->hessian,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);

    ierr = KSPSetOperators(tao->ksp, tao->hessian, tao->hessian_pre);CHKERRQ(ierr);
    ierr = KSPSolve(tao->ksp, qp->RHS, tao->stepdirection);CHKERRQ(ierr);
    ierr = KSPGetIterationNumber(tao->ksp,&its);CHKERRQ(ierr);
    tao->ksp_its+=its;

    ierr = VecScale(qp->DiagAxpy, -1.0);CHKERRQ(ierr);
    ierr = MatDiagonalSet(tao->hessian, qp->DiagAxpy, ADD_VALUES);CHKERRQ(ierr);
    ierr = MatAssemblyBegin(tao->hessian,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
    ierr = MatAssemblyEnd(tao->hessian,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
    ierr = VecScale(qp->DiagAxpy, -1.0);CHKERRQ(ierr);
    ierr = QPComputeStepDirection(qp,tao);CHKERRQ(ierr);
    ierr = QPStepLength(qp); CHKERRQ(ierr);

    /* Calculate New Residual R1 in Work vector */
    ierr = MatMult(tao->hessian, tao->stepdirection, qp->RHS2);CHKERRQ(ierr);
    ierr = VecAXPY(qp->RHS2, 1.0, qp->DS);CHKERRQ(ierr);
    ierr = VecAXPY(qp->RHS2, -1.0, qp->DZ);CHKERRQ(ierr);
    ierr = VecAYPX(qp->RHS2, qp->dsteplength, tao->gradient);CHKERRQ(ierr);

    ierr = VecNorm(qp->RHS2, NORM_2, &qp->dinfeas);CHKERRQ(ierr);
    ierr = VecDot(qp->DZ, qp->DG, gap);CHKERRQ(ierr);
    ierr = VecDot(qp->DS, qp->DT, gap+1);CHKERRQ(ierr);

    qp->rnorm=(qp->dinfeas+qp->psteplength*qp->pinfeas)/(qp->m+qp->n);
    pstep = qp->psteplength; dstep = qp->dsteplength;
    step = PetscMin(qp->psteplength,qp->dsteplength);
    sigmamu= ( pstep*pstep*(gap[0]+gap[1]) +
               (1 - pstep + pstep*sigma)*qp->gap  )/qp->m;

    if (qp->predcorr && step < 0.9){
      if (sigmamu < qp->mu){
        sigmamu=sigmamu/qp->mu;
        sigmamu=sigmamu*sigmamu*sigmamu;
      } else {sigmamu = 1.0;}
      sigmamu = sigmamu*qp->mu;

      /* Compute Corrector Step */
      ierr = VecPointwiseMult(qp->DZ, qp->DG, qp->DZ);CHKERRQ(ierr);
      ierr = VecScale(qp->DZ, -1.0);CHKERRQ(ierr);
      ierr = VecShift(qp->DZ, sigmamu);CHKERRQ(ierr);
      ierr = VecPointwiseDivide(qp->DZ, qp->DZ, qp->G);CHKERRQ(ierr);

      ierr = VecPointwiseMult(qp->DS, qp->DS, qp->DT);CHKERRQ(ierr);
      ierr = VecScale(qp->DS, -1.0);CHKERRQ(ierr);
      ierr = VecShift(qp->DS, sigmamu);CHKERRQ(ierr);
      ierr = VecPointwiseDivide(qp->DS, qp->DS, qp->T);CHKERRQ(ierr);

      ierr = VecCopy(qp->DZ, qp->RHS2);CHKERRQ(ierr);
      ierr = VecAXPY(qp->RHS2, -1.0, qp->DS);CHKERRQ(ierr);
      ierr = VecAXPY(qp->RHS2, 1.0, qp->RHS);CHKERRQ(ierr);

      /* Approximately solve the linear system */
      ierr = MatDiagonalSet(tao->hessian, qp->DiagAxpy, ADD_VALUES);CHKERRQ(ierr);
      ierr = MatAssemblyBegin(tao->hessian,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
      ierr = MatAssemblyEnd(tao->hessian,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
      ierr = KSPSolve(tao->ksp, qp->RHS2, tao->stepdirection);CHKERRQ(ierr);
      ierr = KSPGetIterationNumber(tao->ksp,&its);CHKERRQ(ierr);
      tao->ksp_its+=its;

      ierr = MatDiagonalSet(tao->hessian, qp->HDiag, INSERT_VALUES);CHKERRQ(ierr);
      ierr = MatAssemblyBegin(tao->hessian,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
      ierr = MatAssemblyEnd(tao->hessian,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
      ierr = QPComputeStepDirection(qp,tao);CHKERRQ(ierr);
      ierr = QPStepLength(qp);CHKERRQ(ierr);

    }  /* End Corrector step */


    /* Take the step */
    pstep = qp->psteplength; dstep = qp->dsteplength;

    ierr = VecAXPY(qp->Z, dstep, qp->DZ);CHKERRQ(ierr);
    ierr = VecAXPY(qp->S, dstep, qp->DS);CHKERRQ(ierr);
    ierr = VecAXPY(tao->solution, dstep, tao->stepdirection);CHKERRQ(ierr);
    ierr = VecAXPY(qp->G, dstep, qp->DG);CHKERRQ(ierr);
    ierr = VecAXPY(qp->T, dstep, qp->DT);CHKERRQ(ierr);

    /* Compute Residuals */
    ierr = QPIPComputeResidual(qp,tao);CHKERRQ(ierr);

    /* Evaluate quadratic function */
    ierr = MatMult(tao->hessian, tao->solution, qp->Work);CHKERRQ(ierr);

    ierr = VecDot(tao->solution, qp->Work, &d1);CHKERRQ(ierr);
    ierr = VecDot(tao->solution, qp->C0, &d2);CHKERRQ(ierr);
    ierr = VecDot(qp->G, qp->Z, gap);CHKERRQ(ierr);
    ierr = VecDot(qp->T, qp->S, gap+1);CHKERRQ(ierr);

    qp->pobj=d1/2.0 + d2+qp->c;
    /* Compute the duality gap */
    qp->gap = (gap[0]+gap[1]);
    qp->dobj = qp->pobj - qp->gap;
    if (qp->m>0) qp->mu=qp->gap/(qp->m);
    qp->rgap=qp->gap/( PetscAbsReal(qp->dobj) + PetscAbsReal(qp->pobj) + 1.0 );
  }  /* END MAIN LOOP  */

  PetscFunctionReturn(0);
}
Пример #6
0
PetscErrorCode  KSPSolve_SYMMLQ(KSP ksp)
{
  PetscErrorCode ierr;
  PetscInt       i;
  PetscScalar    alpha,beta,ibeta,betaold,beta1,ceta = 0,ceta_oold = 0.0, ceta_old = 0.0,ceta_bar;
  PetscScalar    c  = 1.0,cold=1.0,s=0.0,sold=0.0,coold,soold,rho0,rho1,rho2,rho3;
  PetscScalar    dp = 0.0;
  PetscReal      np,s_prod;
  Vec            X,B,R,Z,U,V,W,UOLD,VOLD,Wbar;
  Mat            Amat,Pmat;
  KSP_SYMMLQ     *symmlq = (KSP_SYMMLQ*)ksp->data;
  PetscBool      diagonalscale;

  PetscFunctionBegin;
  ierr = PCGetDiagonalScale(ksp->pc,&diagonalscale);CHKERRQ(ierr);
  if (diagonalscale) SETERRQ1(PetscObjectComm((PetscObject)ksp),PETSC_ERR_SUP,"Krylov method %s does not support diagonal scaling",((PetscObject)ksp)->type_name);

  X    = ksp->vec_sol;
  B    = ksp->vec_rhs;
  R    = ksp->work[0];
  Z    = ksp->work[1];
  U    = ksp->work[2];
  V    = ksp->work[3];
  W    = ksp->work[4];
  UOLD = ksp->work[5];
  VOLD = ksp->work[6];
  Wbar = ksp->work[7];

  ierr = PCGetOperators(ksp->pc,&Amat,&Pmat);CHKERRQ(ierr);

  ksp->its = 0;

  ierr = VecSet(UOLD,0.0);CHKERRQ(ierr);           /* u_old <- zeros;  */
  ierr = VecCopy(UOLD,VOLD);CHKERRQ(ierr);          /* v_old <- u_old;  */
  ierr = VecCopy(UOLD,W);CHKERRQ(ierr);             /* w     <- u_old;  */
  ierr = VecCopy(UOLD,Wbar);CHKERRQ(ierr);          /* w_bar <- u_old;  */
  if (!ksp->guess_zero) {
    ierr = KSP_MatMult(ksp,Amat,X,R);CHKERRQ(ierr); /*     r <- b - A*x */
    ierr = VecAYPX(R,-1.0,B);CHKERRQ(ierr);
  } else {
    ierr = VecCopy(B,R);CHKERRQ(ierr);              /*     r <- b (x is 0) */
  }

  ierr = KSP_PCApply(ksp,R,Z);CHKERRQ(ierr); /* z  <- B*r       */
  ierr = VecDot(R,Z,&dp);CHKERRQ(ierr);             /* dp = r'*z;      */
  if (PetscAbsScalar(dp) < symmlq->haptol) {
    ierr        = PetscInfo2(ksp,"Detected happy breakdown %g tolerance %g\n",(double)PetscAbsScalar(dp),(double)symmlq->haptol);CHKERRQ(ierr);
    ksp->rnorm  = 0.0;  /* what should we really put here? */
    ksp->reason = KSP_CONVERGED_HAPPY_BREAKDOWN;  /* bugfix proposed by Lourens ([email protected]) */
    PetscFunctionReturn(0);
  }

#if !defined(PETSC_USE_COMPLEX)
  if (dp < 0.0) {
    ksp->reason = KSP_DIVERGED_INDEFINITE_PC;
    PetscFunctionReturn(0);
  }
#endif
  dp     = PetscSqrtScalar(dp);
  beta   = dp;                         /*  beta <- sqrt(r'*z)  */
  beta1  = beta;
  s_prod = PetscAbsScalar(beta1);

  ierr  = VecCopy(R,V);CHKERRQ(ierr); /* v <- r; */
  ierr  = VecCopy(Z,U);CHKERRQ(ierr); /* u <- z; */
  ibeta = 1.0 / beta;
  ierr  = VecScale(V,ibeta);CHKERRQ(ierr);    /* v <- ibeta*v; */
  ierr  = VecScale(U,ibeta);CHKERRQ(ierr);    /* u <- ibeta*u; */
  ierr  = VecCopy(U,Wbar);CHKERRQ(ierr);       /* w_bar <- u;   */
  ierr  = VecNorm(Z,NORM_2,&np);CHKERRQ(ierr);     /*   np <- ||z||        */
  ierr = KSPLogResidualHistory(ksp,np);CHKERRQ(ierr);
  ierr       = KSPMonitor(ksp,0,np);CHKERRQ(ierr);
  ksp->rnorm = np;
  ierr       = (*ksp->converged)(ksp,0,np,&ksp->reason,ksp->cnvP);CHKERRQ(ierr); /* test for convergence */
  if (ksp->reason) PetscFunctionReturn(0);

  i = 0; ceta = 0.;
  do {
    ksp->its = i+1;

    /*    Update    */
    if (ksp->its > 1) {
      ierr = VecCopy(V,VOLD);CHKERRQ(ierr);  /* v_old <- v; */
      ierr = VecCopy(U,UOLD);CHKERRQ(ierr);  /* u_old <- u; */

      ierr = VecCopy(R,V);CHKERRQ(ierr);
      ierr = VecScale(V,1.0/beta);CHKERRQ(ierr); /* v <- ibeta*r; */
      ierr = VecCopy(Z,U);CHKERRQ(ierr);
      ierr = VecScale(U,1.0/beta);CHKERRQ(ierr); /* u <- ibeta*z; */

      ierr = VecCopy(Wbar,W);CHKERRQ(ierr);
      ierr = VecScale(W,c);CHKERRQ(ierr);
      ierr = VecAXPY(W,s,U);CHKERRQ(ierr);   /* w  <- c*w_bar + s*u;    (w_k) */
      ierr = VecScale(Wbar,-s);CHKERRQ(ierr);
      ierr = VecAXPY(Wbar,c,U);CHKERRQ(ierr); /* w_bar <- -s*w_bar + c*u; (w_bar_(k+1)) */
      ierr = VecAXPY(X,ceta,W);CHKERRQ(ierr); /* x <- x + ceta * w;       (xL_k)  */

      ceta_oold = ceta_old;
      ceta_old  = ceta;
    }

    /*   Lanczos  */
    ierr = KSP_MatMult(ksp,Amat,U,R);CHKERRQ(ierr);   /*  r     <- Amat*u; */
    ierr = VecDot(U,R,&alpha);CHKERRQ(ierr);          /*  alpha <- u'*r;   */
    ierr = KSP_PCApply(ksp,R,Z);CHKERRQ(ierr); /*      z <- B*r;    */

    ierr    = VecAXPY(R,-alpha,V);CHKERRQ(ierr);   /*  r <- r - alpha* v;  */
    ierr    = VecAXPY(Z,-alpha,U);CHKERRQ(ierr);   /*  z <- z - alpha* u;  */
    ierr    = VecAXPY(R,-beta,VOLD);CHKERRQ(ierr); /*  r <- r - beta * v_old; */
    ierr    = VecAXPY(Z,-beta,UOLD);CHKERRQ(ierr); /*  z <- z - beta * u_old; */
    betaold = beta;                                /* beta_k                  */
    ierr    = VecDot(R,Z,&dp);CHKERRQ(ierr);       /* dp <- r'*z;             */
    if (PetscAbsScalar(dp) < symmlq->haptol) {
      ierr = PetscInfo2(ksp,"Detected happy breakdown %g tolerance %g\n",(double)PetscAbsScalar(dp),(double)symmlq->haptol);CHKERRQ(ierr);
      dp   = 0.0;
    }

#if !defined(PETSC_USE_COMPLEX)
    if (dp < 0.0) {
      ksp->reason = KSP_DIVERGED_INDEFINITE_PC;
      break;
    }
#endif
    beta = PetscSqrtScalar(dp);                    /*  beta = sqrt(dp); */

    /*    QR factorization    */
    coold = cold; cold = c; soold = sold; sold = s;
    rho0  = cold * alpha - coold * sold * betaold;   /* gamma_bar */
    rho1  = PetscSqrtScalar(rho0*rho0 + beta*beta);  /* gamma     */
    rho2  = sold * alpha + coold * cold * betaold;   /* delta     */
    rho3  = soold * betaold;                         /* epsilon   */

    /* Givens rotation: [c -s; s c] (different from the Reference!) */
    c = rho0 / rho1; s = beta / rho1;

    if (ksp->its==1) ceta = beta1/rho1;
    else ceta = -(rho2*ceta_old + rho3*ceta_oold)/rho1;

    s_prod = s_prod*PetscAbsScalar(s);
    if (c == 0.0) np = s_prod*1.e16;
    else np = s_prod/PetscAbsScalar(c);       /* residual norm for xc_k (CGNORM) */

    ksp->rnorm = np;
    ierr = KSPLogResidualHistory(ksp,np);CHKERRQ(ierr);
    ierr = KSPMonitor(ksp,i+1,np);CHKERRQ(ierr);
    ierr = (*ksp->converged)(ksp,i+1,np,&ksp->reason,ksp->cnvP);CHKERRQ(ierr); /* test for convergence */
    if (ksp->reason) break;
    i++;
  } while (i<ksp->max_it);

  /* move to the CG point: xc_(k+1) */
  if (c == 0.0) ceta_bar = ceta*1.e15;
  else ceta_bar = ceta/c;

  ierr = VecAXPY(X,ceta_bar,Wbar);CHKERRQ(ierr); /* x <- x + ceta_bar*w_bar */

  if (i >= ksp->max_it) ksp->reason = KSP_DIVERGED_ITS;
  PetscFunctionReturn(0);
}
Пример #7
0
PetscErrorCode FormGradient(SNES snes, Vec X, Vec G,void *ctx)
{
  AppCtx         *user=(AppCtx*)ctx;
  PetscErrorCode info;
  PetscInt       i,j,k,kk;
  PetscInt       row[5],col[5];
  PetscInt       nx,ny,xs,xm,ys,ym;
  PetscReal      one=1.0, two=2.0, six=6.0,pi=4.0*atan(1.0);
  PetscReal      hx,hy,hxhy,hxhx,hyhy;
  PetscReal      xi,v[5];
  PetscReal      ecc=user->ecc, trule1,trule2,trule3,trule4,trule5,trule6;
  PetscReal      vmiddle, vup, vdown, vleft, vright;
  PetscReal      tt;
  PetscReal      **x,**g;
  PetscReal      zero=0.0;
  Vec            localX;

  PetscFunctionBeginUser;
  nx   = user->nx;
  ny   = user->ny;
  hx   = two*pi/(nx+1.0);
  hy   = two*user->b/(ny+1.0);
  hxhy = hx*hy;
  hxhx = one/(hx*hx);
  hyhy = one/(hy*hy);

  info = VecSet(G, zero);CHKERRQ(info);

  /* Get local vector */
  info = DMGetLocalVector(user->da,&localX);CHKERRQ(info);
  /* Get ghoist points */
  info = DMGlobalToLocalBegin(user->da,X,INSERT_VALUES,localX);CHKERRQ(info);
  info = DMGlobalToLocalEnd(user->da,X,INSERT_VALUES,localX);CHKERRQ(info);
  /* Get pointer to vector data */
  info = DMDAVecGetArray(user->da,localX,&x);CHKERRQ(info);
  info = DMDAVecGetArray(user->da,G,&g);CHKERRQ(info);

  info = DMDAGetCorners(user->da,&xs,&ys,NULL,&xm,&ym,NULL);CHKERRQ(info);

  for (i=xs; i< xs+xm; i++) {
    xi     = (i+1)*hx;
    trule1 = hxhy*(p(xi,ecc) + p(xi+hx,ecc) + p(xi,ecc)) / six; /* L(i,j) */
    trule2 = hxhy*(p(xi,ecc) + p(xi-hx,ecc) + p(xi,ecc)) / six; /* U(i,j) */
    trule3 = hxhy*(p(xi,ecc) + p(xi+hx,ecc) + p(xi+hx,ecc)) / six; /* U(i+1,j) */
    trule4 = hxhy*(p(xi,ecc) + p(xi-hx,ecc) + p(xi-hx,ecc)) / six; /* L(i-1,j) */
    trule5 = trule1; /* L(i,j-1) */
    trule6 = trule2; /* U(i,j+1) */

    vdown   = -(trule5+trule2)*hyhy;
    vleft   = -hxhx*(trule2+trule4);
    vright  = -hxhx*(trule1+trule3);
    vup     = -hyhy*(trule1+trule6);
    vmiddle = (hxhx)*(trule1+trule2+trule3+trule4)+hyhy*(trule1+trule2+trule5+trule6);

    for (j=ys; j<ys+ym; j++) {

      v[0]=0; v[1]=0; v[2]=0; v[3]=0; v[4]=0;

      k=0;
      if (j > 0) {
        v[k]=vdown; row[k] = i; col[k] = j-1; k++;
      }

      if (i > 0) {
        v[k]= vleft; row[k] = i-1; col[k] = j; k++;
      }

      v[k]= vmiddle; row[k] = i; col[k] = j; k++;

      if (i+1 < nx) {
        v[k]= vright; row[k] = i+1; col[k] = j; k++;
      }

      if (j+1 < ny) {
        v[k]= vup; row[k] = i; col[k] = j+1; k++;
      }
      tt=0;
      for (kk=0; kk<k; kk++) tt+=v[kk]*x[col[kk]][row[kk]];
      g[j][i] = tt;

    }

  }

  /* Restore vectors */
  info = DMDAVecRestoreArray(user->da,localX, &x);CHKERRQ(info);
  info = DMDAVecRestoreArray(user->da,G, &g);CHKERRQ(info);
  info = DMRestoreLocalVector(user->da,&localX);CHKERRQ(info);

  info = VecAXPY(G, one, user->B);CHKERRQ(info);

  info = PetscLogFlops((91 + 10*ym) * xm);CHKERRQ(info);
  PetscFunctionReturn(0);
}
Пример #8
0
static PetscErrorCode KSPAGMRESBuildBasis(KSP ksp)
{
  PetscErrorCode ierr;
  KSP_AGMRES     *agmres = (KSP_AGMRES*)ksp->data;
  PetscReal      *Rshift = agmres->Rshift;
  PetscReal      *Ishift = agmres->Ishift;
  PetscReal      *Scale  = agmres->Scale;
  PetscInt       max_k   = agmres->max_k;
  PetscInt       KspSize = KSPSIZE;  /* if max_k == KspSizen then the basis should not be augmented */
  PetscInt       j       = 1;

  PetscFunctionBegin;
  ierr     = PetscLogEventBegin(KSP_AGMRESBuildBasis, ksp, 0,0,0);CHKERRQ(ierr);
  Scale[0] = 1.0;
  while (j <= max_k) {
    if (Ishift[j-1] == 0) {
      if ((ksp->pc_side == PC_LEFT) && agmres->r && agmres->DeflPrecond) {
        /* Apply the precond-matrix operators */
        ierr = KSP_PCApplyBAorAB(ksp, VEC_V(j-1), VEC_TMP, VEC_TMP_MATOP);CHKERRQ(ierr);
        /* Then apply deflation as a preconditioner */
        ierr = KSPDGMRESApplyDeflation_DGMRES(ksp, VEC_TMP, VEC_V(j));CHKERRQ(ierr);
      } else if ((ksp->pc_side == PC_RIGHT) && agmres->r && agmres->DeflPrecond) {
        ierr = KSPDGMRESApplyDeflation_DGMRES(ksp, VEC_V(j-1), VEC_TMP);CHKERRQ(ierr);
        ierr = KSP_PCApplyBAorAB(ksp, VEC_TMP, VEC_V(j), VEC_TMP_MATOP);CHKERRQ(ierr);
      } else {
        ierr = KSP_PCApplyBAorAB(ksp, VEC_V(j-1), VEC_V(j), VEC_TMP_MATOP);CHKERRQ(ierr);
      }
      ierr = VecAXPY(VEC_V(j), -Rshift[j-1], VEC_V(j-1));CHKERRQ(ierr);
#if defined(KSP_AGMRES_NONORM)
      Scale[j] = 1.0;
#else
      ierr     = VecScale(VEC_V(j), Scale[j-1]);CHKERRQ(ierr); /* This step can be postponed until all vectors are built */
      ierr     = VecNorm(VEC_V(j), NORM_2, &(Scale[j]));CHKERRQ(ierr);
      Scale[j] = 1.0/Scale[j];
#endif

      agmres->matvecs += 1;
      j++;
    } else {
      if ((ksp->pc_side == PC_LEFT) && agmres->r && agmres->DeflPrecond) {
        /* Apply the precond-matrix operators */
        ierr = KSP_PCApplyBAorAB(ksp, VEC_V(j-1), VEC_TMP, VEC_TMP_MATOP);CHKERRQ(ierr);
        /* Then apply deflation as a preconditioner */
        ierr = KSPDGMRESApplyDeflation_DGMRES(ksp, VEC_TMP, VEC_V(j));CHKERRQ(ierr);
      } else if ((ksp->pc_side == PC_RIGHT) && agmres->r && agmres->DeflPrecond) {
        ierr = KSPDGMRESApplyDeflation_DGMRES(ksp, VEC_V(j-1), VEC_TMP);CHKERRQ(ierr);
        ierr = KSP_PCApplyBAorAB(ksp, VEC_TMP, VEC_V(j), VEC_TMP_MATOP);CHKERRQ(ierr);
      } else {
        ierr = KSP_PCApplyBAorAB(ksp, VEC_V(j-1), VEC_V(j), VEC_TMP_MATOP);CHKERRQ(ierr);
      }
      ierr = VecAXPY(VEC_V(j), -Rshift[j-1], VEC_V(j-1));CHKERRQ(ierr);
#if defined(KSP_AGMRES_NONORM)
      Scale[j] = 1.0;
#else
      ierr     = VecScale(VEC_V(j), Scale[j-1]);CHKERRQ(ierr);
      ierr     = VecNorm(VEC_V(j), NORM_2, &(Scale[j]));CHKERRQ(ierr);
      Scale[j] = 1.0/Scale[j];
#endif
      agmres->matvecs += 1;
      j++;
      if ((ksp->pc_side == PC_LEFT) && agmres->r && agmres->DeflPrecond) {
        /* Apply the precond-matrix operators */
        ierr = KSP_PCApplyBAorAB(ksp, VEC_V(j-1), VEC_TMP, VEC_TMP_MATOP);CHKERRQ(ierr);
        /* Then apply deflation as a preconditioner */
        ierr = KSPDGMRESApplyDeflation_DGMRES(ksp, VEC_TMP, VEC_V(j));CHKERRQ(ierr);
      } else if ((ksp->pc_side == PC_RIGHT) && agmres->r && agmres->DeflPrecond) {
        ierr = KSPDGMRESApplyDeflation_DGMRES(ksp, VEC_V(j-1), VEC_TMP);CHKERRQ(ierr);
        ierr = KSP_PCApplyBAorAB(ksp, VEC_TMP, VEC_V(j), VEC_TMP_MATOP);CHKERRQ(ierr);
      } else {
        ierr = KSP_PCApplyBAorAB(ksp, VEC_V(j-1), VEC_V(j), VEC_TMP_MATOP);CHKERRQ(ierr);
      }
      ierr = VecAXPY(VEC_V(j), -Rshift[j-2], VEC_V(j-1));CHKERRQ(ierr);
      ierr = VecAXPY(VEC_V(j), Scale[j-2]*Ishift[j-2]*Ishift[j-2], VEC_V(j-2));CHKERRQ(ierr);
#if defined(KSP_AGMRES_NONORM)
      Scale[j] = 1.0;
#else
      ierr     = VecNorm(VEC_V(j), NORM_2, &(Scale[j]));CHKERRQ(ierr);
      Scale[j] = 1.0/Scale[j];
#endif
      agmres->matvecs += 1;
      j++;
    }
  }
  /* Augment the subspace with the eigenvectors*/
  while (j <= KspSize) {
    ierr = KSP_PCApplyBAorAB(ksp, agmres->U[j - max_k - 1], VEC_V(j), VEC_TMP_MATOP);CHKERRQ(ierr);
#if defined(KSP_AGMRES_NONORM)
    Scale[j] = 1.0;
#else
    ierr     = VecScale(VEC_V(j), Scale[j-1]);CHKERRQ(ierr);
    ierr     = VecNorm(VEC_V(j), NORM_2, &(Scale[j]));CHKERRQ(ierr);
    Scale[j] = 1.0/Scale[j];
#endif
    agmres->matvecs += 1;
    j++;
  }
  ierr = PetscLogEventEnd(KSP_AGMRESBuildBasis, ksp, 0,0,0);CHKERRQ(ierr);
  PetscFunctionReturn(0);
}
Пример #9
0
static PetscErrorCode KSPAGMRESBuildSoln(KSP ksp,PetscInt it)
{
  KSP_AGMRES     *agmres = (KSP_AGMRES*)ksp->data;
  PetscErrorCode ierr;
  PetscInt       max_k = agmres->max_k;       /* Size of the non-augmented Krylov basis */
  PetscInt       i, j;
  PetscInt       r = agmres->r;           /* current number of augmented eigenvectors */
  PetscBLASInt   KspSize;
  PetscBLASInt   lC;
  PetscBLASInt   N;
  PetscBLASInt   ldH = N + 1;
  PetscBLASInt   lwork;
  PetscBLASInt   info, nrhs = 1;

  PetscFunctionBegin;
  ierr = PetscBLASIntCast(KSPSIZE,&KspSize);CHKERRQ(ierr);
  ierr = PetscBLASIntCast(4 * (KspSize+1),&lwork);CHKERRQ(ierr);
  ierr = PetscBLASIntCast(KspSize+1,&lC);CHKERRQ(ierr);
  ierr = PetscBLASIntCast(MAXKSPSIZE + 1,&N);CHKERRQ(ierr);
  ierr = PetscBLASIntCast(N + 1,&ldH);CHKERRQ(ierr);
  /* Save a copy of the Hessenberg matrix */
  for (j = 0; j < N-1; j++) {
    for (i = 0; i < N; i++) {
      *HS(i,j) = *H(i,j);
    }
  }
  /* QR factorize the Hessenberg matrix */
#if defined(PETSC_MISSING_LAPACK_GEQRF)
  SETERRQ(PetscObjectComm((PetscObject)ksp),PETSC_ERR_SUP,"GEQRF - Lapack routine is unavailable.");
#else
  PetscStackCallBLAS("LAPACKgeqrf",LAPACKgeqrf_(&lC, &KspSize, agmres->hh_origin, &ldH, agmres->tau, agmres->work, &lwork, &info));
  if (info) SETERRQ1(PetscObjectComm((PetscObject)ksp), PETSC_ERR_LIB,"Error in LAPACK routine XGEQRF INFO=%d", info);
#endif
  /* Update the right hand side of the least square problem */
  ierr = PetscMemzero(agmres->nrs, N*sizeof(PetscScalar));CHKERRQ(ierr);

  agmres->nrs[0] = ksp->rnorm;
#if defined(PETSC_MISSING_LAPACK_ORMQR)
  SETERRQ(PetscObjectComm((PetscObject)ksp),PETSC_ERR_SUP,"GEQRF - Lapack routine is unavailable.");
#else
  PetscStackCallBLAS("LAPACKormqr",LAPACKormqr_("L", "T", &lC, &nrhs, &KspSize, agmres->hh_origin, &ldH, agmres->tau, agmres->nrs, &N, agmres->work, &lwork, &info));
  if (info) SETERRQ1(PetscObjectComm((PetscObject)ksp), PETSC_ERR_LIB,"Error in LAPACK routine XORMQR INFO=%d",info);
#endif
  ksp->rnorm = PetscAbsScalar(agmres->nrs[KspSize]);
  /* solve the least-square problem */
#if defined(PETSC_MISSING_LAPACK_TRTRS)
  SETERRQ(PetscObjectComm((PetscObject)ksp),PETSC_ERR_SUP,"TRTRS - Lapack routine is unavailable.");
#else
  PetscStackCallBLAS("LAPACKtrtrs",LAPACKtrtrs_("U", "N", "N", &KspSize, &nrhs, agmres->hh_origin, &ldH, agmres->nrs, &N, &info));
  if (info) SETERRQ1(PetscObjectComm((PetscObject)ksp), PETSC_ERR_LIB,"Error in LAPACK routine XTRTRS INFO=%d",info);
#endif
  /* Accumulate the correction to the solution of the preconditioned problem in VEC_TMP */
  ierr = VecZeroEntries(VEC_TMP);CHKERRQ(ierr);
  ierr = VecMAXPY(VEC_TMP, max_k, agmres->nrs, &VEC_V(0));CHKERRQ(ierr);
  if (!agmres->DeflPrecond) { ierr = VecMAXPY(VEC_TMP, r, &agmres->nrs[max_k], agmres->U);CHKERRQ(ierr); }

  if ((ksp->pc_side == PC_RIGHT) && agmres->r && agmres->DeflPrecond) {
    ierr = KSPDGMRESApplyDeflation_DGMRES(ksp, VEC_TMP, VEC_TMP_MATOP);CHKERRQ(ierr);
    ierr = VecCopy(VEC_TMP_MATOP, VEC_TMP);CHKERRQ(ierr);
  }
  ierr = KSPUnwindPreconditioner(ksp, VEC_TMP, VEC_TMP_MATOP);CHKERRQ(ierr);
  /* add the solution to the previous one */
  ierr = VecAXPY(ksp->vec_sol, 1.0, VEC_TMP);CHKERRQ(ierr);
  PetscFunctionReturn(0);
}
Пример #10
0
int main(int argc,char **args)
{
  Mat            C; 
  PetscInt       i,j,m = 3,n = 3,Ii,J;
  PetscErrorCode ierr;
  PetscTruth     flg;
  PetscScalar    v;
  IS             perm,iperm;
  Vec            x,u,b,y;
  PetscReal      norm;
  MatFactorInfo  info;
  PetscMPIInt    size;

  PetscInitialize(&argc,&args,(char *)0,help);
  ierr = MPI_Comm_size(PETSC_COMM_WORLD,&size);CHKERRQ(ierr);
  if (size != 1) SETERRQ(1,"This is a uniprocessor example only!");
  ierr = MatCreate(PETSC_COMM_WORLD,&C);CHKERRQ(ierr);
  ierr = MatSetSizes(C,PETSC_DECIDE,PETSC_DECIDE,m*n,m*n);CHKERRQ(ierr);
  ierr = MatSetFromOptions(C);CHKERRQ(ierr);
  ierr = PetscOptionsHasName(PETSC_NULL,"-symmetric",&flg);CHKERRQ(ierr);
  if (flg) {  /* Treat matrix as symmetric only if we set this flag */
    ierr = MatSetOption(C,MAT_SYMMETRIC,PETSC_TRUE);CHKERRQ(ierr);
    ierr = MatSetOption(C,MAT_SYMMETRY_ETERNAL,PETSC_TRUE);CHKERRQ(ierr);
  }

  /* Create the matrix for the five point stencil, YET AGAIN */
  for (i=0; i<m; i++) {
    for (j=0; j<n; j++) {
      v = -1.0;  Ii = j + n*i;
      if (i>0)   {J = Ii - n; ierr = MatSetValues(C,1,&Ii,1,&J,&v,INSERT_VALUES);CHKERRQ(ierr);}
      if (i<m-1) {J = Ii + n; ierr = MatSetValues(C,1,&Ii,1,&J,&v,INSERT_VALUES);CHKERRQ(ierr);}
      if (j>0)   {J = Ii - 1; ierr = MatSetValues(C,1,&Ii,1,&J,&v,INSERT_VALUES);CHKERRQ(ierr);}
      if (j<n-1) {J = Ii + 1; ierr = MatSetValues(C,1,&Ii,1,&J,&v,INSERT_VALUES);CHKERRQ(ierr);}
      v = 4.0; ierr = MatSetValues(C,1,&Ii,1,&Ii,&v,INSERT_VALUES);CHKERRQ(ierr);
    }
  }
  ierr = MatAssemblyBegin(C,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
  ierr = MatAssemblyEnd(C,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
  ierr = MatGetOrdering(C,MATORDERING_RCM,&perm,&iperm);CHKERRQ(ierr);
  ierr = MatView(C,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);
  ierr = ISView(perm,PETSC_VIEWER_STDOUT_SELF);CHKERRQ(ierr);
  ierr = VecCreateSeq(PETSC_COMM_SELF,m*n,&u);CHKERRQ(ierr);
  ierr = VecSet(u,1.0);CHKERRQ(ierr);
  ierr = VecDuplicate(u,&x);CHKERRQ(ierr);
  ierr = VecDuplicate(u,&b);CHKERRQ(ierr);
  ierr = VecDuplicate(u,&y);CHKERRQ(ierr);
  ierr = MatMult(C,u,b);CHKERRQ(ierr);
  ierr = VecCopy(b,y);CHKERRQ(ierr);
  ierr = VecScale(y,2.0);CHKERRQ(ierr);

  ierr = MatNorm(C,NORM_FROBENIUS,&norm);CHKERRQ(ierr);
  ierr = PetscPrintf(PETSC_COMM_SELF,"Frobenius norm of matrix %G\n",norm);CHKERRQ(ierr);
  ierr = MatNorm(C,NORM_1,&norm);CHKERRQ(ierr);
  ierr = PetscPrintf(PETSC_COMM_SELF,"One  norm of matrix %G\n",norm);CHKERRQ(ierr);
  ierr = MatNorm(C,NORM_INFINITY,&norm);CHKERRQ(ierr);
  ierr = PetscPrintf(PETSC_COMM_SELF,"Infinity norm of matrix %G\n",norm);CHKERRQ(ierr);

  ierr = MatFactorInfoInitialize(&info);CHKERRQ(ierr);
  info.fill      = 2.0;
  info.dtcol     = 0.0; 
  info.zeropivot = 1.e-14; 
  info.pivotinblocks = 1.0;
  ierr = MatLUFactor(C,perm,iperm,&info);CHKERRQ(ierr); 
  ierr = MatView(C,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);

  /* Test MatSolve */
  ierr = MatSolve(C,b,x);CHKERRQ(ierr); 
  ierr = VecView(b,PETSC_VIEWER_STDOUT_SELF);CHKERRQ(ierr);
  ierr = VecView(x,PETSC_VIEWER_STDOUT_SELF);CHKERRQ(ierr);
  ierr = VecAXPY(x,-1.0,u);CHKERRQ(ierr);
  ierr = VecNorm(x,NORM_2,&norm);CHKERRQ(ierr);
  ierr = PetscPrintf(PETSC_COMM_SELF,"Norm of error %A\n",norm);CHKERRQ(ierr);

  /* Test MatSolveAdd */
  ierr = MatSolveAdd(C,b,y,x);CHKERRQ(ierr); 
  ierr = VecAXPY(x,-1.0,y);CHKERRQ(ierr);
  ierr = VecAXPY(x,-1.0,u);CHKERRQ(ierr);
  ierr = VecNorm(x,NORM_2,&norm);CHKERRQ(ierr);

  ierr = PetscPrintf(PETSC_COMM_SELF,"Norm of error %A\n",norm);CHKERRQ(ierr);

  ierr = ISDestroy(perm);CHKERRQ(ierr);
  ierr = ISDestroy(iperm);CHKERRQ(ierr);
  ierr = VecDestroy(u);CHKERRQ(ierr);
  ierr = VecDestroy(y);CHKERRQ(ierr);
  ierr = VecDestroy(b);CHKERRQ(ierr);
  ierr = VecDestroy(x);CHKERRQ(ierr);
  ierr = MatDestroy(C);CHKERRQ(ierr);
  ierr = PetscFinalize();CHKERRQ(ierr);
  return 0;
}
Пример #11
0
int main(int argc,char **args)
{
  PetscErrorCode ierr;
  PetscMPIInt    rank,size;
  PetscInt       N0=50,N1=20,N=N0*N1,DIM;
  PetscRandom    rdm;
  PetscScalar    a;
  PetscReal      enorm;
  Vec            x,y,z;
  PetscBool      view=PETSC_FALSE,use_interface=PETSC_TRUE;

  ierr = PetscInitialize(&argc,&args,(char*)0,help);CHKERRQ(ierr);
#if !defined(PETSC_USE_COMPLEX)
  SETERRQ(PETSC_COMM_WORLD,PETSC_ERR_SUP, "This example requires complex numbers");
#endif

  ierr = PetscOptionsBegin(PETSC_COMM_WORLD, NULL, "FFTW Options", "ex143");CHKERRQ(ierr);
  ierr = PetscOptionsBool("-vec_view draw", "View the vectors", "ex143", view, &view, NULL);CHKERRQ(ierr);
  ierr = PetscOptionsBool("-use_FFTW_interface", "Use PETSc-FFTW interface", "ex143",use_interface, &use_interface, NULL);CHKERRQ(ierr);
  ierr = PetscOptionsEnd();CHKERRQ(ierr);

  ierr = PetscOptionsGetBool(NULL,"-use_FFTW_interface",&use_interface,NULL);CHKERRQ(ierr);
  ierr = MPI_Comm_size(PETSC_COMM_WORLD, &size);CHKERRQ(ierr);
  ierr = MPI_Comm_rank(PETSC_COMM_WORLD, &rank);CHKERRQ(ierr);

  ierr = PetscRandomCreate(PETSC_COMM_WORLD, &rdm);CHKERRQ(ierr);
  ierr = PetscRandomSetFromOptions(rdm);CHKERRQ(ierr);

  if (!use_interface) {
    /* Use mpi FFTW without PETSc-FFTW interface, 2D case only */
    /*---------------------------------------------------------*/
    fftw_plan    fplan,bplan;
    fftw_complex *data_in,*data_out,*data_out2;
    ptrdiff_t    alloc_local,local_n0,local_0_start;
    
    DIM = 2;
    if (!rank) {
      ierr = PetscPrintf(PETSC_COMM_SELF,"Use FFTW without PETSc-FFTW interface, DIM %D\n",DIM);CHKERRQ(ierr);
    }
    fftw_mpi_init();
    N           = N0*N1;
    alloc_local = fftw_mpi_local_size_2d(N0,N1,PETSC_COMM_WORLD,&local_n0,&local_0_start);

    data_in   = (fftw_complex*)fftw_malloc(sizeof(fftw_complex)*alloc_local);
    data_out  = (fftw_complex*)fftw_malloc(sizeof(fftw_complex)*alloc_local);
    data_out2 = (fftw_complex*)fftw_malloc(sizeof(fftw_complex)*alloc_local);

    ierr = VecCreateMPIWithArray(PETSC_COMM_WORLD,1,(PetscInt)local_n0*N1,(PetscInt)N,(const PetscScalar*)data_in,&x);CHKERRQ(ierr);
    ierr = PetscObjectSetName((PetscObject) x, "Real Space vector");CHKERRQ(ierr);
    ierr = VecCreateMPIWithArray(PETSC_COMM_WORLD,1,(PetscInt)local_n0*N1,(PetscInt)N,(const PetscScalar*)data_out,&y);CHKERRQ(ierr);
    ierr = PetscObjectSetName((PetscObject) y, "Frequency space vector");CHKERRQ(ierr);
    ierr = VecCreateMPIWithArray(PETSC_COMM_WORLD,1,(PetscInt)local_n0*N1,(PetscInt)N,(const PetscScalar*)data_out2,&z);CHKERRQ(ierr);
    ierr = PetscObjectSetName((PetscObject) z, "Reconstructed vector");CHKERRQ(ierr);

    fplan = fftw_mpi_plan_dft_2d(N0,N1,data_in,data_out,PETSC_COMM_WORLD,FFTW_FORWARD,FFTW_ESTIMATE);
    bplan = fftw_mpi_plan_dft_2d(N0,N1,data_out,data_out2,PETSC_COMM_WORLD,FFTW_BACKWARD,FFTW_ESTIMATE);

    ierr = VecSetRandom(x, rdm);CHKERRQ(ierr);
    if (view) {ierr = VecView(x,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);}

    fftw_execute(fplan);
    if (view) {ierr = VecView(y,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);}

    fftw_execute(bplan);

    /* Compare x and z. FFTW computes an unnormalized DFT, thus z = N*x */
    a    = 1.0/(PetscReal)N;
    ierr = VecScale(z,a);CHKERRQ(ierr);
    if (view) {ierr = VecView(z, PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);}
    ierr = VecAXPY(z,-1.0,x);CHKERRQ(ierr);
    ierr = VecNorm(z,NORM_1,&enorm);CHKERRQ(ierr);
    if (enorm > 1.e-11 && !rank) {
      ierr = PetscPrintf(PETSC_COMM_SELF,"  Error norm of |x - z| %g\n",(double)enorm);CHKERRQ(ierr);
    }

    /* Free spaces */
    fftw_destroy_plan(fplan);
    fftw_destroy_plan(bplan);
    fftw_free(data_in);  ierr = VecDestroy(&x);CHKERRQ(ierr);
    fftw_free(data_out); ierr = VecDestroy(&y);CHKERRQ(ierr);
    fftw_free(data_out2);ierr = VecDestroy(&z);CHKERRQ(ierr);

  } else {
    /* Use PETSc-FFTW interface                  */
    /*-------------------------------------------*/
    PetscInt i,*dim,k;
    Mat      A;

    N=1;
    for (i=1; i<5; i++) {
      DIM  = i;
      ierr = PetscMalloc1(i,&dim);CHKERRQ(ierr);
      for (k=0; k<i; k++) {
        dim[k]=30;
      }
      N *= dim[i-1];


      /* Create FFTW object */
      if (!rank) printf("Use PETSc-FFTW interface...%d-DIM: %d\n",(int)DIM,(int)N);

      ierr = MatCreateFFT(PETSC_COMM_WORLD,DIM,dim,MATFFTW,&A);CHKERRQ(ierr);

      /* Create vectors that are compatible with parallel layout of A - must call MatGetVecs()! */

      ierr = MatGetVecsFFTW(A,&x,&y,&z);CHKERRQ(ierr);
      ierr = PetscObjectSetName((PetscObject) x, "Real space vector");CHKERRQ(ierr);
      ierr = PetscObjectSetName((PetscObject) y, "Frequency space vector");CHKERRQ(ierr);
      ierr = PetscObjectSetName((PetscObject) z, "Reconstructed vector");CHKERRQ(ierr);

      /* Set values of space vector x */
      ierr = VecSetRandom(x,rdm);CHKERRQ(ierr);

      if (view) {ierr = VecView(x,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);}

      /* Apply FFTW_FORWARD and FFTW_BACKWARD */
      ierr = MatMult(A,x,y);CHKERRQ(ierr);
      if (view) {ierr = VecView(y,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);}

      ierr = MatMultTranspose(A,y,z);CHKERRQ(ierr);

      /* Compare x and z. FFTW computes an unnormalized DFT, thus z = N*x */
      a    = 1.0/(PetscReal)N;
      ierr = VecScale(z,a);CHKERRQ(ierr);
      if (view) {ierr = VecView(z,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);}
      ierr = VecAXPY(z,-1.0,x);CHKERRQ(ierr);
      ierr = VecNorm(z,NORM_1,&enorm);CHKERRQ(ierr);
      if (enorm > 1.e-9 && !rank) {
        ierr = PetscPrintf(PETSC_COMM_SELF,"  Error norm of |x - z| %e\n",enorm);CHKERRQ(ierr);
      }

      ierr = VecDestroy(&x);CHKERRQ(ierr);
      ierr = VecDestroy(&y);CHKERRQ(ierr);
      ierr = VecDestroy(&z);CHKERRQ(ierr);
      ierr = MatDestroy(&A);CHKERRQ(ierr);

      ierr = PetscFree(dim);CHKERRQ(ierr);
    }
  }

  ierr = PetscRandomDestroy(&rdm);CHKERRQ(ierr);
  ierr = PetscFinalize();
  return 0;
}
Пример #12
0
PetscErrorCode PCBDDCNullSpaceAssembleCorrection(PC pc,IS local_dofs)
{
  PC_BDDC        *pcbddc = (PC_BDDC*)pc->data;
  PC_IS          *pcis = (PC_IS*)pc->data;
  Mat_IS*        matis = (Mat_IS*)pc->pmat->data;
  KSP            *local_ksp;
  PC             newpc;
  NullSpaceCorrection_ctx  shell_ctx;
  Mat            local_mat,local_pmat,small_mat,inv_small_mat;
  MatStructure   local_mat_struct;
  Vec            work1,work2;
  const Vec      *nullvecs;
  VecScatter     scatter_ctx;
  IS             is_aux;
  MatFactorInfo  matinfo;
  PetscScalar    *basis_mat,*Kbasis_mat,*array,*array_mat;
  PetscScalar    one = 1.0,zero = 0.0, m_one = -1.0;
  PetscInt       basis_dofs,basis_size,nnsp_size,i,k,n_I,n_R;
  PetscBool      nnsp_has_cnst;
  PetscErrorCode ierr;

  PetscFunctionBegin;
  /* Infer the local solver */
  ierr = ISGetSize(local_dofs,&basis_dofs);CHKERRQ(ierr);
  ierr = VecGetSize(pcis->vec1_D,&n_I);CHKERRQ(ierr);
  ierr = VecGetSize(pcbddc->vec1_R,&n_R);CHKERRQ(ierr);
  if (basis_dofs == n_I) {
    /* Dirichlet solver */
    local_ksp = &pcbddc->ksp_D;
  } else if (basis_dofs == n_R) {
    /* Neumann solver */
    local_ksp = &pcbddc->ksp_R;
  } else {
    SETERRQ4(PETSC_COMM_SELF,PETSC_ERR_PLIB,"Error in %s: unknown local IS size %d. n_I=%d, n_R=%d)\n",__FUNCT__,basis_dofs,n_I,n_R);
  }
  ierr = KSPGetOperators(*local_ksp,&local_mat,&local_pmat,&local_mat_struct);CHKERRQ(ierr);

  /* Get null space vecs */
  ierr = MatNullSpaceGetVecs(pcbddc->NullSpace,&nnsp_has_cnst,&nnsp_size,&nullvecs);CHKERRQ(ierr);
  basis_size = nnsp_size;
  if (nnsp_has_cnst) {
    basis_size++;
  }

  /* Create shell ctx */
  ierr = PetscMalloc(sizeof(*shell_ctx),&shell_ctx);CHKERRQ(ierr);

  /* Create work vectors in shell context */
  ierr = VecCreate(PETSC_COMM_SELF,&shell_ctx->work_small_1);CHKERRQ(ierr);
  ierr = VecSetSizes(shell_ctx->work_small_1,basis_size,basis_size);CHKERRQ(ierr);
  ierr = VecSetType(shell_ctx->work_small_1,VECSEQ);CHKERRQ(ierr);
  ierr = VecDuplicate(shell_ctx->work_small_1,&shell_ctx->work_small_2);CHKERRQ(ierr);
  ierr = VecCreate(PETSC_COMM_SELF,&shell_ctx->work_full_1);CHKERRQ(ierr);
  ierr = VecSetSizes(shell_ctx->work_full_1,basis_dofs,basis_dofs);CHKERRQ(ierr);
  ierr = VecSetType(shell_ctx->work_full_1,VECSEQ);CHKERRQ(ierr);
  ierr = VecDuplicate(shell_ctx->work_full_1,&shell_ctx->work_full_2);CHKERRQ(ierr);

  /* Allocate workspace */
  ierr = MatCreateSeqDense(PETSC_COMM_SELF,basis_dofs,basis_size,NULL,&shell_ctx->basis_mat );CHKERRQ(ierr);
  ierr = MatCreateSeqDense(PETSC_COMM_SELF,basis_dofs,basis_size,NULL,&shell_ctx->Kbasis_mat);CHKERRQ(ierr);
  ierr = MatDenseGetArray(shell_ctx->basis_mat,&basis_mat);CHKERRQ(ierr);
  ierr = MatDenseGetArray(shell_ctx->Kbasis_mat,&Kbasis_mat);CHKERRQ(ierr);

  /* Restrict local null space on selected dofs (Dirichlet or Neumann)
     and compute matrices N and K*N */
  ierr = VecDuplicate(shell_ctx->work_full_1,&work1);CHKERRQ(ierr);
  ierr = VecDuplicate(shell_ctx->work_full_1,&work2);CHKERRQ(ierr);
  ierr = VecScatterCreate(pcis->vec1_N,local_dofs,work1,(IS)0,&scatter_ctx);CHKERRQ(ierr);
  for (k=0;k<nnsp_size;k++) {
    ierr = VecScatterBegin(matis->ctx,nullvecs[k],pcis->vec1_N,INSERT_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
    ierr = VecScatterEnd(matis->ctx,nullvecs[k],pcis->vec1_N,INSERT_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
    ierr = VecPlaceArray(work1,(const PetscScalar*)&basis_mat[k*basis_dofs]);CHKERRQ(ierr);
    ierr = VecScatterBegin(scatter_ctx,pcis->vec1_N,work1,INSERT_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
    ierr = VecScatterEnd(scatter_ctx,pcis->vec1_N,work1,INSERT_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
    ierr = VecPlaceArray(work2,(const PetscScalar*)&Kbasis_mat[k*basis_dofs]);CHKERRQ(ierr);
    ierr = MatMult(local_mat,work1,work2);CHKERRQ(ierr);
    ierr = VecResetArray(work1);CHKERRQ(ierr);
    ierr = VecResetArray(work2);CHKERRQ(ierr);
  }
  if (nnsp_has_cnst) {
    ierr = VecPlaceArray(work1,(const PetscScalar*)&basis_mat[k*basis_dofs]);CHKERRQ(ierr);
    ierr = VecSet(work1,one);CHKERRQ(ierr);
    ierr = VecPlaceArray(work2,(const PetscScalar*)&Kbasis_mat[k*basis_dofs]);CHKERRQ(ierr);
    ierr = MatMult(local_mat,work1,work2);CHKERRQ(ierr);
    ierr = VecResetArray(work1);CHKERRQ(ierr);
    ierr = VecResetArray(work2);CHKERRQ(ierr);
  }
  ierr = VecDestroy(&work1);CHKERRQ(ierr);
  ierr = VecDestroy(&work2);CHKERRQ(ierr);
  ierr = VecScatterDestroy(&scatter_ctx);CHKERRQ(ierr);
  ierr = MatDenseRestoreArray(shell_ctx->basis_mat,&basis_mat);CHKERRQ(ierr);
  ierr = MatDenseRestoreArray(shell_ctx->Kbasis_mat,&Kbasis_mat);CHKERRQ(ierr);

  /* Assemble another Mat object in shell context */
  ierr = MatTransposeMatMult(shell_ctx->basis_mat,shell_ctx->Kbasis_mat,MAT_INITIAL_MATRIX,PETSC_DEFAULT,&small_mat);CHKERRQ(ierr);
  ierr = MatFactorInfoInitialize(&matinfo);CHKERRQ(ierr);
  ierr = ISCreateStride(PETSC_COMM_SELF,basis_size,0,1,&is_aux);CHKERRQ(ierr);
  ierr = MatLUFactor(small_mat,is_aux,is_aux,&matinfo);CHKERRQ(ierr);
  ierr = ISDestroy(&is_aux);CHKERRQ(ierr);
  ierr = PetscMalloc(basis_size*basis_size*sizeof(PetscScalar),&array_mat);CHKERRQ(ierr);
  for (k=0;k<basis_size;k++) {
    ierr = VecSet(shell_ctx->work_small_1,zero);CHKERRQ(ierr);
    ierr = VecSetValue(shell_ctx->work_small_1,k,one,INSERT_VALUES);CHKERRQ(ierr);
    ierr = VecAssemblyBegin(shell_ctx->work_small_1);CHKERRQ(ierr);
    ierr = VecAssemblyEnd(shell_ctx->work_small_1);CHKERRQ(ierr);
    ierr = MatSolve(small_mat,shell_ctx->work_small_1,shell_ctx->work_small_2);CHKERRQ(ierr);
    ierr = VecGetArrayRead(shell_ctx->work_small_2,(const PetscScalar**)&array);CHKERRQ(ierr);
    for (i=0;i<basis_size;i++) {
      array_mat[i*basis_size+k]=array[i];
    }
    ierr = VecRestoreArrayRead(shell_ctx->work_small_2,(const PetscScalar**)&array);CHKERRQ(ierr);
  }
  ierr = MatCreateSeqDense(PETSC_COMM_SELF,basis_size,basis_size,array_mat,&inv_small_mat);CHKERRQ(ierr);
  ierr = MatMatMult(shell_ctx->basis_mat,inv_small_mat,MAT_INITIAL_MATRIX,PETSC_DEFAULT,&shell_ctx->Lbasis_mat);CHKERRQ(ierr);
  ierr = PetscFree(array_mat);CHKERRQ(ierr);
  ierr = MatDestroy(&inv_small_mat);CHKERRQ(ierr);
  ierr = MatDestroy(&small_mat);CHKERRQ(ierr);
  ierr = MatScale(shell_ctx->Kbasis_mat,m_one);CHKERRQ(ierr);

  /* Rebuild local PC */
  ierr = KSPGetPC(*local_ksp,&shell_ctx->local_pc);CHKERRQ(ierr);
  ierr = PetscObjectReference((PetscObject)shell_ctx->local_pc);CHKERRQ(ierr);
  ierr = PCCreate(PETSC_COMM_SELF,&newpc);CHKERRQ(ierr);
  ierr = PCSetOperators(newpc,local_mat,local_mat,SAME_PRECONDITIONER);CHKERRQ(ierr);
  ierr = PCSetType(newpc,PCSHELL);CHKERRQ(ierr);
  ierr = PCShellSetContext(newpc,shell_ctx);CHKERRQ(ierr);
  ierr = PCShellSetApply(newpc,PCBDDCApplyNullSpaceCorrectionPC);CHKERRQ(ierr);
  ierr = PCShellSetDestroy(newpc,PCBDDCDestroyNullSpaceCorrectionPC);CHKERRQ(ierr);
  ierr = PCSetUp(newpc);CHKERRQ(ierr);
  ierr = KSPSetPC(*local_ksp,newpc);CHKERRQ(ierr);
  ierr = PCDestroy(&newpc);CHKERRQ(ierr);
  ierr = KSPSetUp(*local_ksp);CHKERRQ(ierr);
  /* test */
  /* TODO: this cause a deadlock when doing multilevel */
#if 0
  if (pcbddc->dbg_flag) {
    KSP         check_ksp;
    PC          check_pc;
    Mat         test_mat;
    Vec         work3;
    PetscViewer viewer=pcbddc->dbg_viewer;
    PetscReal   test_err,lambda_min,lambda_max;
    PetscBool   setsym,issym=PETSC_FALSE;

    ierr = KSPGetPC(*local_ksp,&check_pc);CHKERRQ(ierr);
    ierr = VecDuplicate(shell_ctx->work_full_1,&work1);CHKERRQ(ierr);
    ierr = VecDuplicate(shell_ctx->work_full_1,&work2);CHKERRQ(ierr);
    ierr = VecDuplicate(shell_ctx->work_full_1,&work3);CHKERRQ(ierr);
    ierr = VecSetRandom(shell_ctx->work_small_1,NULL);CHKERRQ(ierr);
    ierr = MatMult(shell_ctx->basis_mat,shell_ctx->work_small_1,work1);CHKERRQ(ierr);
    ierr = VecCopy(work1,work2);CHKERRQ(ierr);
    ierr = MatMult(local_mat,work1,work3);CHKERRQ(ierr);
    ierr = PCApply(check_pc,work3,work1);CHKERRQ(ierr);
    ierr = VecAXPY(work1,m_one,work2);CHKERRQ(ierr);
    ierr = VecNorm(work1,NORM_INFINITY,&test_err);CHKERRQ(ierr);
    ierr = PetscViewerASCIISynchronizedPrintf(viewer,"Subdomain %04d error for nullspace correction for ",PetscGlobalRank);
    if (basis_dofs == n_I) {
      ierr = PetscViewerASCIISynchronizedPrintf(viewer,"Dirichlet ");
    } else {
      ierr = PetscViewerASCIISynchronizedPrintf(viewer,"Neumann ");
    }
    ierr = PetscViewerASCIISynchronizedPrintf(viewer,"solver is :%1.14e\n",test_err);

    ierr = MatTransposeMatMult(shell_ctx->Lbasis_mat,shell_ctx->Kbasis_mat,MAT_INITIAL_MATRIX,PETSC_DEFAULT,&test_mat);CHKERRQ(ierr);
    ierr = MatShift(test_mat,one);CHKERRQ(ierr);
    ierr = MatNorm(test_mat,NORM_INFINITY,&test_err);CHKERRQ(ierr);
    ierr = MatDestroy(&test_mat);CHKERRQ(ierr);
    ierr = PetscViewerASCIISynchronizedPrintf(viewer,"Subdomain %04d error for nullspace matrices is :%1.14e\n",PetscGlobalRank,test_err);

    /* Create ksp object suitable for extreme eigenvalues' estimation */
    ierr = KSPCreate(PETSC_COMM_SELF,&check_ksp);CHKERRQ(ierr);
    ierr = KSPSetOperators(check_ksp,local_mat,local_mat,SAME_PRECONDITIONER);CHKERRQ(ierr);
    ierr = KSPSetTolerances(check_ksp,1.e-8,1.e-8,PETSC_DEFAULT,basis_dofs);CHKERRQ(ierr);
    ierr = KSPSetComputeSingularValues(check_ksp,PETSC_TRUE);CHKERRQ(ierr);
    ierr = MatIsSymmetricKnown(pc->pmat,&setsym,&issym);CHKERRQ(ierr);
    if (issym) {
      ierr = KSPSetType(check_ksp,KSPCG);CHKERRQ(ierr);
    }
    ierr = KSPSetPC(check_ksp,check_pc);CHKERRQ(ierr);
    ierr = KSPSetUp(check_ksp);CHKERRQ(ierr);
    ierr = VecSetRandom(work1,NULL);CHKERRQ(ierr);
    ierr = MatMult(local_mat,work1,work2);CHKERRQ(ierr);
    ierr = KSPSolve(check_ksp,work2,work2);CHKERRQ(ierr);
    ierr = VecAXPY(work2,m_one,work1);CHKERRQ(ierr);
    ierr = VecNorm(work2,NORM_INFINITY,&test_err);CHKERRQ(ierr);
    ierr = KSPComputeExtremeSingularValues(check_ksp,&lambda_max,&lambda_min);CHKERRQ(ierr);
    ierr = KSPGetIterationNumber(check_ksp,&k);CHKERRQ(ierr);
    ierr = PetscViewerASCIISynchronizedPrintf(viewer,"Subdomain %04d error for adapted KSP %1.14e (it %d, eigs %1.6e %1.6e)\n",PetscGlobalRank,test_err,k,lambda_min,lambda_max);
    ierr = KSPDestroy(&check_ksp);CHKERRQ(ierr);
    ierr = VecDestroy(&work1);CHKERRQ(ierr);
    ierr = VecDestroy(&work2);CHKERRQ(ierr);
    ierr = VecDestroy(&work3);CHKERRQ(ierr);
    ierr = PetscViewerFlush(viewer);CHKERRQ(ierr);
  }
#endif
  PetscFunctionReturn(0);
}
Пример #13
0
int main(int argc,char **args)
{
    Mat            mat;          /* matrix */
    Vec            b,ustar,u;  /* vectors (RHS, exact solution, approx solution) */
    PC             pc;           /* PC context */
    KSP            ksp;          /* KSP context */
    PetscErrorCode ierr;
    PetscInt       n = 10,i,its,col[3];
    PetscScalar    value[3];
    PCType         pcname;
    KSPType        kspname;
    PetscReal      norm,tol=1.e-14;

    PetscInitialize(&argc,&args,(char*)0,help);

    /* Create and initialize vectors */
    ierr = VecCreateSeq(PETSC_COMM_SELF,n,&b);
    CHKERRQ(ierr);
    ierr = VecCreateSeq(PETSC_COMM_SELF,n,&ustar);
    CHKERRQ(ierr);
    ierr = VecCreateSeq(PETSC_COMM_SELF,n,&u);
    CHKERRQ(ierr);
    ierr = VecSet(ustar,1.0);
    CHKERRQ(ierr);
    ierr = VecSet(u,0.0);
    CHKERRQ(ierr);

    /* Create and assemble matrix */
    ierr     = MatCreateSeqAIJ(PETSC_COMM_SELF,n,n,3,NULL,&mat);
    CHKERRQ(ierr);
    value[0] = -1.0;
    value[1] = 2.0;
    value[2] = -1.0;
    for (i=1; i<n-1; i++) {
        col[0] = i-1;
        col[1] = i;
        col[2] = i+1;
        ierr   = MatSetValues(mat,1,&i,3,col,value,INSERT_VALUES);
        CHKERRQ(ierr);
    }
    i    = n - 1;
    col[0] = n - 2;
    col[1] = n - 1;
    ierr = MatSetValues(mat,1,&i,2,col,value,INSERT_VALUES);
    CHKERRQ(ierr);
    i    = 0;
    col[0] = 0;
    col[1] = 1;
    value[0] = 2.0;
    value[1] = -1.0;
    ierr = MatSetValues(mat,1,&i,2,col,value,INSERT_VALUES);
    CHKERRQ(ierr);
    ierr = MatAssemblyBegin(mat,MAT_FINAL_ASSEMBLY);
    CHKERRQ(ierr);
    ierr = MatAssemblyEnd(mat,MAT_FINAL_ASSEMBLY);
    CHKERRQ(ierr);

    /* Compute right-hand-side vector */
    ierr = MatMult(mat,ustar,b);
    CHKERRQ(ierr);

    /* Create PC context and set up data structures */
    ierr = PCCreate(PETSC_COMM_WORLD,&pc);
    CHKERRQ(ierr);
    ierr = PCSetType(pc,PCNONE);
    CHKERRQ(ierr);
    ierr = PCSetFromOptions(pc);
    CHKERRQ(ierr);
    ierr = PCSetOperators(pc,mat,mat);
    CHKERRQ(ierr);
    ierr = PCSetUp(pc);
    CHKERRQ(ierr);

    /* Create KSP context and set up data structures */
    ierr = KSPCreate(PETSC_COMM_WORLD,&ksp);
    CHKERRQ(ierr);
    ierr = KSPSetType(ksp,KSPRICHARDSON);
    CHKERRQ(ierr);
    ierr = KSPSetFromOptions(ksp);
    CHKERRQ(ierr);
    ierr = PCSetOperators(pc,mat,mat);
    CHKERRQ(ierr);
    ierr = KSPSetPC(ksp,pc);
    CHKERRQ(ierr);
    ierr = KSPSetUp(ksp);
    CHKERRQ(ierr);

    /* Solve the problem */
    ierr = KSPGetType(ksp,&kspname);
    CHKERRQ(ierr);
    ierr = PCGetType(pc,&pcname);
    CHKERRQ(ierr);
    ierr = PetscPrintf(PETSC_COMM_SELF,"Running %s with %s preconditioning\n",kspname,pcname);
    CHKERRQ(ierr);
    ierr = KSPSolve(ksp,b,u);
    CHKERRQ(ierr);
    ierr = VecAXPY(u,-1.0,ustar);
    CHKERRQ(ierr);
    ierr = VecNorm(u,NORM_2,&norm);
    ierr = KSPGetIterationNumber(ksp,&its);
    CHKERRQ(ierr);
    if (norm > tol) {
        ierr = PetscPrintf(PETSC_COMM_SELF,"2 norm of error %g Number of iterations %D\n",(double)norm,its);
        CHKERRQ(ierr);
    }

    /* Free data structures */
    ierr = KSPDestroy(&ksp);
    CHKERRQ(ierr);
    ierr = VecDestroy(&u);
    CHKERRQ(ierr);
    ierr = VecDestroy(&ustar);
    CHKERRQ(ierr);
    ierr = VecDestroy(&b);
    CHKERRQ(ierr);
    ierr = MatDestroy(&mat);
    CHKERRQ(ierr);
    ierr = PCDestroy(&pc);
    CHKERRQ(ierr);

    ierr = PetscFinalize();
    return 0;
}
Пример #14
0
int main(int argc,char **args)
{
  PetscMPIInt    size;
  PetscErrorCode ierr;
  Vec            x,y,b,s1,s2;
  Mat            A;                    /* linear system matrix */
  Mat            sA,sB,sFactor;        /* symmetric matrices */
  PetscInt       n,mbs=16,bs=1,nz=3,prob=1,i,j,k1,k2,col[3],lf,block, row,Ii,J,n1,inc;
  PetscReal      norm1,norm2,rnorm,tol=PETSC_SMALL;
  PetscScalar    neg_one = -1.0,four=4.0,value[3];
  IS             perm, iscol;
  PetscRandom    rdm;
  PetscBool      doIcc=PETSC_TRUE,equal;
  MatInfo        minfo1,minfo2;
  MatFactorInfo  factinfo;
  MatType        type;

  ierr = PetscInitialize(&argc,&args,(char*)0,help);if (ierr) return ierr;
  ierr = MPI_Comm_size(PETSC_COMM_WORLD,&size);CHKERRQ(ierr);
  if (size != 1) SETERRQ(PETSC_COMM_WORLD,PETSC_ERR_SUP,"This is a uniprocessor example only!");
  ierr = PetscOptionsGetInt(NULL,NULL,"-bs",&bs,NULL);CHKERRQ(ierr);
  ierr = PetscOptionsGetInt(NULL,NULL,"-mbs",&mbs,NULL);CHKERRQ(ierr);

  n    = mbs*bs;
  ierr = MatCreate(PETSC_COMM_SELF,&A);CHKERRQ(ierr);
  ierr = MatSetSizes(A,n,n,PETSC_DETERMINE,PETSC_DETERMINE);CHKERRQ(ierr);
  ierr = MatSetType(A,MATSEQBAIJ);CHKERRQ(ierr);
  ierr = MatSetFromOptions(A);CHKERRQ(ierr);
  ierr = MatSeqBAIJSetPreallocation(A,bs,nz,NULL);CHKERRQ(ierr);

  ierr = MatCreate(PETSC_COMM_SELF,&sA);CHKERRQ(ierr);
  ierr = MatSetSizes(sA,n,n,PETSC_DETERMINE,PETSC_DETERMINE);CHKERRQ(ierr);
  ierr = MatSetType(sA,MATSEQSBAIJ);CHKERRQ(ierr);
  ierr = MatSetFromOptions(sA);CHKERRQ(ierr);
  ierr = MatGetType(sA,&type);CHKERRQ(ierr);
  ierr = PetscObjectTypeCompare((PetscObject)sA,MATSEQSBAIJ,&doIcc);CHKERRQ(ierr);
  ierr = MatSeqSBAIJSetPreallocation(sA,bs,nz,NULL);CHKERRQ(ierr);
  ierr = MatSetOption(sA,MAT_IGNORE_LOWER_TRIANGULAR,PETSC_TRUE);CHKERRQ(ierr);

  /* Test MatGetOwnershipRange() */
  ierr = MatGetOwnershipRange(A,&Ii,&J);CHKERRQ(ierr);
  ierr = MatGetOwnershipRange(sA,&i,&j);CHKERRQ(ierr);
  if (i-Ii || j-J) {
    ierr = PetscPrintf(PETSC_COMM_SELF,"Error: MatGetOwnershipRange() in MatSBAIJ format\n");CHKERRQ(ierr);
  }

  /* Assemble matrix */
  if (bs == 1) {
    ierr = PetscOptionsGetInt(NULL,NULL,"-test_problem",&prob,NULL);CHKERRQ(ierr);
    if (prob == 1) { /* tridiagonal matrix */
      value[0] = -1.0; value[1] = 2.0; value[2] = -1.0;
      for (i=1; i<n-1; i++) {
        col[0] = i-1; col[1] = i; col[2] = i+1;
        ierr   = MatSetValues(A,1,&i,3,col,value,INSERT_VALUES);CHKERRQ(ierr);
        ierr   = MatSetValues(sA,1,&i,3,col,value,INSERT_VALUES);CHKERRQ(ierr);
      }
      i = n - 1; col[0]=0; col[1] = n - 2; col[2] = n - 1;

      value[0]= 0.1; value[1]=-1; value[2]=2;

      ierr = MatSetValues(A,1,&i,3,col,value,INSERT_VALUES);CHKERRQ(ierr);
      ierr = MatSetValues(sA,1,&i,3,col,value,INSERT_VALUES);CHKERRQ(ierr);

      i        = 0;
      col[0]   = n-1;   col[1] = 1;      col[2] = 0;
      value[0] = 0.1; value[1] = -1.0; value[2] = 2;

      ierr = MatSetValues(A,1,&i,3,col,value,INSERT_VALUES);CHKERRQ(ierr);
      ierr = MatSetValues(sA,1,&i,3,col,value,INSERT_VALUES);CHKERRQ(ierr);

    } else if (prob ==2) { /* matrix for the five point stencil */
      n1 = (PetscInt) (PetscSqrtReal((PetscReal)n) + 0.001);
      if (n1*n1 - n) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"sqrt(n) must be a positive interger!");
      for (i=0; i<n1; i++) {
        for (j=0; j<n1; j++) {
          Ii = j + n1*i;
          if (i>0) {
            J    = Ii - n1;
            ierr = MatSetValues(A,1,&Ii,1,&J,&neg_one,INSERT_VALUES);CHKERRQ(ierr);
            ierr = MatSetValues(sA,1,&Ii,1,&J,&neg_one,INSERT_VALUES);CHKERRQ(ierr);
          }
          if (i<n1-1) {
            J    = Ii + n1;
            ierr = MatSetValues(A,1,&Ii,1,&J,&neg_one,INSERT_VALUES);CHKERRQ(ierr);
            ierr = MatSetValues(sA,1,&Ii,1,&J,&neg_one,INSERT_VALUES);CHKERRQ(ierr);
          }
          if (j>0) {
            J    = Ii - 1;
            ierr = MatSetValues(A,1,&Ii,1,&J,&neg_one,INSERT_VALUES);CHKERRQ(ierr);
            ierr = MatSetValues(sA,1,&Ii,1,&J,&neg_one,INSERT_VALUES);CHKERRQ(ierr);
          }
          if (j<n1-1) {
            J    = Ii + 1;
            ierr = MatSetValues(A,1,&Ii,1,&J,&neg_one,INSERT_VALUES);CHKERRQ(ierr);
            ierr = MatSetValues(sA,1,&Ii,1,&J,&neg_one,INSERT_VALUES);CHKERRQ(ierr);
          }
          ierr = MatSetValues(A,1,&Ii,1,&Ii,&four,INSERT_VALUES);CHKERRQ(ierr);
          ierr = MatSetValues(sA,1,&Ii,1,&Ii,&four,INSERT_VALUES);CHKERRQ(ierr);
        }
      }
    }

  } else { /* bs > 1 */
    for (block=0; block<n/bs; block++) {
      /* diagonal blocks */
      value[0] = -1.0; value[1] = 4.0; value[2] = -1.0;
      for (i=1+block*bs; i<bs-1+block*bs; i++) {
        col[0] = i-1; col[1] = i; col[2] = i+1;
        ierr   = MatSetValues(A,1,&i,3,col,value,INSERT_VALUES);CHKERRQ(ierr);
        ierr   = MatSetValues(sA,1,&i,3,col,value,INSERT_VALUES);CHKERRQ(ierr);
      }
      i = bs - 1+block*bs; col[0] = bs - 2+block*bs; col[1] = bs - 1+block*bs;

      value[0]=-1.0; value[1]=4.0;

      ierr = MatSetValues(A,1,&i,2,col,value,INSERT_VALUES);CHKERRQ(ierr);
      ierr = MatSetValues(sA,1,&i,2,col,value,INSERT_VALUES);CHKERRQ(ierr);

      i = 0+block*bs; col[0] = 0+block*bs; col[1] = 1+block*bs;

      value[0]=4.0; value[1] = -1.0;

      ierr = MatSetValues(A,1,&i,2,col,value,INSERT_VALUES);CHKERRQ(ierr);
      ierr = MatSetValues(sA,1,&i,2,col,value,INSERT_VALUES);CHKERRQ(ierr);
    }
    /* off-diagonal blocks */
    value[0]=-1.0;
    for (i=0; i<(n/bs-1)*bs; i++) {
      col[0]=i+bs;

      ierr = MatSetValues(A,1,&i,1,col,value,INSERT_VALUES);CHKERRQ(ierr);
      ierr = MatSetValues(sA,1,&i,1,col,value,INSERT_VALUES);CHKERRQ(ierr);

      col[0]=i; row=i+bs;

      ierr = MatSetValues(A,1,&row,1,col,value,INSERT_VALUES);CHKERRQ(ierr);
      ierr = MatSetValues(sA,1,&row,1,col,value,INSERT_VALUES);CHKERRQ(ierr);
    }
  }
  ierr = MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
  ierr = MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);

  ierr = MatAssemblyBegin(sA,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
  ierr = MatAssemblyEnd(sA,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);

  /* Test MatGetInfo() of A and sA */
  ierr = MatGetInfo(A,MAT_LOCAL,&minfo1);CHKERRQ(ierr);
  ierr = MatGetInfo(sA,MAT_LOCAL,&minfo2);CHKERRQ(ierr);
  /*
  printf("A matrix nonzeros (BAIJ format) = %d, allocated nonzeros= %d\n", (int)minfo1.nz_used,(int)minfo1.nz_allocated);
  printf("sA matrix nonzeros(SBAIJ format) = %d, allocated nonzeros= %d\n", (int)minfo2.nz_used,(int)minfo2.nz_allocated);
  */
  i  = (int) (minfo1.nz_used - minfo2.nz_used);
  j  = (int) (minfo1.nz_allocated - minfo2.nz_allocated);
  k1 = (int) (minfo1.nz_allocated - minfo1.nz_used);
  k2 = (int) (minfo2.nz_allocated - minfo2.nz_used);
  if (i < 0 || j < 0 || k1 < 0 || k2 < 0) {
    ierr = PetscPrintf(PETSC_COMM_SELF,"Error (compare A and sA): MatGetInfo()\n");CHKERRQ(ierr);
  }

  /* Test MatDuplicate() */
  ierr = MatNorm(A,NORM_FROBENIUS,&norm1);CHKERRQ(ierr);
  ierr = MatDuplicate(sA,MAT_COPY_VALUES,&sB);CHKERRQ(ierr);
  ierr = MatEqual(sA,sB,&equal);CHKERRQ(ierr);
  if (!equal) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_NOTSAMETYPE,"Error in MatDuplicate()");

  /* Test MatNorm() */
  ierr  = MatNorm(A,NORM_FROBENIUS,&norm1);CHKERRQ(ierr);
  ierr  = MatNorm(sB,NORM_FROBENIUS,&norm2);CHKERRQ(ierr);
  rnorm = PetscAbsReal(norm1-norm2)/norm2;
  if (rnorm > tol) {
    ierr = PetscPrintf(PETSC_COMM_SELF,"Error: MatNorm_FROBENIUS, NormA=%16.14e NormsB=%16.14e\n",norm1,norm2);CHKERRQ(ierr);
  }
  ierr  = MatNorm(A,NORM_INFINITY,&norm1);CHKERRQ(ierr);
  ierr  = MatNorm(sB,NORM_INFINITY,&norm2);CHKERRQ(ierr);
  rnorm = PetscAbsReal(norm1-norm2)/norm2;
  if (rnorm > tol) {
    ierr = PetscPrintf(PETSC_COMM_SELF,"Error: MatNorm_INFINITY(), NormA=%16.14e NormsB=%16.14e\n",norm1,norm2);CHKERRQ(ierr);
  }
  ierr  = MatNorm(A,NORM_1,&norm1);CHKERRQ(ierr);
  ierr  = MatNorm(sB,NORM_1,&norm2);CHKERRQ(ierr);
  rnorm = PetscAbsReal(norm1-norm2)/norm2;
  if (rnorm > tol) {
    ierr = PetscPrintf(PETSC_COMM_SELF,"Error: MatNorm_INFINITY(), NormA=%16.14e NormsB=%16.14e\n",norm1,norm2);CHKERRQ(ierr);
  }

  /* Test MatGetInfo(), MatGetSize(), MatGetBlockSize() */
  ierr = MatGetInfo(A,MAT_LOCAL,&minfo1);CHKERRQ(ierr);
  ierr = MatGetInfo(sB,MAT_LOCAL,&minfo2);CHKERRQ(ierr);
  /*
  printf("matrix nonzeros (BAIJ format) = %d, allocated nonzeros= %d\n", (int)minfo1.nz_used,(int)minfo1.nz_allocated);
  printf("matrix nonzeros(SBAIJ format) = %d, allocated nonzeros= %d\n", (int)minfo2.nz_used,(int)minfo2.nz_allocated);
  */
  i  = (int) (minfo1.nz_used - minfo2.nz_used);
  j  = (int) (minfo1.nz_allocated - minfo2.nz_allocated);
  k1 = (int) (minfo1.nz_allocated - minfo1.nz_used);
  k2 = (int) (minfo2.nz_allocated - minfo2.nz_used);
  if (i < 0 || j < 0 || k1 < 0 || k2 < 0) {
    ierr = PetscPrintf(PETSC_COMM_SELF,"Error(compare A and sB): MatGetInfo()\n");CHKERRQ(ierr);
  }

  ierr = MatGetSize(A,&Ii,&J);CHKERRQ(ierr);
  ierr = MatGetSize(sB,&i,&j);CHKERRQ(ierr);
  if (i-Ii || j-J) {
    PetscPrintf(PETSC_COMM_SELF,"Error: MatGetSize()\n");CHKERRQ(ierr);
  }

  ierr = MatGetBlockSize(A, &Ii);CHKERRQ(ierr);
  ierr = MatGetBlockSize(sB, &i);CHKERRQ(ierr);
  if (i-Ii) {
    ierr = PetscPrintf(PETSC_COMM_SELF,"Error: MatGetBlockSize()\n");CHKERRQ(ierr);
  }

  ierr = PetscRandomCreate(PETSC_COMM_SELF,&rdm);CHKERRQ(ierr);
  ierr = PetscRandomSetFromOptions(rdm);CHKERRQ(ierr);
  ierr = VecCreateSeq(PETSC_COMM_SELF,n,&x);CHKERRQ(ierr);
  ierr = VecDuplicate(x,&s1);CHKERRQ(ierr);
  ierr = VecDuplicate(x,&s2);CHKERRQ(ierr);
  ierr = VecDuplicate(x,&y);CHKERRQ(ierr);
  ierr = VecDuplicate(x,&b);CHKERRQ(ierr);
  ierr = VecSetRandom(x,rdm);CHKERRQ(ierr);

  /* Test MatDiagonalScale(), MatGetDiagonal(), MatScale() */
#if !defined(PETSC_USE_COMPLEX)
  /* Scaling matrix with complex numbers results non-spd matrix,
     causing crash of MatForwardSolve() and MatBackwardSolve() */
  ierr = MatDiagonalScale(A,x,x);CHKERRQ(ierr);
  ierr = MatDiagonalScale(sB,x,x);CHKERRQ(ierr);
  ierr = MatMultEqual(A,sB,10,&equal);CHKERRQ(ierr);
  if (!equal) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_NOTSAMETYPE,"Error in MatDiagonalScale");

  ierr = MatGetDiagonal(A,s1);CHKERRQ(ierr);
  ierr = MatGetDiagonal(sB,s2);CHKERRQ(ierr);
  ierr = VecAXPY(s2,neg_one,s1);CHKERRQ(ierr);
  ierr = VecNorm(s2,NORM_1,&norm1);CHKERRQ(ierr);
  if (norm1>tol) {
    ierr = PetscPrintf(PETSC_COMM_SELF,"Error:MatGetDiagonal(), ||s1-s2||=%g\n",(double)norm1);CHKERRQ(ierr);
  }

  {
    PetscScalar alpha=0.1;
    ierr = MatScale(A,alpha);CHKERRQ(ierr);
    ierr = MatScale(sB,alpha);CHKERRQ(ierr);
  }
#endif

  /* Test MatGetRowMaxAbs() */
  ierr   = MatGetRowMaxAbs(A,s1,NULL);CHKERRQ(ierr);
  ierr   = MatGetRowMaxAbs(sB,s2,NULL);CHKERRQ(ierr);
  ierr   = VecNorm(s1,NORM_1,&norm1);CHKERRQ(ierr);
  ierr   = VecNorm(s2,NORM_1,&norm2);CHKERRQ(ierr);
  norm1 -= norm2;
  if (norm1<-tol || norm1>tol) {
    ierr = PetscPrintf(PETSC_COMM_SELF,"Error:MatGetRowMaxAbs() \n");CHKERRQ(ierr);
  }

  /* Test MatMult() */
  for (i=0; i<40; i++) {
    ierr   = VecSetRandom(x,rdm);CHKERRQ(ierr);
    ierr   = MatMult(A,x,s1);CHKERRQ(ierr);
    ierr   = MatMult(sB,x,s2);CHKERRQ(ierr);
    ierr   = VecNorm(s1,NORM_1,&norm1);CHKERRQ(ierr);
    ierr   = VecNorm(s2,NORM_1,&norm2);CHKERRQ(ierr);
    norm1 -= norm2;
    if (norm1<-tol || norm1>tol) {
      ierr = PetscPrintf(PETSC_COMM_SELF,"Error: MatMult(), norm1-norm2: %g\n",(double)norm1);CHKERRQ(ierr);
    }
  }

  /* MatMultAdd() */
  for (i=0; i<40; i++) {
    ierr   = VecSetRandom(x,rdm);CHKERRQ(ierr);
    ierr   = VecSetRandom(y,rdm);CHKERRQ(ierr);
    ierr   = MatMultAdd(A,x,y,s1);CHKERRQ(ierr);
    ierr   = MatMultAdd(sB,x,y,s2);CHKERRQ(ierr);
    ierr   = VecNorm(s1,NORM_1,&norm1);CHKERRQ(ierr);
    ierr   = VecNorm(s2,NORM_1,&norm2);CHKERRQ(ierr);
    norm1 -= norm2;
    if (norm1<-tol || norm1>tol) {
      ierr = PetscPrintf(PETSC_COMM_SELF,"Error:MatMultAdd(),  norm1-norm2: %g\n",(double)norm1);CHKERRQ(ierr);
    }
  }

  /* Test MatCholeskyFactor(), MatICCFactor() with natural ordering */
  ierr  = MatGetOrdering(A,MATORDERINGNATURAL,&perm,&iscol);CHKERRQ(ierr);
  ierr  = ISDestroy(&iscol);CHKERRQ(ierr);
  norm1 = tol;
  inc   = bs;

  /* initialize factinfo */
  ierr = PetscMemzero(&factinfo,sizeof(MatFactorInfo));CHKERRQ(ierr);

  for (lf=-1; lf<10; lf += inc) {
    if (lf==-1) {  /* Cholesky factor of sB (duplicate sA) */
      factinfo.fill = 5.0;

      ierr = MatGetFactor(sB,MATSOLVERPETSC,MAT_FACTOR_CHOLESKY,&sFactor);CHKERRQ(ierr);
      ierr = MatCholeskyFactorSymbolic(sFactor,sB,perm,&factinfo);CHKERRQ(ierr);
    } else if (!doIcc) break;
    else {       /* incomplete Cholesky factor */
      factinfo.fill   = 5.0;
      factinfo.levels = lf;

      ierr = MatGetFactor(sB,MATSOLVERPETSC,MAT_FACTOR_ICC,&sFactor);CHKERRQ(ierr);
      ierr = MatICCFactorSymbolic(sFactor,sB,perm,&factinfo);CHKERRQ(ierr);
    }
    ierr = MatCholeskyFactorNumeric(sFactor,sB,&factinfo);CHKERRQ(ierr);
    /* MatView(sFactor, PETSC_VIEWER_DRAW_WORLD); */

    /* test MatGetDiagonal on numeric factor */
    /*
    if (lf == -1) {
      ierr = MatGetDiagonal(sFactor,s1);CHKERRQ(ierr);
      printf(" in ex74.c, diag: \n");
      ierr = VecView(s1,PETSC_VIEWER_STDOUT_SELF);CHKERRQ(ierr);
    }
    */

    ierr = MatMult(sB,x,b);CHKERRQ(ierr);

    /* test MatForwardSolve() and MatBackwardSolve() */
    if (lf == -1) {
      ierr = MatForwardSolve(sFactor,b,s1);CHKERRQ(ierr);
      ierr = MatBackwardSolve(sFactor,s1,s2);CHKERRQ(ierr);
      ierr = VecAXPY(s2,neg_one,x);CHKERRQ(ierr);
      ierr = VecNorm(s2,NORM_2,&norm2);CHKERRQ(ierr);
      if (10*norm1 < norm2) {
        ierr = PetscPrintf(PETSC_COMM_SELF,"MatForwardSolve and BackwardSolve: Norm of error=%g, bs=%D\n",(double)norm2,bs);CHKERRQ(ierr);
      }
    }

    /* test MatSolve() */
    ierr = MatSolve(sFactor,b,y);CHKERRQ(ierr);
    ierr = MatDestroy(&sFactor);CHKERRQ(ierr);
    /* Check the error */
    ierr = VecAXPY(y,neg_one,x);CHKERRQ(ierr);
    ierr = VecNorm(y,NORM_2,&norm2);CHKERRQ(ierr);
    if (10*norm1 < norm2 && lf-inc != -1) {
      ierr = PetscPrintf(PETSC_COMM_SELF,"lf=%D, %D, Norm of error=%g, %g\n",lf-inc,lf,(double)norm1,(double)norm2);CHKERRQ(ierr);
    }
    norm1 = norm2;
    if (norm2 < tol && lf != -1) break;
  }

  ierr = ISDestroy(&perm);CHKERRQ(ierr);

  ierr = MatDestroy(&A);CHKERRQ(ierr);
  ierr = MatDestroy(&sB);CHKERRQ(ierr);
  ierr = MatDestroy(&sA);CHKERRQ(ierr);
  ierr = VecDestroy(&x);CHKERRQ(ierr);
  ierr = VecDestroy(&y);CHKERRQ(ierr);
  ierr = VecDestroy(&s1);CHKERRQ(ierr);
  ierr = VecDestroy(&s2);CHKERRQ(ierr);
  ierr = VecDestroy(&b);CHKERRQ(ierr);
  ierr = PetscRandomDestroy(&rdm);CHKERRQ(ierr);

  ierr = PetscFinalize();
  return ierr;
}
Пример #15
0
int main(int argc,char **argv)
{
  PetscErrorCode ierr;
  KSP            ksp;
  PC             pc;
  Vec            x,b;
  DM             da;
  Mat            A,Atrans;
  PetscInt       dof=1,M=-8;
  PetscBool      flg,trans=PETSC_FALSE;

  PetscInitialize(&argc,&argv,(char *)0,help);
  ierr = PetscOptionsGetInt(PETSC_NULL,"-dof",&dof,PETSC_NULL);CHKERRQ(ierr);
  ierr = PetscOptionsGetInt(PETSC_NULL,"-M",&M,PETSC_NULL);CHKERRQ(ierr);
  ierr = PetscOptionsGetBool(PETSC_NULL,"-trans",&trans,PETSC_NULL);CHKERRQ(ierr);

  ierr = DMDACreate(PETSC_COMM_WORLD,&da);CHKERRQ(ierr);
  ierr = DMDASetDim(da,3);CHKERRQ(ierr);
  ierr = DMDASetBoundaryType(da,DMDA_BOUNDARY_NONE,DMDA_BOUNDARY_NONE,DMDA_BOUNDARY_NONE);CHKERRQ(ierr);
  ierr = DMDASetStencilType(da,DMDA_STENCIL_STAR);CHKERRQ(ierr);
  ierr = DMDASetSizes(da,M,M,M);CHKERRQ(ierr);
  ierr = DMDASetNumProcs(da,PETSC_DECIDE,PETSC_DECIDE,PETSC_DECIDE);CHKERRQ(ierr);
  ierr = DMDASetDof(da,dof);CHKERRQ(ierr);
  ierr = DMDASetStencilWidth(da,1);CHKERRQ(ierr);
  ierr = DMDASetOwnershipRanges(da,PETSC_NULL,PETSC_NULL,PETSC_NULL);CHKERRQ(ierr);
  ierr = DMSetFromOptions(da);CHKERRQ(ierr);
  ierr = DMSetUp(da);CHKERRQ(ierr);

  ierr = DMCreateGlobalVector(da,&x);CHKERRQ(ierr);
  ierr = DMCreateGlobalVector(da,&b);CHKERRQ(ierr);
  ierr = ComputeRHS(da,b);CHKERRQ(ierr);
  ierr = DMCreateMatrix(da,MATBAIJ,&A);CHKERRQ(ierr);
  ierr = ComputeMatrix(da,A);CHKERRQ(ierr);


  /* A is non-symmetric. Make A = 0.5*(A + Atrans) symmetric for testing icc and cholesky */
  ierr = MatTranspose(A,MAT_INITIAL_MATRIX,&Atrans);CHKERRQ(ierr);
  ierr = MatAXPY(A,1.0,Atrans,DIFFERENT_NONZERO_PATTERN);CHKERRQ(ierr);
  ierr = MatScale(A,0.5);CHKERRQ(ierr);
  ierr = MatDestroy(&Atrans);CHKERRQ(ierr);

  /* Test sbaij matrix */
  flg  = PETSC_FALSE;
  ierr = PetscOptionsGetBool(PETSC_NULL, "-test_sbaij1", &flg,PETSC_NULL);CHKERRQ(ierr);
  if (flg){
    Mat sA;
    PetscBool issymm;
    ierr = MatIsTranspose(A,A,0.0,&issymm);CHKERRQ(ierr);
    if (issymm) {
      ierr = MatSetOption(A,MAT_SYMMETRIC,PETSC_TRUE);CHKERRQ(ierr);
    } else {
      printf("Warning: A is non-symmetric\n");
    }
    ierr = MatConvert(A,MATSBAIJ,MAT_INITIAL_MATRIX,&sA);CHKERRQ(ierr);
    ierr = MatDestroy(&A);CHKERRQ(ierr);
    A = sA;
  }

  ierr = KSPCreate(PETSC_COMM_WORLD,&ksp);CHKERRQ(ierr);
  ierr = KSPSetFromOptions(ksp);CHKERRQ(ierr);
  ierr = KSPSetOperators(ksp,A,A,SAME_NONZERO_PATTERN);CHKERRQ(ierr);
  ierr = KSPGetPC(ksp,&pc);CHKERRQ(ierr);
  ierr = PCSetDM(pc,(DM)da);CHKERRQ(ierr);
 
  if (trans) {
    ierr = KSPSolveTranspose(ksp,b,x);CHKERRQ(ierr);
  } else {
    ierr = KSPSolve(ksp,b,x);CHKERRQ(ierr);
  }

  /* check final residual */
  flg  = PETSC_FALSE;
  ierr = PetscOptionsGetBool(PETSC_NULL, "-check_final_residual", &flg,PETSC_NULL);CHKERRQ(ierr);
  if (flg){
    Vec            b1;
    PetscReal      norm;
    ierr = KSPGetSolution(ksp,&x);CHKERRQ(ierr);
    ierr = VecDuplicate(b,&b1);CHKERRQ(ierr);
    ierr = MatMult(A,x,b1);CHKERRQ(ierr);
    ierr = VecAXPY(b1,-1.0,b);CHKERRQ(ierr);
    ierr = VecNorm(b1,NORM_2,&norm);CHKERRQ(ierr);
    ierr = PetscPrintf(PETSC_COMM_WORLD,"Final residual %g\n",norm);CHKERRQ(ierr);
    ierr = VecDestroy(&b1);CHKERRQ(ierr);
  }
   
  ierr = KSPDestroy(&ksp);CHKERRQ(ierr);
  ierr = VecDestroy(&x);CHKERRQ(ierr);
  ierr = VecDestroy(&b);CHKERRQ(ierr);
  ierr = MatDestroy(&A);CHKERRQ(ierr);
  ierr = DMDestroy(&da);CHKERRQ(ierr);
  ierr = PetscFinalize();
  return 0;
}
Пример #16
0
static PetscErrorCode KSPLGMRESBuildSoln(PetscScalar* nrs,Vec vguess,Vec vdest,KSP ksp,PetscInt it)
{
    PetscScalar    tt;
    PetscErrorCode ierr;
    PetscInt       ii,k,j;
    KSP_LGMRES     *lgmres = (KSP_LGMRES *)(ksp->data);
    /*LGMRES_MOD */
    PetscInt       it_arnoldi, it_aug;
    PetscInt       jj, spot = 0;

    PetscFunctionBegin;
    /* Solve for solution vector that minimizes the residual */

    /* If it is < 0, no lgmres steps have been performed */
    if (it < 0) {
        ierr = VecCopy(vguess,vdest);
        CHKERRQ(ierr); /* VecCopy() is smart, exists immediately if vguess == vdest */
        PetscFunctionReturn(0);
    }

    /* so (it+1) lgmres steps HAVE been performed */

    /* LGMRES_MOD - determine if we need to use augvecs for the soln  - do not assume that
       this is called after the total its allowed for an approx space */
    if (lgmres->approx_constant) {
        it_arnoldi = lgmres->max_k - lgmres->aug_ct;
    } else {
        it_arnoldi = lgmres->max_k - lgmres->aug_dim;
    }
    if (it_arnoldi >= it +1) {
        it_aug = 0;
        it_arnoldi = it+1;
    } else {
        it_aug = (it + 1) - it_arnoldi;
    }

    /* now it_arnoldi indicates the number of matvecs that took place */
    lgmres->matvecs += it_arnoldi;


    /* solve the upper triangular system - GRS is the right side and HH is
       the upper triangular matrix  - put soln in nrs */
    if (*HH(it,it) == 0.0) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_CONV_FAILED,"HH(it,it) is identically zero; it = %D GRS(it) = %G",it,PetscAbsScalar(*GRS(it)));
    if (*HH(it,it) != 0.0) {
        nrs[it] = *GRS(it) / *HH(it,it);
    } else {
        nrs[it] = 0.0;
    }

    for (ii=1; ii<=it; ii++) {
        k   = it - ii;
        tt  = *GRS(k);
        for (j=k+1; j<=it; j++) tt  = tt - *HH(k,j) * nrs[j];
        nrs[k]   = tt / *HH(k,k);
    }

    /* Accumulate the correction to the soln of the preconditioned prob. in VEC_TEMP */
    ierr = VecSet(VEC_TEMP,0.0);
    CHKERRQ(ierr); /* set VEC_TEMP components to 0 */

    /*LGMRES_MOD - if augmenting has happened we need to form the solution
      using the augvecs */
    if (!it_aug) { /* all its are from arnoldi */
        ierr = VecMAXPY(VEC_TEMP,it+1,nrs,&VEC_VV(0));
        CHKERRQ(ierr);
    } else { /*use aug vecs */
        /*first do regular krylov directions */
        ierr = VecMAXPY(VEC_TEMP,it_arnoldi,nrs,&VEC_VV(0));
        CHKERRQ(ierr);
        /*now add augmented portions - add contribution of aug vectors one at a time*/


        for (ii=0; ii<it_aug; ii++) {
            for (jj=0; jj<lgmres->aug_dim; jj++) {
                if (lgmres->aug_order[jj] == (ii+1)) {
                    spot = jj;
                    break; /* must have this because there will be duplicates before aug_ct = aug_dim */
                }
            }
            ierr = VecAXPY(VEC_TEMP,nrs[it_arnoldi+ii],AUGVEC(spot));
            CHKERRQ(ierr);
        }
    }
    /* now VEC_TEMP is what we want to keep for augmenting purposes - grab before the
       preconditioner is "unwound" from right-precondtioning*/
    ierr = VecCopy(VEC_TEMP, AUG_TEMP);
    CHKERRQ(ierr);

    ierr = KSPUnwindPreconditioner(ksp,VEC_TEMP,VEC_TEMP_MATOP);
    CHKERRQ(ierr);

    /* add solution to previous solution */
    /* put updated solution into vdest.*/
    ierr = VecCopy(vguess,vdest);
    CHKERRQ(ierr);
    ierr = VecAXPY(vdest,1.0,VEC_TEMP);
    CHKERRQ(ierr);

    PetscFunctionReturn(0);
}
Пример #17
0
PetscErrorCode PCBDDCSetupFETIDPMatContext(FETIDPMat_ctx fetidpmat_ctx )
{
  PetscErrorCode ierr;
  PC_IS          *pcis=(PC_IS*)fetidpmat_ctx->pc->data;
  PC_BDDC        *pcbddc=(PC_BDDC*)fetidpmat_ctx->pc->data;
  PCBDDCGraph    mat_graph=pcbddc->mat_graph;
  Mat_IS         *matis  = (Mat_IS*)fetidpmat_ctx->pc->pmat->data;
  MPI_Comm       comm;
  Mat            ScalingMat;
  Vec            lambda_global;
  IS             IS_l2g_lambda;
  PetscBool      skip_node,fully_redundant;
  PetscInt       i,j,k,s,n_boundary_dofs,n_global_lambda,n_vertices,partial_sum;
  PetscInt       n_local_lambda,n_lambda_for_dof,dual_size,n_neg_values,n_pos_values;
  PetscMPIInt    rank,size,buf_size,neigh;
  PetscScalar    scalar_value;
  PetscInt       *vertex_indices;
  PetscInt       *dual_dofs_boundary_indices,*aux_local_numbering_1,*aux_global_numbering;
  PetscInt       *aux_sums,*cols_B_delta,*l2g_indices;
  PetscScalar    *array,*scaling_factors,*vals_B_delta;
  PetscInt       *aux_local_numbering_2;
  /* For communication of scaling factors */
  PetscInt       *ptrs_buffer,neigh_position;
  PetscScalar    **all_factors,*send_buffer,*recv_buffer;
  MPI_Request    *send_reqs,*recv_reqs;
  /* tests */
  Vec            test_vec;
  PetscBool      test_fetidp;
  PetscViewer    viewer;

  PetscFunctionBegin;
  ierr = PetscObjectGetComm((PetscObject)(fetidpmat_ctx->pc),&comm);CHKERRQ(ierr);
  ierr = MPI_Comm_rank(comm,&rank);CHKERRQ(ierr);
  ierr = MPI_Comm_size(comm,&size);CHKERRQ(ierr);

  /* Default type of lagrange multipliers is non-redundant */
  fully_redundant = PETSC_FALSE;
  ierr = PetscOptionsGetBool(NULL,"-fetidp_fullyredundant",&fully_redundant,NULL);CHKERRQ(ierr);

  /* Evaluate local and global number of lagrange multipliers */
  ierr = VecSet(pcis->vec1_N,0.0);CHKERRQ(ierr);
  n_local_lambda = 0;
  partial_sum = 0;
  n_boundary_dofs = 0;
  s = 0;
  /* Get Vertices used to define the BDDC */
  ierr = PCBDDCGetPrimalVerticesLocalIdx(fetidpmat_ctx->pc,&n_vertices,&vertex_indices);CHKERRQ(ierr);
  dual_size = pcis->n_B-n_vertices;
  ierr = PetscSortInt(n_vertices,vertex_indices);CHKERRQ(ierr);
  ierr = PetscMalloc1(dual_size,&dual_dofs_boundary_indices);CHKERRQ(ierr);
  ierr = PetscMalloc1(dual_size,&aux_local_numbering_1);CHKERRQ(ierr);
  ierr = PetscMalloc1(dual_size,&aux_local_numbering_2);CHKERRQ(ierr);

  ierr = VecGetArray(pcis->vec1_N,&array);CHKERRQ(ierr);
  for (i=0;i<pcis->n;i++){
    j = mat_graph->count[i]; /* RECALL: mat_graph->count[i] does not count myself */
    if ( j > 0 ) {
      n_boundary_dofs++;
    }
    skip_node = PETSC_FALSE;
    if ( s < n_vertices && vertex_indices[s]==i) { /* it works for a sorted set of vertices */
      skip_node = PETSC_TRUE;
      s++;
    }
    if (j < 1) {
      skip_node = PETSC_TRUE;
    }
    if ( !skip_node ) {
      if (fully_redundant) {
        /* fully redundant set of lagrange multipliers */
        n_lambda_for_dof = (j*(j+1))/2;
      } else {
        n_lambda_for_dof = j;
      }
      n_local_lambda += j;
      /* needed to evaluate global number of lagrange multipliers */
      array[i]=(1.0*n_lambda_for_dof)/(j+1.0); /* already scaled for the next global sum */
      /* store some data needed */
      dual_dofs_boundary_indices[partial_sum] = n_boundary_dofs-1;
      aux_local_numbering_1[partial_sum] = i;
      aux_local_numbering_2[partial_sum] = n_lambda_for_dof;
      partial_sum++;
    }
  }
  ierr = VecRestoreArray(pcis->vec1_N,&array);CHKERRQ(ierr);

  ierr = VecSet(pcis->vec1_global,0.0);CHKERRQ(ierr);
  ierr = VecScatterBegin(matis->ctx,pcis->vec1_N,pcis->vec1_global,ADD_VALUES,SCATTER_REVERSE);CHKERRQ(ierr);
  ierr = VecScatterEnd  (matis->ctx,pcis->vec1_N,pcis->vec1_global,ADD_VALUES,SCATTER_REVERSE);CHKERRQ(ierr);
  ierr = VecSum(pcis->vec1_global,&scalar_value);CHKERRQ(ierr);
  fetidpmat_ctx->n_lambda = (PetscInt)PetscRealPart(scalar_value);

  /* compute global ordering of lagrange multipliers and associate l2g map */
  ierr = PCBDDCSubsetNumbering(comm,matis->mapping,partial_sum,aux_local_numbering_1,aux_local_numbering_2,&i,&aux_global_numbering);CHKERRQ(ierr);
  if (i != fetidpmat_ctx->n_lambda) {
    SETERRQ3(PETSC_COMM_WORLD,PETSC_ERR_PLIB,"Error in %s: global number of multipliers mismatch! (%d!=%d)\n",__FUNCT__,fetidpmat_ctx->n_lambda,i);
  }
  ierr = PetscFree(aux_local_numbering_2);CHKERRQ(ierr);

  /* init data for scaling factors exchange */
  partial_sum = 0;
  j = 0;
  ierr = PetscMalloc1(pcis->n_neigh,&ptrs_buffer);CHKERRQ(ierr);
  ierr = PetscMalloc1(pcis->n_neigh-1,&send_reqs);CHKERRQ(ierr);
  ierr = PetscMalloc1(pcis->n_neigh-1,&recv_reqs);CHKERRQ(ierr);
  ierr = PetscMalloc1(pcis->n,&all_factors);CHKERRQ(ierr);
  ptrs_buffer[0]=0;
  for (i=1;i<pcis->n_neigh;i++) {
    partial_sum += pcis->n_shared[i];
    ptrs_buffer[i] = ptrs_buffer[i-1]+pcis->n_shared[i];
  }
  ierr = PetscMalloc1(partial_sum,&send_buffer);CHKERRQ(ierr);
  ierr = PetscMalloc1(partial_sum,&recv_buffer);CHKERRQ(ierr);
  ierr = PetscMalloc1(partial_sum,&all_factors[0]);CHKERRQ(ierr);
  for (i=0;i<pcis->n-1;i++) {
    j = mat_graph->count[i];
    all_factors[i+1]=all_factors[i]+j;
  }
  /* scatter B scaling to N vec */
  ierr = VecScatterBegin(pcis->N_to_B,pcis->D,pcis->vec1_N,INSERT_VALUES,SCATTER_REVERSE);CHKERRQ(ierr);
  ierr = VecScatterEnd(pcis->N_to_B,pcis->D,pcis->vec1_N,INSERT_VALUES,SCATTER_REVERSE);CHKERRQ(ierr);
  /* communications */
  ierr = VecGetArray(pcis->vec1_N,&array);CHKERRQ(ierr);
  for (i=1;i<pcis->n_neigh;i++) {
    for (j=0;j<pcis->n_shared[i];j++) {
      send_buffer[ptrs_buffer[i-1]+j]=array[pcis->shared[i][j]];
    }
    ierr = PetscMPIIntCast(ptrs_buffer[i]-ptrs_buffer[i-1],&buf_size);CHKERRQ(ierr);
    ierr = PetscMPIIntCast(pcis->neigh[i],&neigh);CHKERRQ(ierr);
    ierr = MPI_Isend(&send_buffer[ptrs_buffer[i-1]],buf_size,MPIU_SCALAR,neigh,0,comm,&send_reqs[i-1]);CHKERRQ(ierr);
    ierr = MPI_Irecv(&recv_buffer[ptrs_buffer[i-1]],buf_size,MPIU_SCALAR,neigh,0,comm,&recv_reqs[i-1]);CHKERRQ(ierr);
  }
  ierr = VecRestoreArray(pcis->vec1_N,&array);CHKERRQ(ierr);
  ierr = MPI_Waitall((pcis->n_neigh-1),recv_reqs,MPI_STATUSES_IGNORE);CHKERRQ(ierr);
  /* put values in correct places */
  for (i=1;i<pcis->n_neigh;i++) {
    for (j=0;j<pcis->n_shared[i];j++) {
      k = pcis->shared[i][j];
      neigh_position = 0;
      while(mat_graph->neighbours_set[k][neigh_position] != pcis->neigh[i]) {neigh_position++;}
      all_factors[k][neigh_position]=recv_buffer[ptrs_buffer[i-1]+j];
    }
  }
  ierr = MPI_Waitall((pcis->n_neigh-1),send_reqs,MPI_STATUSES_IGNORE);CHKERRQ(ierr);
  ierr = PetscFree(send_reqs);CHKERRQ(ierr);
  ierr = PetscFree(recv_reqs);CHKERRQ(ierr);
  ierr = PetscFree(send_buffer);CHKERRQ(ierr);
  ierr = PetscFree(recv_buffer);CHKERRQ(ierr);
  ierr = PetscFree(ptrs_buffer);CHKERRQ(ierr);

  /* Compute B and B_delta (local actions) */
  ierr = PetscMalloc1(pcis->n_neigh,&aux_sums);CHKERRQ(ierr);
  ierr = PetscMalloc1(n_local_lambda,&l2g_indices);CHKERRQ(ierr);
  ierr = PetscMalloc1(n_local_lambda,&vals_B_delta);CHKERRQ(ierr);
  ierr = PetscMalloc1(n_local_lambda,&cols_B_delta);CHKERRQ(ierr);
  ierr = PetscMalloc1(n_local_lambda,&scaling_factors);CHKERRQ(ierr);
  n_global_lambda=0;
  partial_sum=0;
  for (i=0;i<dual_size;i++) {
    n_global_lambda = aux_global_numbering[i];
    j = mat_graph->count[aux_local_numbering_1[i]];
    aux_sums[0]=0;
    for (s=1;s<j;s++) {
      aux_sums[s]=aux_sums[s-1]+j-s+1;
    }
    array = all_factors[aux_local_numbering_1[i]];
    n_neg_values = 0;
    while(n_neg_values < j && mat_graph->neighbours_set[aux_local_numbering_1[i]][n_neg_values] < rank) {n_neg_values++;}
    n_pos_values = j - n_neg_values;
    if (fully_redundant) {
      for (s=0;s<n_neg_values;s++) {
        l2g_indices    [partial_sum+s]=aux_sums[s]+n_neg_values-s-1+n_global_lambda;
        cols_B_delta   [partial_sum+s]=dual_dofs_boundary_indices[i];
        vals_B_delta   [partial_sum+s]=-1.0;
        scaling_factors[partial_sum+s]=array[s];
      }
      for (s=0;s<n_pos_values;s++) {
        l2g_indices    [partial_sum+s+n_neg_values]=aux_sums[n_neg_values]+s+n_global_lambda;
        cols_B_delta   [partial_sum+s+n_neg_values]=dual_dofs_boundary_indices[i];
        vals_B_delta   [partial_sum+s+n_neg_values]=1.0;
        scaling_factors[partial_sum+s+n_neg_values]=array[s+n_neg_values];
      }
      partial_sum += j;
    } else {
      /* l2g_indices and default cols and vals of B_delta */
      for (s=0;s<j;s++) {
        l2g_indices    [partial_sum+s]=n_global_lambda+s;
        cols_B_delta   [partial_sum+s]=dual_dofs_boundary_indices[i];
        vals_B_delta   [partial_sum+s]=0.0;
      }
      /* B_delta */
      if ( n_neg_values > 0 ) { /* there's a rank next to me to the left */
        vals_B_delta   [partial_sum+n_neg_values-1]=-1.0;
      }
      if ( n_neg_values < j ) { /* there's a rank next to me to the right */
        vals_B_delta   [partial_sum+n_neg_values]=1.0;
      }
      /* scaling as in Klawonn-Widlund 1999*/
      for (s=0;s<n_neg_values;s++) {
        scalar_value = 0.0;
        for (k=0;k<s+1;k++) {
          scalar_value += array[k];
        }
        scaling_factors[partial_sum+s] = -scalar_value;
      }
      for (s=0;s<n_pos_values;s++) {
        scalar_value = 0.0;
        for (k=s+n_neg_values;k<j;k++) {
          scalar_value += array[k];
        }
        scaling_factors[partial_sum+s+n_neg_values] = scalar_value;
      }
      partial_sum += j;
    }
  }
  ierr = PetscFree(aux_global_numbering);CHKERRQ(ierr);
  ierr = PetscFree(aux_sums);CHKERRQ(ierr);
  ierr = PetscFree(aux_local_numbering_1);CHKERRQ(ierr);
  ierr = PetscFree(dual_dofs_boundary_indices);CHKERRQ(ierr);
  ierr = PetscFree(all_factors[0]);CHKERRQ(ierr);
  ierr = PetscFree(all_factors);CHKERRQ(ierr);

  /* Local to global mapping of fetidpmat */
  ierr = VecCreate(PETSC_COMM_SELF,&fetidpmat_ctx->lambda_local);CHKERRQ(ierr);
  ierr = VecSetSizes(fetidpmat_ctx->lambda_local,n_local_lambda,n_local_lambda);CHKERRQ(ierr);
  ierr = VecSetType(fetidpmat_ctx->lambda_local,VECSEQ);CHKERRQ(ierr);
  ierr = VecCreate(comm,&lambda_global);CHKERRQ(ierr);
  ierr = VecSetSizes(lambda_global,PETSC_DECIDE,fetidpmat_ctx->n_lambda);CHKERRQ(ierr);
  ierr = VecSetType(lambda_global,VECMPI);CHKERRQ(ierr);
  ierr = ISCreateGeneral(comm,n_local_lambda,l2g_indices,PETSC_OWN_POINTER,&IS_l2g_lambda);CHKERRQ(ierr);
  ierr = VecScatterCreate(fetidpmat_ctx->lambda_local,(IS)0,lambda_global,IS_l2g_lambda,&fetidpmat_ctx->l2g_lambda);CHKERRQ(ierr);
  ierr = ISDestroy(&IS_l2g_lambda);CHKERRQ(ierr);

  /* Create local part of B_delta */
  ierr = MatCreate(PETSC_COMM_SELF,&fetidpmat_ctx->B_delta);
  ierr = MatSetSizes(fetidpmat_ctx->B_delta,n_local_lambda,pcis->n_B,n_local_lambda,pcis->n_B);CHKERRQ(ierr);
  ierr = MatSetType(fetidpmat_ctx->B_delta,MATSEQAIJ);CHKERRQ(ierr);
  ierr = MatSeqAIJSetPreallocation(fetidpmat_ctx->B_delta,1,NULL);CHKERRQ(ierr);
  ierr = MatSetOption(fetidpmat_ctx->B_delta,MAT_IGNORE_ZERO_ENTRIES,PETSC_TRUE);CHKERRQ(ierr);
  for (i=0;i<n_local_lambda;i++) {
    ierr = MatSetValue(fetidpmat_ctx->B_delta,i,cols_B_delta[i],vals_B_delta[i],INSERT_VALUES);CHKERRQ(ierr);
  }
  ierr = PetscFree(vals_B_delta);CHKERRQ(ierr);
  ierr = MatAssemblyBegin(fetidpmat_ctx->B_delta,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
  ierr = MatAssemblyEnd  (fetidpmat_ctx->B_delta,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);

  if (fully_redundant) {
    ierr = MatCreate(PETSC_COMM_SELF,&ScalingMat);
    ierr = MatSetSizes(ScalingMat,n_local_lambda,n_local_lambda,n_local_lambda,n_local_lambda);CHKERRQ(ierr);
    ierr = MatSetType(ScalingMat,MATSEQAIJ);CHKERRQ(ierr);
    ierr = MatSeqAIJSetPreallocation(ScalingMat,1,NULL);CHKERRQ(ierr);
    for (i=0;i<n_local_lambda;i++) {
      ierr = MatSetValue(ScalingMat,i,i,scaling_factors[i],INSERT_VALUES);CHKERRQ(ierr);
    }
    ierr = MatAssemblyBegin(ScalingMat,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
    ierr = MatAssemblyEnd  (ScalingMat,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
    ierr = MatMatMult(ScalingMat,fetidpmat_ctx->B_delta,MAT_INITIAL_MATRIX,PETSC_DEFAULT,&fetidpmat_ctx->B_Ddelta);CHKERRQ(ierr);
    ierr = MatDestroy(&ScalingMat);CHKERRQ(ierr);
  } else {
    ierr = MatCreate(PETSC_COMM_SELF,&fetidpmat_ctx->B_Ddelta);
    ierr = MatSetSizes(fetidpmat_ctx->B_Ddelta,n_local_lambda,pcis->n_B,n_local_lambda,pcis->n_B);CHKERRQ(ierr);
    ierr = MatSetType(fetidpmat_ctx->B_Ddelta,MATSEQAIJ);CHKERRQ(ierr);
    ierr = MatSeqAIJSetPreallocation(fetidpmat_ctx->B_Ddelta,1,NULL);CHKERRQ(ierr);
    for (i=0;i<n_local_lambda;i++) {
      ierr = MatSetValue(fetidpmat_ctx->B_Ddelta,i,cols_B_delta[i],scaling_factors[i],INSERT_VALUES);CHKERRQ(ierr);
    }
    ierr = MatAssemblyBegin(fetidpmat_ctx->B_Ddelta,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
    ierr = MatAssemblyEnd  (fetidpmat_ctx->B_Ddelta,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
  }
  ierr = PetscFree(scaling_factors);CHKERRQ(ierr);
  ierr = PetscFree(cols_B_delta);CHKERRQ(ierr);

  /* Create some vectors needed by fetidp */
  ierr = VecDuplicate(pcis->vec1_B,&fetidpmat_ctx->temp_solution_B);CHKERRQ(ierr);
  ierr = VecDuplicate(pcis->vec1_D,&fetidpmat_ctx->temp_solution_D);CHKERRQ(ierr);

  test_fetidp = PETSC_FALSE;
  ierr = PetscOptionsGetBool(NULL,"-fetidp_check",&test_fetidp,NULL);CHKERRQ(ierr);

  if (test_fetidp && !pcbddc->use_deluxe_scaling) {

    PetscReal real_value;

    ierr = PetscViewerASCIIGetStdout(comm,&viewer);CHKERRQ(ierr);
    ierr = PetscViewerASCIISynchronizedAllow(viewer,PETSC_TRUE);CHKERRQ(ierr);
    ierr = PetscViewerASCIIPrintf(viewer,"----------FETI_DP TESTS--------------\n");CHKERRQ(ierr);
    ierr = PetscViewerASCIIPrintf(viewer,"All tests should return zero!\n");CHKERRQ(ierr);
    ierr = PetscViewerASCIIPrintf(viewer,"FETIDP MAT context in the ");CHKERRQ(ierr);
    if (fully_redundant) {
      ierr = PetscViewerASCIIPrintf(viewer,"fully redundant case for lagrange multipliers.\n");CHKERRQ(ierr);
    } else {
      ierr = PetscViewerASCIIPrintf(viewer,"Non-fully redundant case for lagrange multiplier.\n");CHKERRQ(ierr);
    }
    ierr = PetscViewerFlush(viewer);CHKERRQ(ierr);

    /******************************************************************/
    /* TEST A/B: Test numbering of global lambda dofs             */
    /******************************************************************/

    ierr = VecDuplicate(fetidpmat_ctx->lambda_local,&test_vec);CHKERRQ(ierr);
    ierr = VecSet(lambda_global,1.0);CHKERRQ(ierr);
    ierr = VecSet(test_vec,1.0);CHKERRQ(ierr);
    ierr = VecScatterBegin(fetidpmat_ctx->l2g_lambda,lambda_global,fetidpmat_ctx->lambda_local,INSERT_VALUES,SCATTER_REVERSE);CHKERRQ(ierr);
    ierr = VecScatterEnd  (fetidpmat_ctx->l2g_lambda,lambda_global,fetidpmat_ctx->lambda_local,INSERT_VALUES,SCATTER_REVERSE);CHKERRQ(ierr);
    scalar_value = -1.0;
    ierr = VecAXPY(test_vec,scalar_value,fetidpmat_ctx->lambda_local);CHKERRQ(ierr);
    ierr = VecNorm(test_vec,NORM_INFINITY,&real_value);CHKERRQ(ierr);
    ierr = VecDestroy(&test_vec);CHKERRQ(ierr);
    ierr = PetscViewerASCIISynchronizedPrintf(viewer,"A[%04d]: CHECK glob to loc: % 1.14e\n",rank,real_value);CHKERRQ(ierr);
    ierr = PetscViewerFlush(viewer);CHKERRQ(ierr);
    if (fully_redundant) {
      ierr = VecSet(lambda_global,0.0);CHKERRQ(ierr);
      ierr = VecSet(fetidpmat_ctx->lambda_local,0.5);CHKERRQ(ierr);
      ierr = VecScatterBegin(fetidpmat_ctx->l2g_lambda,fetidpmat_ctx->lambda_local,lambda_global,ADD_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
      ierr = VecScatterEnd  (fetidpmat_ctx->l2g_lambda,fetidpmat_ctx->lambda_local,lambda_global,ADD_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
      ierr = VecSum(lambda_global,&scalar_value);CHKERRQ(ierr);
      ierr = PetscViewerASCIISynchronizedPrintf(viewer,"B[%04d]: CHECK loc to glob: % 1.14e\n",rank,PetscRealPart(scalar_value)-fetidpmat_ctx->n_lambda);CHKERRQ(ierr);
      ierr = PetscViewerFlush(viewer);CHKERRQ(ierr);
    }

    /******************************************************************/
    /* TEST C: It should holds B_delta*w=0, w\in\widehat{W}           */
    /* This is the meaning of the B matrix                            */
    /******************************************************************/

    ierr = VecSetRandom(pcis->vec1_N,NULL);CHKERRQ(ierr);
    ierr = VecSet(pcis->vec1_global,0.0);CHKERRQ(ierr);
    ierr = VecScatterBegin(matis->ctx,pcis->vec1_N,pcis->vec1_global,ADD_VALUES,SCATTER_REVERSE);CHKERRQ(ierr);
    ierr = VecScatterEnd  (matis->ctx,pcis->vec1_N,pcis->vec1_global,ADD_VALUES,SCATTER_REVERSE);CHKERRQ(ierr);
    ierr = VecScatterBegin(matis->ctx,pcis->vec1_global,pcis->vec1_N,INSERT_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
    ierr = VecScatterEnd  (matis->ctx,pcis->vec1_global,pcis->vec1_N,INSERT_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
    ierr = VecScatterBegin(pcis->N_to_B,pcis->vec1_N,pcis->vec1_B,INSERT_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
    ierr = VecScatterEnd  (pcis->N_to_B,pcis->vec1_N,pcis->vec1_B,INSERT_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
    /* Action of B_delta */
    ierr = MatMult(fetidpmat_ctx->B_delta,pcis->vec1_B,fetidpmat_ctx->lambda_local);CHKERRQ(ierr);
    ierr = VecSet(lambda_global,0.0);CHKERRQ(ierr);
    ierr = VecScatterBegin(fetidpmat_ctx->l2g_lambda,fetidpmat_ctx->lambda_local,lambda_global,ADD_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
    ierr = VecScatterEnd  (fetidpmat_ctx->l2g_lambda,fetidpmat_ctx->lambda_local,lambda_global,ADD_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
    ierr = VecNorm(lambda_global,NORM_INFINITY,&real_value);CHKERRQ(ierr);
    ierr = PetscViewerASCIIPrintf(viewer,"C[coll]: CHECK infty norm of B_delta*w (w continuous): % 1.14e\n",real_value);CHKERRQ(ierr);
    ierr = PetscViewerFlush(viewer);CHKERRQ(ierr);

    /******************************************************************/
    /* TEST D: It should holds E_Dw = w - P_Dw w\in\widetilde{W}     */
    /* E_D = R_D^TR                                                   */
    /* P_D = B_{D,delta}^T B_{delta}                                  */
    /* eq.44 Mandel Tezaur and Dohrmann 2005                          */
    /******************************************************************/

    /* compute a random vector in \widetilde{W} */
    ierr = VecSetRandom(pcis->vec1_N,NULL);CHKERRQ(ierr);
    scalar_value = 0.0;  /* set zero at vertices */
    ierr = VecGetArray(pcis->vec1_N,&array);CHKERRQ(ierr);
    for (i=0;i<n_vertices;i++) { array[vertex_indices[i]]=scalar_value; }
    ierr = VecRestoreArray(pcis->vec1_N,&array);CHKERRQ(ierr);
    /* store w for final comparison */
    ierr = VecDuplicate(pcis->vec1_B,&test_vec);CHKERRQ(ierr);
    ierr = VecScatterBegin(pcis->N_to_B,pcis->vec1_N,test_vec,INSERT_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
    ierr = VecScatterEnd  (pcis->N_to_B,pcis->vec1_N,test_vec,INSERT_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);

    /* Jump operator P_D : results stored in pcis->vec1_B */

    ierr = VecScatterBegin(pcis->N_to_B,pcis->vec1_N,pcis->vec1_B,INSERT_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
    ierr = VecScatterEnd  (pcis->N_to_B,pcis->vec1_N,pcis->vec1_B,INSERT_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
    /* Action of B_delta */
    ierr = MatMult(fetidpmat_ctx->B_delta,pcis->vec1_B,fetidpmat_ctx->lambda_local);CHKERRQ(ierr);
    ierr = VecSet(lambda_global,0.0);CHKERRQ(ierr);
    ierr = VecScatterBegin(fetidpmat_ctx->l2g_lambda,fetidpmat_ctx->lambda_local,lambda_global,ADD_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
    ierr = VecScatterEnd  (fetidpmat_ctx->l2g_lambda,fetidpmat_ctx->lambda_local,lambda_global,ADD_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
    /* Action of B_Ddelta^T */
    ierr = VecScatterBegin(fetidpmat_ctx->l2g_lambda,lambda_global,fetidpmat_ctx->lambda_local,INSERT_VALUES,SCATTER_REVERSE);CHKERRQ(ierr);
    ierr = VecScatterEnd  (fetidpmat_ctx->l2g_lambda,lambda_global,fetidpmat_ctx->lambda_local,INSERT_VALUES,SCATTER_REVERSE);CHKERRQ(ierr);
    ierr = MatMultTranspose(fetidpmat_ctx->B_Ddelta,fetidpmat_ctx->lambda_local,pcis->vec1_B);CHKERRQ(ierr);

    /* Average operator E_D : results stored in pcis->vec2_B */
    ierr = VecScatterBegin(pcis->N_to_B,pcis->vec1_N,pcis->vec2_B,INSERT_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
    ierr = VecScatterEnd  (pcis->N_to_B,pcis->vec1_N,pcis->vec2_B,INSERT_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
    ierr = PCBDDCScalingExtension(fetidpmat_ctx->pc,pcis->vec2_B,pcis->vec1_global);CHKERRQ(ierr);
    ierr = VecScatterBegin(pcis->global_to_B,pcis->vec1_global,pcis->vec2_B,INSERT_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
    ierr = VecScatterEnd  (pcis->global_to_B,pcis->vec1_global,pcis->vec2_B,INSERT_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);

    /* test E_D=I-P_D */
    scalar_value = 1.0;
    ierr = VecAXPY(pcis->vec1_B,scalar_value,pcis->vec2_B);CHKERRQ(ierr);
    scalar_value = -1.0;
    ierr = VecAXPY(pcis->vec1_B,scalar_value,test_vec);CHKERRQ(ierr);
    ierr = VecNorm(pcis->vec1_B,NORM_INFINITY,&real_value);CHKERRQ(ierr);
    ierr = VecDestroy(&test_vec);CHKERRQ(ierr);
    ierr = PetscViewerASCIISynchronizedPrintf(viewer,"D[%04d] CHECK infty norm of E_D + P_D - I: % 1.14e\n",rank,real_value);CHKERRQ(ierr);
    ierr = PetscViewerFlush(viewer);CHKERRQ(ierr);

    /******************************************************************/
    /* TEST E: It should holds R_D^TP_Dw=0 w\in\widetilde{W}          */
    /* eq.48 Mandel Tezaur and Dohrmann 2005                          */
    /******************************************************************/

    ierr = VecSetRandom(pcis->vec1_N,NULL);CHKERRQ(ierr);
    ierr = VecGetArray(pcis->vec1_N,&array);CHKERRQ(ierr);
    scalar_value = 0.0;  /* set zero at vertices */
    for (i=0;i<n_vertices;i++) { array[vertex_indices[i]]=scalar_value; }
    ierr = VecRestoreArray(pcis->vec1_N,&array);CHKERRQ(ierr);

    /* Jump operator P_D : results stored in pcis->vec1_B */

    ierr = VecScatterBegin(pcis->N_to_B,pcis->vec1_N,pcis->vec1_B,INSERT_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
    ierr = VecScatterEnd  (pcis->N_to_B,pcis->vec1_N,pcis->vec1_B,INSERT_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
    /* Action of B_delta */
    ierr = MatMult(fetidpmat_ctx->B_delta,pcis->vec1_B,fetidpmat_ctx->lambda_local);CHKERRQ(ierr);
    ierr = VecSet(lambda_global,0.0);CHKERRQ(ierr);
    ierr = VecScatterBegin(fetidpmat_ctx->l2g_lambda,fetidpmat_ctx->lambda_local,lambda_global,ADD_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
    ierr = VecScatterEnd  (fetidpmat_ctx->l2g_lambda,fetidpmat_ctx->lambda_local,lambda_global,ADD_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
    /* Action of B_Ddelta^T */
    ierr = VecScatterBegin(fetidpmat_ctx->l2g_lambda,lambda_global,fetidpmat_ctx->lambda_local,INSERT_VALUES,SCATTER_REVERSE);CHKERRQ(ierr);
    ierr = VecScatterEnd  (fetidpmat_ctx->l2g_lambda,lambda_global,fetidpmat_ctx->lambda_local,INSERT_VALUES,SCATTER_REVERSE);CHKERRQ(ierr);
    ierr = MatMultTranspose(fetidpmat_ctx->B_Ddelta,fetidpmat_ctx->lambda_local,pcis->vec1_B);CHKERRQ(ierr);
    /* scaling */
    ierr = PCBDDCScalingExtension(fetidpmat_ctx->pc,pcis->vec1_B,pcis->vec1_global);CHKERRQ(ierr);
    ierr = VecNorm(pcis->vec1_global,NORM_INFINITY,&real_value);CHKERRQ(ierr);
    ierr = PetscViewerASCIIPrintf(viewer,"E[coll]: CHECK infty norm of R^T_D P_D: % 1.14e\n",real_value);CHKERRQ(ierr);
    ierr = PetscViewerFlush(viewer);CHKERRQ(ierr);

    if (!fully_redundant) {
      /******************************************************************/
      /* TEST F: It should holds B_{delta}B^T_{D,delta}=I               */
      /* Corollary thm 14 Mandel Tezaur and Dohrmann 2005               */
      /******************************************************************/
      ierr = VecDuplicate(lambda_global,&test_vec);CHKERRQ(ierr);
      ierr = VecSetRandom(lambda_global,NULL);CHKERRQ(ierr);
      /* Action of B_Ddelta^T */
      ierr = VecScatterBegin(fetidpmat_ctx->l2g_lambda,lambda_global,fetidpmat_ctx->lambda_local,INSERT_VALUES,SCATTER_REVERSE);CHKERRQ(ierr);
      ierr = VecScatterEnd  (fetidpmat_ctx->l2g_lambda,lambda_global,fetidpmat_ctx->lambda_local,INSERT_VALUES,SCATTER_REVERSE);CHKERRQ(ierr);
      ierr = MatMultTranspose(fetidpmat_ctx->B_Ddelta,fetidpmat_ctx->lambda_local,pcis->vec1_B);CHKERRQ(ierr);
      /* Action of B_delta */
      ierr = MatMult(fetidpmat_ctx->B_delta,pcis->vec1_B,fetidpmat_ctx->lambda_local);CHKERRQ(ierr);
      ierr = VecSet(test_vec,0.0);CHKERRQ(ierr);
      ierr = VecScatterBegin(fetidpmat_ctx->l2g_lambda,fetidpmat_ctx->lambda_local,test_vec,ADD_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
      ierr = VecScatterEnd  (fetidpmat_ctx->l2g_lambda,fetidpmat_ctx->lambda_local,test_vec,ADD_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
      scalar_value = -1.0;
      ierr = VecAXPY(lambda_global,scalar_value,test_vec);CHKERRQ(ierr);
      ierr = VecNorm(lambda_global,NORM_INFINITY,&real_value);CHKERRQ(ierr);
      ierr = PetscViewerASCIIPrintf(viewer,"E[coll]: CHECK infty norm of P^T_D - I: % 1.14e\n",real_value);CHKERRQ(ierr);
      ierr = PetscViewerFlush(viewer);CHKERRQ(ierr);
      ierr = PetscViewerFlush(viewer);CHKERRQ(ierr);
      ierr = VecDestroy(&test_vec);CHKERRQ(ierr);
    }
  }
  /* final cleanup */
  ierr = PetscFree(vertex_indices);CHKERRQ(ierr);
  ierr = VecDestroy(&lambda_global);CHKERRQ(ierr);

  PetscFunctionReturn(0);
}
Пример #18
0
PetscErrorCode  KSPSolve_CG(KSP ksp)
{
  PetscErrorCode ierr;
  PetscInt       i,stored_max_it,eigs;
  PetscScalar    dpi = 0.0,a = 1.0,beta,betaold = 1.0,b = 0,*e = 0,*d = 0,delta,dpiold;
  PetscReal      dp  = 0.0;
  Vec            X,B,Z,R,P,S,W;
  KSP_CG         *cg;
  Mat            Amat,Pmat;
  MatStructure   pflag;
  PetscBool      diagonalscale;

  PetscFunctionBegin;
  ierr = PCGetDiagonalScale(ksp->pc,&diagonalscale);CHKERRQ(ierr);
  if (diagonalscale) SETERRQ1(PetscObjectComm((PetscObject)ksp),PETSC_ERR_SUP,"Krylov method %s does not support diagonal scaling",((PetscObject)ksp)->type_name);

  cg            = (KSP_CG*)ksp->data;
  eigs          = ksp->calc_sings;
  stored_max_it = ksp->max_it;
  X             = ksp->vec_sol;
  B             = ksp->vec_rhs;
  R             = ksp->work[0];
  Z             = ksp->work[1];
  P             = ksp->work[2];
  if (cg->singlereduction) {
    S = ksp->work[3];
    W = ksp->work[4];
  } else {
    S = 0;                      /* unused */
    W = Z;
  }

#define VecXDot(x,y,a) (((cg->type) == (KSP_CG_HERMITIAN)) ? VecDot(x,y,a) : VecTDot(x,y,a))

  if (eigs) {e = cg->e; d = cg->d; e[0] = 0.0; }
  ierr = PCGetOperators(ksp->pc,&Amat,&Pmat,&pflag);CHKERRQ(ierr);

  ksp->its = 0;
  if (!ksp->guess_zero) {
    ierr = KSP_MatMult(ksp,Amat,X,R);CHKERRQ(ierr);            /*     r <- b - Ax     */
    ierr = VecAYPX(R,-1.0,B);CHKERRQ(ierr);
  } else {
    ierr = VecCopy(B,R);CHKERRQ(ierr);                         /*     r <- b (x is 0) */
  }

  switch (ksp->normtype) {
  case KSP_NORM_PRECONDITIONED:
    ierr = KSP_PCApply(ksp,R,Z);CHKERRQ(ierr);                   /*     z <- Br         */
    ierr = VecNorm(Z,NORM_2,&dp);CHKERRQ(ierr);                /*    dp <- z'*z = e'*A'*B'*B*A'*e'     */
    break;
  case KSP_NORM_UNPRECONDITIONED:
    ierr = VecNorm(R,NORM_2,&dp);CHKERRQ(ierr);                /*    dp <- r'*r = e'*A'*A*e            */
    break;
  case KSP_NORM_NATURAL:
    ierr = KSP_PCApply(ksp,R,Z);CHKERRQ(ierr);                   /*     z <- Br         */
    if (cg->singlereduction) {
      ierr = KSP_MatMult(ksp,Amat,Z,S);CHKERRQ(ierr);
      ierr = VecXDot(Z,S,&delta);CHKERRQ(ierr);
    }
    ierr = VecXDot(Z,R,&beta);CHKERRQ(ierr);                     /*  beta <- z'*r       */
    if (PetscIsInfOrNanScalar(beta)) {
      if (ksp->errorifnotconverged) SETERRQ(PetscObjectComm((PetscObject)ksp),PETSC_ERR_NOT_CONVERGED,"KSPSolve has not converged due to Nan or Inf inner product");
      else {
        ksp->reason = KSP_DIVERGED_NANORINF;
        PetscFunctionReturn(0);
      }
    }
    dp = PetscSqrtReal(PetscAbsScalar(beta));                           /*    dp <- r'*z = r'*B*r = e'*A'*B*A*e */
    break;
  case KSP_NORM_NONE:
    dp = 0.0;
    break;
  default: SETERRQ1(PetscObjectComm((PetscObject)ksp),PETSC_ERR_SUP,"%s",KSPNormTypes[ksp->normtype]);
  }
  ierr       = KSPLogResidualHistory(ksp,dp);CHKERRQ(ierr);
  ierr       = KSPMonitor(ksp,0,dp);CHKERRQ(ierr);
  ksp->rnorm = dp;

  ierr = (*ksp->converged)(ksp,0,dp,&ksp->reason,ksp->cnvP);CHKERRQ(ierr);      /* test for convergence */
  if (ksp->reason) PetscFunctionReturn(0);

  if (ksp->normtype != KSP_NORM_PRECONDITIONED && (ksp->normtype != KSP_NORM_NATURAL)) {
    ierr = KSP_PCApply(ksp,R,Z);CHKERRQ(ierr);                   /*     z <- Br         */
  }
  if (ksp->normtype != KSP_NORM_NATURAL) {
    if (cg->singlereduction) {
      ierr = KSP_MatMult(ksp,Amat,Z,S);CHKERRQ(ierr);
      ierr = VecXDot(Z,S,&delta);CHKERRQ(ierr);
    }
    ierr = VecXDot(Z,R,&beta);CHKERRQ(ierr);         /*  beta <- z'*r       */
    if (PetscIsInfOrNanScalar(beta)) {
      if (ksp->errorifnotconverged) SETERRQ(PetscObjectComm((PetscObject)ksp),PETSC_ERR_NOT_CONVERGED,"KSPSolve has not converged due to Nan or Inf inner product");
      else {
        ksp->reason = KSP_DIVERGED_NANORINF;
        PetscFunctionReturn(0);
      }
    }
  }

  i = 0;
  do {
    ksp->its = i+1;
    if (beta == 0.0) {
      ksp->reason = KSP_CONVERGED_ATOL;
      ierr        = PetscInfo(ksp,"converged due to beta = 0\n");CHKERRQ(ierr);
      break;
#if !defined(PETSC_USE_COMPLEX)
    } else if ((i > 0) && (beta*betaold < 0.0)) {
      ksp->reason = KSP_DIVERGED_INDEFINITE_PC;
      ierr        = PetscInfo(ksp,"diverging due to indefinite preconditioner\n");CHKERRQ(ierr);
      break;
#endif
    }
    if (!i) {
      ierr = VecCopy(Z,P);CHKERRQ(ierr);         /*     p <- z          */
      b    = 0.0;
    } else {
      b = beta/betaold;
      if (eigs) {
        if (ksp->max_it != stored_max_it) SETERRQ(PetscObjectComm((PetscObject)ksp),PETSC_ERR_SUP,"Can not change maxit AND calculate eigenvalues");
        e[i] = PetscSqrtReal(PetscAbsScalar(b))/a;
      }
      ierr = VecAYPX(P,b,Z);CHKERRQ(ierr);    /*     p <- z + b* p   */
    }
    dpiold = dpi;
    if (!cg->singlereduction || !i) {
      ierr = KSP_MatMult(ksp,Amat,P,W);CHKERRQ(ierr);          /*     w <- Ap         */
      ierr = VecXDot(P,W,&dpi);CHKERRQ(ierr);                  /*     dpi <- p'w     */
    } else {
      ierr = VecAYPX(W,beta/betaold,S);CHKERRQ(ierr);                  /*     w <- Ap         */
      dpi  = delta - beta*beta*dpiold/(betaold*betaold);             /*     dpi <- p'w     */
    }
    betaold = beta;
    if (PetscIsInfOrNanScalar(dpi)) {
      if (ksp->errorifnotconverged) SETERRQ(PetscObjectComm((PetscObject)ksp),PETSC_ERR_NOT_CONVERGED,"KSPSolve has not converged due to Nan or Inf inner product");
      else {
        ksp->reason = KSP_DIVERGED_NANORINF;
        PetscFunctionReturn(0);
      }
    }

    if ((dpi == 0.0) || ((i > 0) && (PetscRealPart(dpi*dpiold) <= 0.0))) {
      ksp->reason = KSP_DIVERGED_INDEFINITE_MAT;
      ierr        = PetscInfo(ksp,"diverging due to indefinite or negative definite matrix\n");CHKERRQ(ierr);
      break;
    }
    a = beta/dpi;                                 /*     a = beta/p'w   */
    if (eigs) d[i] = PetscSqrtReal(PetscAbsScalar(b))*e[i] + 1.0/a;
    ierr = VecAXPY(X,a,P);CHKERRQ(ierr);          /*     x <- x + ap     */
    ierr = VecAXPY(R,-a,W);CHKERRQ(ierr);                      /*     r <- r - aw    */
    if (ksp->normtype == KSP_NORM_PRECONDITIONED && ksp->chknorm < i+2) {
      ierr = KSP_PCApply(ksp,R,Z);CHKERRQ(ierr);               /*     z <- Br         */
      if (cg->singlereduction) {
        ierr = KSP_MatMult(ksp,Amat,Z,S);CHKERRQ(ierr);
      }
      ierr = VecNorm(Z,NORM_2,&dp);CHKERRQ(ierr);              /*    dp <- z'*z       */
    } else if (ksp->normtype == KSP_NORM_UNPRECONDITIONED && ksp->chknorm < i+2) {
      ierr = VecNorm(R,NORM_2,&dp);CHKERRQ(ierr);              /*    dp <- r'*r       */
    } else if (ksp->normtype == KSP_NORM_NATURAL) {
      ierr = KSP_PCApply(ksp,R,Z);CHKERRQ(ierr);               /*     z <- Br         */
      if (cg->singlereduction) {
        PetscScalar tmp[2];
        Vec         vecs[2];
        vecs[0] = S; vecs[1] = R;
        ierr    = KSP_MatMult(ksp,Amat,Z,S);CHKERRQ(ierr);
        ierr  = VecMDot(Z,2,vecs,tmp);CHKERRQ(ierr);
        delta = tmp[0]; beta = tmp[1];
      } else {
        ierr = VecXDot(Z,R,&beta);CHKERRQ(ierr);     /*  beta <- r'*z       */
      }
      if (PetscIsInfOrNanScalar(beta)) {
        if (ksp->errorifnotconverged) SETERRQ(PetscObjectComm((PetscObject)ksp),PETSC_ERR_NOT_CONVERGED,"KSPSolve has not converged due to Nan or Inf inner product");
        else {
          ksp->reason = KSP_DIVERGED_NANORINF;
          PetscFunctionReturn(0);
        }
      }
      dp = PetscSqrtReal(PetscAbsScalar(beta));
    } else {
      dp = 0.0;
    }
    ksp->rnorm = dp;
    CHKERRQ(ierr);KSPLogResidualHistory(ksp,dp);CHKERRQ(ierr);
    ierr = KSPMonitor(ksp,i+1,dp);CHKERRQ(ierr);
    ierr = (*ksp->converged)(ksp,i+1,dp,&ksp->reason,ksp->cnvP);CHKERRQ(ierr);
    if (ksp->reason) break;

    if ((ksp->normtype != KSP_NORM_PRECONDITIONED && (ksp->normtype != KSP_NORM_NATURAL)) || (ksp->chknorm >= i+2)) {
      ierr = KSP_PCApply(ksp,R,Z);CHKERRQ(ierr);                   /*     z <- Br         */
      if (cg->singlereduction) {
        ierr = KSP_MatMult(ksp,Amat,Z,S);CHKERRQ(ierr);
      }
    }
    if ((ksp->normtype != KSP_NORM_NATURAL) || (ksp->chknorm >= i+2)) {
      if (cg->singlereduction) {
        PetscScalar tmp[2];
        Vec         vecs[2];
        vecs[0] = S; vecs[1] = R;
        ierr  = VecMDot(Z,2,vecs,tmp);CHKERRQ(ierr);
        delta = tmp[0]; beta = tmp[1];
      } else {
        ierr = VecXDot(Z,R,&beta);CHKERRQ(ierr);        /*  beta <- z'*r       */
      }
      if (PetscIsInfOrNanScalar(beta)) {
        if (ksp->errorifnotconverged) SETERRQ(PetscObjectComm((PetscObject)ksp),PETSC_ERR_NOT_CONVERGED,"KSPSolve has not converged due to Nan or Inf inner product");
        else {
          ksp->reason = KSP_DIVERGED_NANORINF;
          PetscFunctionReturn(0);
        }
      }
    }

    i++;
  } while (i<ksp->max_it);
  if (i >= ksp->max_it) ksp->reason = KSP_DIVERGED_ITS;
  PetscFunctionReturn(0);
}
Пример #19
0
PetscInt main(PetscInt argc,char **args)
{
  typedef enum {RANDOM, CONSTANT, TANH, NUM_FUNCS} FuncType;
  const char    *funcNames[NUM_FUNCS] = {"random", "constant", "tanh"};
  Mat            A, AA;    
  PetscMPIInt    size;
  PetscInt       N,i, stencil=1,dof=3;
  PetscInt       dim[3] = {10,10,10}, ndim = 3;
  Vec            coords,x,y,z,xx, yy, zz;
  Vec            xxsplit[DOF], yysplit[DOF], zzsplit[DOF];
  PetscReal      h[3];
  PetscScalar    s;  
  PetscRandom    rdm;
  PetscReal      norm, enorm;
  PetscInt       func;
  FuncType       function = TANH;
  DM             da, da1, coordsda;
  PetscBool      view_x = PETSC_FALSE, view_y = PETSC_FALSE, view_z = PETSC_FALSE;
  PetscErrorCode ierr;

  ierr = PetscInitialize(&argc,&args,(char *)0,help);CHKERRQ(ierr);
#if !defined(PETSC_USE_COMPLEX)
  SETERRQ(PETSC_COMM_WORLD,PETSC_ERR_SUP, "This example requires complex numbers");
#endif
  ierr = MPI_Comm_size(PETSC_COMM_WORLD, &size);CHKERRQ(ierr);
  if (size != 1) SETERRQ(PETSC_COMM_WORLD,PETSC_ERR_SUP, "This is a uniprocessor example only!");
  ierr = PetscOptionsBegin(PETSC_COMM_WORLD, PETSC_NULL, "USFFT Options", "ex27");CHKERRQ(ierr);
    ierr = PetscOptionsEList("-function", "Function type", "ex27", funcNames, NUM_FUNCS, funcNames[function], &func, PETSC_NULL);CHKERRQ(ierr);
    function = (FuncType) func;
  ierr = PetscOptionsEnd();CHKERRQ(ierr);
  ierr = PetscOptionsGetBool(PETSC_NULL,"-view_x",&view_x,PETSC_NULL);CHKERRQ(ierr); 
  ierr = PetscOptionsGetBool(PETSC_NULL,"-view_y",&view_y,PETSC_NULL);CHKERRQ(ierr); 
  ierr = PetscOptionsGetBool(PETSC_NULL,"-view_z",&view_z,PETSC_NULL);CHKERRQ(ierr); 
  ierr = PetscOptionsGetIntArray(PETSC_NULL,"-dim",dim,&ndim,PETSC_NULL);CHKERRQ(ierr); 

  // DMDA with the correct fiber dimension
  ierr = DMDACreate3d(PETSC_COMM_SELF,DMDA_BOUNDARY_NONE,DMDA_BOUNDARY_NONE,DMDA_BOUNDARY_NONE,DMDA_STENCIL_STAR, 
                    dim[0], dim[1], dim[2], 
                    PETSC_DECIDE, PETSC_DECIDE, PETSC_DECIDE, 
                    dof, stencil,
                    PETSC_NULL, PETSC_NULL, PETSC_NULL,
                    &da); 
 CHKERRQ(ierr);
  // DMDA with fiber dimension 1 for split fields
  ierr = DMDACreate3d(PETSC_COMM_SELF,DMDA_BOUNDARY_NONE,DMDA_BOUNDARY_NONE,DMDA_BOUNDARY_NONE,DMDA_STENCIL_STAR, 
                    dim[0], dim[1], dim[2], 
                    PETSC_DECIDE, PETSC_DECIDE, PETSC_DECIDE, 
                    1, stencil,
                    PETSC_NULL, PETSC_NULL, PETSC_NULL,
                    &da1); 
 CHKERRQ(ierr);
  
  // Coordinates
  ierr = DMDAGetCoordinateDA(da, &coordsda);
  ierr = DMGetGlobalVector(coordsda, &coords);CHKERRQ(ierr);
  ierr = PetscObjectSetName((PetscObject) coords, "Grid coordinates");CHKERRQ(ierr);  
  for(i = 0, N = 1; i < 3; i++) {
    h[i] = 1.0/dim[i];
    PetscScalar *a;
    ierr = VecGetArray(coords, &a);CHKERRQ(ierr);
    PetscInt j,k,n = 0;
    for(i = 0; i < 3; ++i) {
      for(j = 0; j < dim[i]; ++j){
        for(k = 0; k < 3; ++k) {
          a[n] = j*h[i]; // coordinate along the j-th point in the i-th dimension
          ++n;
        }
      }
    }
    ierr = VecRestoreArray(coords, &a);CHKERRQ(ierr);

  }
  ierr = DMDASetCoordinates(da, coords);CHKERRQ(ierr);
  ierr = VecDestroy(&coords);CHKERRQ(ierr);

  // Work vectors
  ierr = DMGetGlobalVector(da, &x);CHKERRQ(ierr);
  ierr = PetscObjectSetName((PetscObject) x, "Real space vector");CHKERRQ(ierr);
  ierr = DMGetGlobalVector(da, &xx);CHKERRQ(ierr);
  ierr = PetscObjectSetName((PetscObject) xx, "Real space vector");CHKERRQ(ierr);
  ierr = DMGetGlobalVector(da, &y);CHKERRQ(ierr);
  ierr = PetscObjectSetName((PetscObject) y, "USFFT frequency space vector");CHKERRQ(ierr);
  ierr = DMGetGlobalVector(da, &yy);CHKERRQ(ierr);
  ierr = PetscObjectSetName((PetscObject) yy, "FFTW frequency space vector");CHKERRQ(ierr);
  ierr = DMGetGlobalVector(da, &z);CHKERRQ(ierr);
  ierr = PetscObjectSetName((PetscObject) z, "USFFT reconstructed vector");CHKERRQ(ierr);
  ierr = DMGetGlobalVector(da, &zz);CHKERRQ(ierr);
  ierr = PetscObjectSetName((PetscObject) zz, "FFTW reconstructed vector");CHKERRQ(ierr);
  // Split vectors for FFTW
  for(int ii = 0; ii < 3; ++ii) {
    ierr = DMGetGlobalVector(da1, &xxsplit[ii]);CHKERRQ(ierr);
    ierr = PetscObjectSetName((PetscObject) xxsplit[ii], "Real space split vector");CHKERRQ(ierr);
    ierr = DMGetGlobalVector(da1, &yysplit[ii]);CHKERRQ(ierr);
    ierr = PetscObjectSetName((PetscObject) yysplit[ii], "FFTW frequency space split vector");CHKERRQ(ierr);
    ierr = DMGetGlobalVector(da1, &zzsplit[ii]);CHKERRQ(ierr);
    ierr = PetscObjectSetName((PetscObject) zzsplit[ii], "FFTW reconstructed split vector");CHKERRQ(ierr);
  }


  ierr = PetscPrintf(PETSC_COMM_SELF, "%3-D: USFFT on vector of ");CHKERRQ(ierr);
  for(i = 0, N = 1; i < 3; i++) {
    ierr = PetscPrintf(PETSC_COMM_SELF, "dim[%d] = %d ",i,dim[i]);CHKERRQ(ierr);
    N *= dim[i];
  }
  ierr = PetscPrintf(PETSC_COMM_SELF, "; total size %d \n",N);CHKERRQ(ierr);

  
  if (function == RANDOM) {
    ierr = PetscRandomCreate(PETSC_COMM_SELF, &rdm);CHKERRQ(ierr);
    ierr = PetscRandomSetFromOptions(rdm);CHKERRQ(ierr);
    ierr = VecSetRandom(x, rdm);CHKERRQ(ierr);
    ierr = PetscRandomDestroy(&rdm);CHKERRQ(ierr);
  } 
  else if (function == CONSTANT) {
    ierr = VecSet(x, 1.0);CHKERRQ(ierr);
  } 
  else if (function == TANH) {
    PetscScalar *a;
    ierr = VecGetArray(x, &a);CHKERRQ(ierr);
    PetscInt j,k = 0;
    for(i = 0; i < 3; ++i) {
      for(j = 0; j < dim[i]; ++j) {
        a[k] = tanh((j - dim[i]/2.0)*(10.0/dim[i]));
        ++k;
      }
    }
    ierr = VecRestoreArray(x, &a);CHKERRQ(ierr);
  }
  if(view_x) {
    ierr = VecView(x, PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);
  }
  ierr = VecCopy(x,xx);CHKERRQ(ierr);
  // Split xx
  ierr = VecStrideGatherAll(xx,xxsplit, INSERT_VALUES);CHKERRQ(ierr); //YES! 'Gather' means 'split' (or maybe 'scatter'?)! 

  ierr = VecNorm(x,NORM_2,&norm);CHKERRQ(ierr);
  ierr = PetscPrintf(PETSC_COMM_SELF, "|x|_2 = %g\n",norm);CHKERRQ(ierr);
  
  /* create USFFT object */
  ierr = MatCreateSeqUSFFT(da,da,&A);CHKERRQ(ierr);
  /* create FFTW object */
  ierr = MatCreateSeqFFTW(PETSC_COMM_SELF,3,dim,&AA);CHKERRQ(ierr);
  
  /* apply USFFT and FFTW FORWARD "preemptively", so the fftw_plans can be reused on different vectors */
  ierr = MatMult(A,x,z);CHKERRQ(ierr);
  for(int ii = 0; ii < 3; ++ii) {
    ierr = MatMult(AA,xxsplit[ii],zzsplit[ii]);CHKERRQ(ierr);
  }
  // Now apply USFFT and FFTW forward several (3) times
  for (i=0; i<3; ++i){
    ierr = MatMult(A,x,y);CHKERRQ(ierr); 
    for(int ii = 0; ii < 3; ++ii) {
      ierr = MatMult(AA,xxsplit[ii],yysplit[ii]);CHKERRQ(ierr);
    }
    ierr = MatMultTranspose(A,y,z);CHKERRQ(ierr);
    for(int ii = 0; ii < 3; ++ii) {
      ierr = MatMult(AA,yysplit[ii],zzsplit[ii]);CHKERRQ(ierr);
    }
  }
  // Unsplit yy
  ierr = VecStrideScatterAll(yysplit, yy, INSERT_VALUES);CHKERRQ(ierr); //YES! 'Scatter' means 'collect' (or maybe 'gather'?)! 
  // Unsplit zz
  ierr = VecStrideScatterAll(zzsplit, zz, INSERT_VALUES);CHKERRQ(ierr); //YES! 'Scatter' means 'collect' (or maybe 'gather'?)! 

  if(view_y) {
    ierr = PetscPrintf(PETSC_COMM_WORLD, "y = \n");CHKERRQ(ierr);
    ierr = VecView(y, PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);
    ierr = PetscPrintf(PETSC_COMM_WORLD, "yy = \n");CHKERRQ(ierr);
    ierr = VecView(yy, PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);
  }
  
  if(view_z) {
    ierr = PetscPrintf(PETSC_COMM_WORLD, "z = \n");CHKERRQ(ierr);
    ierr = VecView(z, PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);
    ierr = PetscPrintf(PETSC_COMM_WORLD, "zz = \n");CHKERRQ(ierr);
    ierr = VecView(zz, PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);
  }
  
  /* compare x and z. USFFT computes an unnormalized DFT, thus z = N*x */
  s = 1.0/(PetscReal)N;
  ierr = VecScale(z,s);CHKERRQ(ierr);
  ierr = VecAXPY(x,-1.0,z);CHKERRQ(ierr);
  ierr = VecNorm(x,NORM_1,&enorm);CHKERRQ(ierr);
  ierr = PetscPrintf(PETSC_COMM_SELF, "|x-z| = %g\n",enorm);CHKERRQ(ierr);

  /* compare xx and zz. FFTW computes an unnormalized DFT, thus zz = N*x */
  s = 1.0/(PetscReal)N;
  ierr = VecScale(zz,s);CHKERRQ(ierr);
  ierr = VecAXPY(xx,-1.0,zz);CHKERRQ(ierr);
  ierr = VecNorm(xx,NORM_1,&enorm);CHKERRQ(ierr);
  ierr = PetscPrintf(PETSC_COMM_SELF, "|xx-zz| = %g\n",enorm);CHKERRQ(ierr);

  /* compare y and yy: USFFT and FFTW results*/
  ierr = VecNorm(y,NORM_2,&norm);CHKERRQ(ierr);
  ierr = VecAXPY(y,-1.0,yy);CHKERRQ(ierr);
  ierr = VecNorm(y,NORM_1,&enorm);CHKERRQ(ierr);
  ierr = PetscPrintf(PETSC_COMM_SELF, "|y|_2 = %g\n",norm);CHKERRQ(ierr);
  ierr = PetscPrintf(PETSC_COMM_SELF, "|y-yy| = %g\n",enorm);CHKERRQ(ierr);
  
  /* compare z and zz: USFFT and FFTW results*/
  ierr = VecNorm(z,NORM_2,&norm);CHKERRQ(ierr);
  ierr = VecAXPY(z,-1.0,zz);CHKERRQ(ierr);
  ierr = VecNorm(z,NORM_1,&enorm);CHKERRQ(ierr);
  ierr = PetscPrintf(PETSC_COMM_SELF, "|z|_2 = %g\n",norm);CHKERRQ(ierr);
  ierr = PetscPrintf(PETSC_COMM_SELF, "|z-zz| = %g\n",enorm);CHKERRQ(ierr);
  

  /* free spaces */
  ierr = DMRestoreGlobalVector(da,&x);CHKERRQ(ierr);
  ierr = DMRestoreGlobalVector(da,&xx);CHKERRQ(ierr);
  ierr = DMRestoreGlobalVector(da,&y);CHKERRQ(ierr);
  ierr = DMRestoreGlobalVector(da,&yy);CHKERRQ(ierr);
  ierr = DMRestoreGlobalVector(da,&z);CHKERRQ(ierr);
  ierr = DMRestoreGlobalVector(da,&zz);CHKERRQ(ierr);

  ierr = PetscFinalize();
  return 0;
}
Пример #20
0
int main(int argc, char ** argv ) {	
  int npes, rank;
  unsigned int maxNumPts = 1;
  unsigned int dim = 3;
  bool compressLut = false;
  double mgLoadFac = 2.0;
  bool incCorner = 1;  

  PetscInitialize(&argc,&argv,"optionsFBM2",help);
  ot::RegisterEvents();

  ot::DAMG_Initialize(MPI_COMM_WORLD);

  MPI_Comm_size(MPI_COMM_WORLD, &npes);
  MPI_Comm_rank(MPI_COMM_WORLD, &rank);

  PetscReal gamma = 0;
  PetscOptionsGetReal(0, "-gamma", &gamma, 0);

  PetscInt Nsample = 100;
  PetscOptionsGetInt(0, "-Nsample", &Nsample, 0);

  PetscInt maxDepth = 30;
  PetscOptionsGetInt(0, "-maxDepth", &maxDepth, 0);

  double hSample = 1.0/static_cast<double>(Nsample);
  std::vector<double> pts;
  if(!rank) {
    for(double z = 0; z < 1.0; z += hSample) {
      for(double y = 0; y < 1.0; y += hSample) {
        pts.push_back(gamma);
        pts.push_back(y);
        pts.push_back(z);
      }
    }
  }

  double gSize[3];
  gSize[0] = 1.0;
  gSize[1] = 1.0;
  gSize[2] = 1.0;

  //Construction
  std::vector<ot::TreeNode> linOct;
  ot::points2Octree(pts, gSize, linOct, dim, maxDepth, maxNumPts, MPI_COMM_WORLD);
  pts.clear();

  //Balancing...
  std::vector<ot::TreeNode> balOct;
  ot::balanceOctree(linOct, balOct, dim, maxDepth, incCorner, MPI_COMM_WORLD, NULL, NULL);
  linOct.clear();

  PetscInt       numRefinements = 0;

  PetscOptionsGetInt(0,"-numRefinements",&numRefinements,0);
  for(int i = 0; i < numRefinements; i++) {
    std::vector<ot::TreeNode> tmpOct = balOct;
    balOct.clear();
    ot::refineOctree(tmpOct, balOct); 
  }

  //Solve ...

  ot::DAMG        *damg;    
  int       nlevels = 1; //number of multigrid levels
  unsigned int       dof =1;// degrees of freedom per node  

  PetscInt nlevelsPetscInt = nlevels;
  PetscOptionsGetInt(0, "-nlevels", &nlevelsPetscInt, 0);
  nlevels = nlevelsPetscInt;

  if(!rank) {
    std::cout<<"nlevels initial: "<<nlevels<<std::endl;
  }

  MPI_Barrier(MPI_COMM_WORLD);
  double setupStartTime = MPI_Wtime();

  // Note: The user context for all levels will be set separately later.
  ot::DAMGCreateAndSetDA(PETSC_COMM_WORLD, nlevels, NULL, &damg,
      balOct, dof, mgLoadFac, compressLut, incCorner);

  MPI_Barrier(MPI_COMM_WORLD);
  double setupEndTime = MPI_Wtime();

  if(!rank) {
    std::cout<<"nlevels final: "<<nlevels<<std::endl;
  }

  if(!rank) {
    std::cout << "Created DA for all levels."<< std::endl;
  }

  ot::PrintDAMG(damg);

  createLmatType2(LaplacianType2Stencil);
  createMmatType2(MassType2Stencil);
  createShFnMat(ShapeFnStencil);

  ot::DAMGCreateSuppressedDOFs(damg);

  SetDirichletJacContexts(damg);

  //Global Function Handles for using KSP_Shell (will be used @ the coarsest grid if not all
  //processors are active on the coarsest grid)
  ot::getPrivateMatricesForKSP_Shell = getPrivateMatricesForKSP_Shell_DirichletJac;

  ot::DAMGSetKSP(damg, CreateDirichletLaplacian, ComputeDirichletLaplacian, ComputeFBM2_RHS);

  MPI_Barrier(MPI_COMM_WORLD);
  double solveStartTime = MPI_Wtime();

  ot::DAMGSolve(damg);

  MPI_Barrier(MPI_COMM_WORLD);
  double solveEndTime = MPI_Wtime();

  Vec solTrue;
  VecDuplicate(DAMGGetx(damg), &solTrue);
  SetSolutionFBM2(damg[nlevels - 1], solTrue);
  EnforceZeroFBM2(damg[nlevels - 1], DAMGGetx(damg));

  VecAXPY(solTrue, -1.0, DAMGGetx(damg));

  PetscReal maxNormErr;
  VecNorm(solTrue, NORM_INFINITY, &maxNormErr);

  VecDestroy(&solTrue);

  if(!rank) {
    std::cout<<" Total Setup Time: "<<(setupEndTime - setupStartTime)<<std::endl;
    std::cout<<" Total Solve Time: "<<(solveEndTime - solveStartTime)<<std::endl;
    std::cout<<" maxNormErr (Pointwise): "<<maxNormErr<<std::endl;
  }

  destroyLmatType2(LaplacianType2Stencil);
  destroyMmatType2(MassType2Stencil);
  destroyShFnMat(ShapeFnStencil);

  DestroyDirichletJacContexts(damg);

  DAMGDestroy(damg);

  balOct.clear();

  ot::DAMG_Finalize();

  PetscFinalize();
}//end function
Пример #21
0
PetscInt main(PetscInt argc,char **args)
{
  PetscErrorCode ierr;
  PetscMPIInt    rank,size;
  PetscInt       N0=2048,N1=2048,N2=3,N3=5,N4=5,N=N0*N1;
  PetscRandom    rdm;
  PetscReal      enorm;
  Vec            x,y,z,input,output;
  Mat            A;
  PetscInt       DIM, dim[5],vsize;
  PetscReal      fac;
  PetscScalar    one=1,two=2,three=3;

  ierr = PetscInitialize(&argc,&args,(char*)0,help);CHKERRQ(ierr);
#if defined(PETSC_USE_COMPLEX)
  SETERRQ(PETSC_COMM_WORLD,PETSC_ERR_SUP, "This example requires real numbers");
#endif
  ierr = MPI_Comm_size(PETSC_COMM_WORLD, &size);CHKERRQ(ierr);
  ierr = MPI_Comm_rank(PETSC_COMM_WORLD, &rank);CHKERRQ(ierr);

  ierr = PetscRandomCreate(PETSC_COMM_WORLD, &rdm);CHKERRQ(ierr);
  ierr = PetscRandomSetFromOptions(rdm);CHKERRQ(ierr);
  ierr = VecCreate(PETSC_COMM_WORLD,&input);CHKERRQ(ierr);
  ierr = VecSetSizes(input,PETSC_DECIDE,N);CHKERRQ(ierr);
  ierr = VecSetFromOptions(input);CHKERRQ(ierr);
/*  ierr = VecSet(input,one);CHKERRQ(ierr); */
/*  ierr = VecSetValue(input,1,two,INSERT_VALUES);CHKERRQ(ierr); */
/*  ierr = VecSetValue(input,2,three,INSERT_VALUES);CHKERRQ(ierr); */
/*  ierr = VecSetValue(input,3,three,INSERT_VALUES);CHKERRQ(ierr); */
  ierr = VecSetRandom(input,rdm);CHKERRQ(ierr);
/*  ierr = VecSetRandom(input,rdm);CHKERRQ(ierr); */
/*  ierr = VecSetRandom(input,rdm);CHKERRQ(ierr); */
  ierr = VecDuplicate(input,&output);

  DIM  = 2; dim[0] = N0; dim[1] = N1; dim[2] = N2; dim[3] = N3; dim[4] = N4;
  ierr = MatCreateFFT(PETSC_COMM_WORLD,DIM,dim,MATFFTW,&A);CHKERRQ(ierr);
  ierr = MatGetVecsFFTW(A,&x,&y,&z);CHKERRQ(ierr);
/*  ierr = MatGetVecs(A,&x,&y);CHKERRQ(ierr); */
/*  ierr = MatGetVecs(A,&z,NULL);CHKERRQ(ierr); */

  ierr = VecGetSize(x,&vsize);CHKERRQ(ierr);
  printf("The vector size  of input from the main routine is %d\n",vsize);

  ierr = VecGetSize(z,&vsize);CHKERRQ(ierr);
  printf("The vector size of output from the main routine is %d\n",vsize);

  ierr = InputTransformFFT(A,input,x);CHKERRQ(ierr);

  ierr = MatMult(A,x,y);CHKERRQ(ierr);
  ierr = VecAssemblyBegin(y);CHKERRQ(ierr);
  ierr = VecAssemblyEnd(y);CHKERRQ(ierr);
  ierr = VecView(y,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);

  ierr = MatMultTranspose(A,y,z);CHKERRQ(ierr);

  ierr = OutputTransformFFT(A,z,output);CHKERRQ(ierr);
  fac  = 1.0/(PetscReal)N;
  ierr = VecScale(output,fac);CHKERRQ(ierr);

  ierr = VecAssemblyBegin(input);CHKERRQ(ierr);
  ierr = VecAssemblyEnd(input);CHKERRQ(ierr);
  ierr = VecAssemblyBegin(output);CHKERRQ(ierr);
  ierr = VecAssemblyEnd(output);CHKERRQ(ierr);

/*  ierr = VecView(input,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr); */
/*  ierr = VecView(output,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr); */

  ierr = VecAXPY(output,-1.0,input);CHKERRQ(ierr);
  ierr = VecNorm(output,NORM_1,&enorm);CHKERRQ(ierr);
/*  if (enorm > 1.e-14) { */
  ierr = PetscPrintf(PETSC_COMM_SELF,"  Error norm of |x - z| %e\n",enorm);CHKERRQ(ierr);
/*      } */

  ierr = VecDestroy(&output);CHKERRQ(ierr);
  ierr = VecDestroy(&input);CHKERRQ(ierr);
  ierr = VecDestroy(&x);CHKERRQ(ierr);
  ierr = VecDestroy(&y);CHKERRQ(ierr);
  ierr = VecDestroy(&z);CHKERRQ(ierr);
  ierr = MatDestroy(&A);CHKERRQ(ierr);
  ierr = PetscRandomDestroy(&rdm);CHKERRQ(ierr);
  PetscFinalize();
  return 0;

}
Пример #22
0
int main(int argc,char **argv) {
    PetscErrorCode ierr;
    PetscBool   view = PETSC_FALSE,
                viewsoln = PETSC_FALSE,
                noprealloc = PETSC_FALSE;
    char        root[256] = "", nodesname[256], issname[256], solnname[256];
    UM          mesh;
    unfemCtx    user;
    SNES        snes;
    KSP         ksp;
    PC          pc;
    Mat         A;
    Vec         r, u, uexact;
    double      err, h_max;

    PetscInitialize(&argc,&argv,NULL,help);
    ierr = PetscLogStageRegister("Read mesh      ", &user.readstage); CHKERRQ(ierr);  //STRIP
    ierr = PetscLogStageRegister("Set-up         ", &user.setupstage); CHKERRQ(ierr);  //STRIP
    ierr = PetscLogStageRegister("Solver         ", &user.solverstage); CHKERRQ(ierr);  //STRIP
    ierr = PetscLogStageRegister("Residual eval  ", &user.resstage); CHKERRQ(ierr);  //STRIP
    ierr = PetscLogStageRegister("Jacobian eval  ", &user.jacstage); CHKERRQ(ierr);  //STRIP

    user.quaddeg = 1;
    user.solncase = 0;
    ierr = PetscOptionsBegin(PETSC_COMM_WORLD, "un_", "options for unfem", ""); CHKERRQ(ierr);
    ierr = PetscOptionsInt("-case",
           "exact solution cases: 0=linear, 1=nonlinear, 2=nonhomoNeumann, 3=chapter3, 4=koch",
           "unfem.c",user.solncase,&(user.solncase),NULL); CHKERRQ(ierr);
    ierr = PetscOptionsString("-mesh",
           "file name root of mesh stored in PETSc binary with .vec,.is extensions",
           "unfem.c",root,root,sizeof(root),NULL); CHKERRQ(ierr);
    ierr = PetscOptionsInt("-quaddeg",
           "quadrature degree (1,2,3)",
           "unfem.c",user.quaddeg,&(user.quaddeg),NULL); CHKERRQ(ierr);
    ierr = PetscOptionsBool("-view",
           "view loaded nodes and elements at stdout",
           "unfem.c",view,&view,NULL); CHKERRQ(ierr);
    ierr = PetscOptionsBool("-view_solution",
           "view solution u(x,y) to binary file; uses root name of mesh plus .soln\nsee petsc2tricontour.py to view graphically",
           "unfem.c",viewsoln,&viewsoln,NULL); CHKERRQ(ierr);
    ierr = PetscOptionsBool("-noprealloc",
           "do not perform preallocation before matrix assembly",
           "unfem.c",noprealloc,&noprealloc,NULL); CHKERRQ(ierr);
    ierr = PetscOptionsEnd(); CHKERRQ(ierr);

    // set parameters and exact solution
    user.a_fcn = &a_lin;
    user.f_fcn = &f_lin;
    user.uexact_fcn = &uexact_lin;
    user.gD_fcn = &gD_lin;
    user.gN_fcn = &gN_lin;
    switch (user.solncase) {
        case 0 :
            break;
        case 1 :
            user.a_fcn = &a_nonlin;
            user.f_fcn = &f_nonlin;
            break;
        case 2 :
            user.gN_fcn = &gN_linneu;
            break;
        case 3 :
            user.a_fcn = &a_square;
            user.f_fcn = &f_square;
            user.uexact_fcn = &uexact_square;
            user.gD_fcn = &gD_square;
            user.gN_fcn = NULL;  // seg fault if ever called
            break;
        case 4 :
            user.a_fcn = &a_koch;
            user.f_fcn = &f_koch;
            user.uexact_fcn = NULL;
            user.gD_fcn = &gD_koch;
            user.gN_fcn = NULL;  // seg fault if ever called
            break;
        default :
            SETERRQ(PETSC_COMM_WORLD,1,"other solution cases not implemented");
    }

    // determine filenames
    strcpy(nodesname, root);
    strncat(nodesname, ".vec", 4);
    strcpy(issname, root);
    strncat(issname, ".is", 3);

//STARTMAININITIAL
    PetscLogStagePush(user.readstage);  //STRIP
    // read mesh object of type UM
    ierr = UMInitialize(&mesh); CHKERRQ(ierr);
    ierr = UMReadNodes(&mesh,nodesname); CHKERRQ(ierr);
    ierr = UMReadISs(&mesh,issname); CHKERRQ(ierr);
    ierr = UMStats(&mesh, &h_max, NULL, NULL, NULL); CHKERRQ(ierr);
    if (view) {  //STRIP
        PetscViewer stdoutviewer;  //STRIP
        ierr = PetscViewerASCIIGetStdout(PETSC_COMM_WORLD,&stdoutviewer); CHKERRQ(ierr);  //STRIP
        ierr = UMViewASCII(&mesh,stdoutviewer); CHKERRQ(ierr);  //STRIP
    }  //STRIP
    user.mesh = &mesh;
    PetscLogStagePop();  //STRIP

    // configure Vecs and SNES
    PetscLogStagePush(user.setupstage);  //STRIP
    ierr = VecCreate(PETSC_COMM_WORLD,&r); CHKERRQ(ierr);
    ierr = VecSetSizes(r,PETSC_DECIDE,mesh.N); CHKERRQ(ierr);
    ierr = VecSetFromOptions(r); CHKERRQ(ierr);
    ierr = VecDuplicate(r,&u); CHKERRQ(ierr);
    ierr = VecSet(u,0.0); CHKERRQ(ierr);
    ierr = SNESCreate(PETSC_COMM_WORLD,&snes); CHKERRQ(ierr);
    ierr = SNESSetFunction(snes,r,FormFunction,&user); CHKERRQ(ierr);

    // reset default KSP and PC
    ierr = SNESGetKSP(snes,&ksp); CHKERRQ(ierr);
    ierr = KSPSetType(ksp,KSPCG); CHKERRQ(ierr);
    ierr = KSPGetPC(ksp,&pc); CHKERRQ(ierr);
    ierr = PCSetType(pc,PCICC); CHKERRQ(ierr);

    // setup matrix for Picard iteration, including preallocation
    ierr = MatCreate(PETSC_COMM_WORLD,&A); CHKERRQ(ierr);
    ierr = MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,mesh.N,mesh.N); CHKERRQ(ierr);
    ierr = MatSetFromOptions(A); CHKERRQ(ierr);
    ierr = MatSetOption(A,MAT_SYMMETRIC,PETSC_TRUE); CHKERRQ(ierr);
    if (noprealloc) {
        ierr = MatSetUp(A); CHKERRQ(ierr);
    } else {
        ierr = Preallocation(A,&user); CHKERRQ(ierr);
    }
    ierr = SNESSetJacobian(snes,A,A,FormPicard,&user); CHKERRQ(ierr);
    ierr = SNESSetFromOptions(snes); CHKERRQ(ierr);
    PetscLogStagePop();  //STRIP

    // solve
    PetscLogStagePush(user.solverstage);  //STRIP
    ierr = SNESSolve(snes,NULL,u);CHKERRQ(ierr);
    PetscLogStagePop();  //STRIP
//ENDMAININITIAL

    if (viewsoln) {
        strcpy(solnname, root);
        strncat(solnname, ".soln", 5);
        ierr = UMViewSolutionBinary(&mesh,solnname,u); CHKERRQ(ierr);
    }
    if (user.uexact_fcn) {
        // measure error relative to exact solution
        ierr = VecDuplicate(r,&uexact); CHKERRQ(ierr);
        ierr = FillExact(uexact,&user); CHKERRQ(ierr);
        ierr = VecAXPY(u,-1.0,uexact); CHKERRQ(ierr);    // u <- u + (-1.0) uexact
        ierr = VecNorm(u,NORM_INFINITY,&err); CHKERRQ(ierr);
        ierr = PetscPrintf(PETSC_COMM_WORLD,
                   "case %d result for N=%d nodes with h = %.3e :  |u-u_ex|_inf = %g\n",
                   user.solncase,mesh.N,h_max,err); CHKERRQ(ierr);
        VecDestroy(&uexact);
    } else {
        ierr = PetscPrintf(PETSC_COMM_WORLD,
                   "case %d completed for N=%d nodes with h = %.3e (no exact solution)\n",
                   user.solncase,mesh.N,h_max); CHKERRQ(ierr);
    }

    // clean-up
    SNESDestroy(&snes);
    MatDestroy(&A);
    VecDestroy(&u);  VecDestroy(&r);
    UMDestroy(&mesh);
    PetscFinalize();
    return 0;
}
Пример #23
0
int main(int argc,char **argv)
{
  AppCtx         user;                /* user-defined work context */
  PetscInt       mx,my,its;
  PetscErrorCode ierr;
  MPI_Comm       comm;
  SNES           snes;
  DM             da;
  Vec            x,X,b;
  PetscBool      youngflg,poissonflg,muflg,lambdaflg,view=PETSC_FALSE,viewline=PETSC_FALSE;
  PetscReal      poisson=0.2,young=4e4;
  char           filename[PETSC_MAX_PATH_LEN] = "ex16.vts";
  char           filename_def[PETSC_MAX_PATH_LEN] = "ex16_def.vts";

  ierr = PetscInitialize(&argc,&argv,(char*)0,help);if (ierr) return ierr;
  ierr = FormElements();CHKERRQ(ierr);
  comm = PETSC_COMM_WORLD;
  ierr = SNESCreate(comm,&snes);CHKERRQ(ierr);
  ierr = DMDACreate3d(PETSC_COMM_WORLD,DM_BOUNDARY_NONE,DM_BOUNDARY_NONE,DM_BOUNDARY_NONE,DMDA_STENCIL_BOX,11,2,2,PETSC_DECIDE,PETSC_DECIDE,PETSC_DECIDE,3,1,NULL,NULL,NULL,&da);CHKERRQ(ierr);
  ierr = DMSetFromOptions(da);CHKERRQ(ierr);
  ierr = DMSetUp(da);CHKERRQ(ierr);
  ierr = SNESSetDM(snes,(DM)da);CHKERRQ(ierr);

  ierr = SNESSetNGS(snes,NonlinearGS,&user);CHKERRQ(ierr);

  ierr = DMDAGetInfo(da,0,&mx,&my,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE);CHKERRQ(ierr);
  user.loading     = 0.0;
  user.arc         = PETSC_PI/3.;
  user.mu          = 4.0;
  user.lambda      = 1.0;
  user.rad         = 100.0;
  user.height      = 3.;
  user.width       = 1.;
  user.ploading    = -5e3;

  ierr = PetscOptionsGetReal(NULL,NULL,"-arc",&user.arc,NULL);CHKERRQ(ierr);
  ierr = PetscOptionsGetReal(NULL,NULL,"-mu",&user.mu,&muflg);CHKERRQ(ierr);
  ierr = PetscOptionsGetReal(NULL,NULL,"-lambda",&user.lambda,&lambdaflg);CHKERRQ(ierr);
  ierr = PetscOptionsGetReal(NULL,NULL,"-rad",&user.rad,NULL);CHKERRQ(ierr);
  ierr = PetscOptionsGetReal(NULL,NULL,"-height",&user.height,NULL);CHKERRQ(ierr);
  ierr = PetscOptionsGetReal(NULL,NULL,"-width",&user.width,NULL);CHKERRQ(ierr);
  ierr = PetscOptionsGetReal(NULL,NULL,"-loading",&user.loading,NULL);CHKERRQ(ierr);
  ierr = PetscOptionsGetReal(NULL,NULL,"-ploading",&user.ploading,NULL);CHKERRQ(ierr);
  ierr = PetscOptionsGetReal(NULL,NULL,"-poisson",&poisson,&poissonflg);CHKERRQ(ierr);
  ierr = PetscOptionsGetReal(NULL,NULL,"-young",&young,&youngflg);CHKERRQ(ierr);
  if ((youngflg || poissonflg) || !(muflg || lambdaflg)) {
    /* set the lame' parameters based upon the poisson ratio and young's modulus */
    user.lambda = poisson*young / ((1. + poisson)*(1. - 2.*poisson));
    user.mu     = young/(2.*(1. + poisson));
  }
  ierr = PetscOptionsGetBool(NULL,NULL,"-view",&view,NULL);CHKERRQ(ierr);
  ierr = PetscOptionsGetBool(NULL,NULL,"-view_line",&viewline,NULL);CHKERRQ(ierr);

  ierr = DMDASetFieldName(da,0,"x_disp");CHKERRQ(ierr);
  ierr = DMDASetFieldName(da,1,"y_disp");CHKERRQ(ierr);
  ierr = DMDASetFieldName(da,2,"z_disp");CHKERRQ(ierr);

  ierr = DMSetApplicationContext(da,&user);CHKERRQ(ierr);
  ierr = DMDASNESSetFunctionLocal(da,INSERT_VALUES,(PetscErrorCode (*)(DMDALocalInfo*,void*,void*,void*))FormFunctionLocal,&user);CHKERRQ(ierr);
  ierr = DMDASNESSetJacobianLocal(da,(DMDASNESJacobian)FormJacobianLocal,&user);CHKERRQ(ierr);
  ierr = SNESSetFromOptions(snes);CHKERRQ(ierr);
  ierr = FormCoordinates(da,&user);CHKERRQ(ierr);

  ierr = DMCreateGlobalVector(da,&x);CHKERRQ(ierr);
  ierr = DMCreateGlobalVector(da,&b);CHKERRQ(ierr);
  ierr = InitialGuess(da,&user,x);CHKERRQ(ierr);
  ierr = FormRHS(da,&user,b);CHKERRQ(ierr);

  ierr = PetscPrintf(comm,"lambda: %f mu: %f\n",(double)user.lambda,(double)user.mu);CHKERRQ(ierr);

  /* show a cross-section of the initial state */
  if (viewline) {
    ierr = DisplayLine(snes,x);CHKERRQ(ierr);
  }

  /* get the loaded configuration */
  ierr = SNESSolve(snes,b,x);CHKERRQ(ierr);

  ierr = SNESGetIterationNumber(snes,&its);CHKERRQ(ierr);
  ierr = PetscPrintf(comm,"Number of SNES iterations = %D\n", its);CHKERRQ(ierr);
  ierr = SNESGetSolution(snes,&X);CHKERRQ(ierr);
  /* show a cross-section of the final state */
  if (viewline) {
    ierr = DisplayLine(snes,X);CHKERRQ(ierr);
  }

  if (view) {
    PetscViewer viewer;
    Vec         coords;
    ierr = PetscViewerVTKOpen(PETSC_COMM_WORLD,filename,FILE_MODE_WRITE,&viewer);CHKERRQ(ierr);
    ierr = VecView(x,viewer);CHKERRQ(ierr);
    ierr = PetscViewerDestroy(&viewer);CHKERRQ(ierr);
    ierr = DMGetCoordinates(da,&coords);CHKERRQ(ierr);
    ierr = VecAXPY(coords,1.0,x);CHKERRQ(ierr);
    ierr = PetscViewerVTKOpen(PETSC_COMM_WORLD,filename_def,FILE_MODE_WRITE,&viewer);CHKERRQ(ierr);
    ierr = VecView(x,viewer);CHKERRQ(ierr);
    ierr = PetscViewerDestroy(&viewer);CHKERRQ(ierr);
  }

  ierr = VecDestroy(&x);CHKERRQ(ierr);
  ierr = VecDestroy(&b);CHKERRQ(ierr);
  ierr = DMDestroy(&da);CHKERRQ(ierr);
  ierr = SNESDestroy(&snes);CHKERRQ(ierr);
  ierr = PetscFinalize();
  return ierr;
}
Пример #24
0
void bsscr_summary(KSP_BSSCR * bsscrp_self, KSP ksp_S, KSP ksp_inner,
		   Mat K,Mat K2,Mat D,Mat G,Mat C,Vec u,Vec p,Vec f,Vec h,Vec t,
		   double penaltyNumber,PetscTruth KisJustK,double mgSetupTime,double scrSolveTime,double a11SingleSolveTime){
    PetscTruth flg, found;
    PetscInt   uSize, pSize, lmax, lmin, iterations;
    PetscReal  rNorm, fNorm, uNorm, uNormInf, pNorm, pNormInf, p_sum, min, max;
    Vec q, qq, t2, t3;
    double solutionAnalysisTime;

      PetscPrintf( PETSC_COMM_WORLD,  "\n\nSCR Solver Summary:\n\n");
      if(bsscrp_self->mg)
	    PetscPrintf( PETSC_COMM_WORLD, "  Multigrid setup:        = %.4g secs \n", mgSetupTime);

      KSPGetIterationNumber( ksp_S, &iterations);
      bsscrp_self->solver->stats.pressure_its = iterations;
      PetscPrintf( PETSC_COMM_WORLD,     "  Pressure Solve:         = %.4g secs / %d its\n", scrSolveTime, iterations);
      KSPGetIterationNumber( ksp_inner, &iterations);
      bsscrp_self->solver->stats.velocity_backsolve_its = iterations;
      PetscPrintf( PETSC_COMM_WORLD,     "  Final V Solve:          = %.4g secs / %d its\n\n", a11SingleSolveTime, iterations);

      /***************************************************************************************************************/

      flg = PETSC_FALSE; /* Off by default */
	  PetscOptionsGetTruth( PETSC_NULL, "-scr_ksp_solution_summary", &flg, &found );

      if(flg) {
	    PetscScalar KuNorm;
	    solutionAnalysisTime = MPI_Wtime();
	    VecGetSize( u, &uSize );
	    VecGetSize( p, &pSize );
	    VecDuplicate( u, &t2 );
	    VecDuplicate( u, &t3 );
	    MatMult( K, u, t3); VecNorm( t3, NORM_2, &KuNorm );
	    double angle, kdot;
	    if(penaltyNumber > 1e-10){/* should change this to ifK2built maybe */
          MatMult( K2, u, t2); VecNorm( t2, NORM_2, &rNorm );
          VecDot(t2,t3,&kdot);
          angle = (kdot/(rNorm*KuNorm));
          PetscPrintf( PETSC_COMM_WORLD,  "  <K u, K2 u>/(|K u| |K2 u|)    = %.6e\n", angle);
	    }
	    VecNorm( t, NORM_2, &rNorm ); /* t = f- G p  should be the formal residual vector, calculated on line 267 in auglag-driver-DGTGD.c */
	    VecDot(t3,t,&kdot);
	    angle = (kdot/(rNorm*KuNorm));
            PetscPrintf( PETSC_COMM_WORLD,  "  <K u, (f-G p)>/(|K u| |f- G p|)    = %.6e\n\n", angle);

	    MatMult( K, u, t2); VecNorm(t2, NORM_2, &KuNorm);
	    VecAYPX( t2, -1.0, t ); /* t2 <- -t2 + t  : t = f- G p  should be the formal residual vector, calculated on line 267 in auglag-driver-DGTGD.c*/
	    VecNorm( t2, NORM_2, &rNorm );
	    VecNorm( f,  NORM_2, &fNorm );
	    if(KisJustK){
          PetscPrintf( PETSC_COMM_WORLD,"Velocity back-solve with original K matrix\n");
          PetscPrintf( PETSC_COMM_WORLD,"Solved    K u = G p -f\n");
          PetscPrintf( PETSC_COMM_WORLD,"Residual with original K matrix\n");
          PetscPrintf( PETSC_COMM_WORLD,  "  |f - K u - G p|                       = %.12e\n", rNorm);
          PetscPrintf( PETSC_COMM_WORLD,  "  |f - K u - G p|/|f|                   = %.12e\n", rNorm/fNorm);
          if(penaltyNumber > 1e-10){/* means the restore_K flag was used */
            //if(K2 && f2){
            MatAXPY(K,penaltyNumber,K2,DIFFERENT_NONZERO_PATTERN);/* Computes K = penaltyNumber*K2 + K */
            //VecAXPY(f,penaltyNumber,f2); /* f = penaltyNumber*f2 + f */
            KisJustK=PETSC_FALSE;
            MatMult( K, u, t2);
            MatMult( G, p, t);
            VecAYPX( t, -1.0, f ); /* t <- -t + f */
            VecAYPX( t2, -1.0, t ); /* t2 <- -t2 + t */
            VecNorm( t2, NORM_2, &rNorm );
            PetscPrintf( PETSC_COMM_WORLD,"Residual with K+K2 matrix and f rhs vector\n");
            PetscPrintf( PETSC_COMM_WORLD,  "  |(f) - (K + K2) u - G p|         = %.12e\n", rNorm);
            //}
          }
	    }
	    else{
          PetscPrintf( PETSC_COMM_WORLD,"Velocity back-solve with K+K2 matrix\n");
          PetscPrintf( PETSC_COMM_WORLD,"Solved    (K + K2) u = G p - (f)\n");
          PetscPrintf( PETSC_COMM_WORLD,"Residual with K+K2 matrix and f rhs vector\n");
          PetscPrintf( PETSC_COMM_WORLD,  "  |(f) - (K + K2) u - G p|         = %.12e\n", rNorm);
          PetscReal KK2Norm,KK2Normf;
          MatNorm(K,NORM_1,&KK2Norm);
          MatNorm(K,NORM_FROBENIUS,&KK2Normf);
          penaltyNumber = -penaltyNumber;
          MatAXPY(K,penaltyNumber,K2,DIFFERENT_NONZERO_PATTERN);/* Computes K = penaltyNumber*K2 + K */
          //VecAXPY(f,penaltyNumber,f2); /* f = penaltyNumber*f2 + f */
          KisJustK=PETSC_FALSE;
          MatMult( K, u, t2);    /* t2 = K*u  */
          MatMult( G, p, t);     /* t  = G*p  */
          VecAYPX( t, -1.0, f ); /* t <- f - t ; t = f - G*p  */
          VecAYPX( t2, -1.0, t ); /* t2 <- t - t2; t2 = f - G*p - K*u  */
          VecNorm( t2, NORM_2, &rNorm );
          PetscPrintf( PETSC_COMM_WORLD,"Residual with original K matrix\n");
          PetscPrintf( PETSC_COMM_WORLD,  "  |f - K u - G p|                       = %.12e\n", rNorm);
          PetscPrintf( PETSC_COMM_WORLD,  "  |f - K u - G p|/|f|                   = %.12e\n", rNorm/fNorm);
          PetscReal KNorm, K2Norm;
          MatNorm(K,NORM_1,&KNorm);	  MatNorm(K2,NORM_1,&K2Norm);
          PetscPrintf( PETSC_COMM_WORLD,"K and K2 norm_1    %.12e %.12e   ratio %.12e\n",KNorm,K2Norm,K2Norm/KNorm);
          MatNorm(K,NORM_INFINITY,&KNorm);  MatNorm(K2,NORM_INFINITY,&K2Norm);
          PetscPrintf( PETSC_COMM_WORLD,"K and K2 norm_inf  %.12e %.12e   ratio %.12e\n",KNorm,K2Norm,K2Norm/KNorm);
          MatNorm(K,NORM_FROBENIUS,&KNorm); MatNorm(K2,NORM_FROBENIUS,&K2Norm);
          PetscPrintf( PETSC_COMM_WORLD,"K and K2 norm_frob %.12e %.12e   ratio %.12e\n",KNorm,K2Norm,K2Norm/KNorm);
          PetscPrintf( PETSC_COMM_WORLD,"K+r*K2 norm_1    %.12e\n",KK2Norm);
          PetscPrintf( PETSC_COMM_WORLD,"K+r*K2 norm_frob %.12e\n",KK2Normf);
          penaltyNumber = -penaltyNumber;
          MatAXPY(K,penaltyNumber,K2,DIFFERENT_NONZERO_PATTERN);/* Computes K = penaltyNumber*K2 + K */
        }
        PetscPrintf( PETSC_COMM_WORLD,"\n");
        PetscPrintf( PETSC_COMM_WORLD,  "  |K u|    = %.12e\n", KuNorm);
        if(penaltyNumber > 1e-10){
          MatMult( K2, u, t2); VecNorm( t2, NORM_2, &rNorm );
          PetscPrintf( PETSC_COMM_WORLD,  "  |K2 u|   = %.12e\n", rNorm);
          PetscPrintf( PETSC_COMM_WORLD,"\n");
	    }



	    VecDuplicate( p, &q );
	    MatMult( D, u, q );   /* q = G'*u = D*u */
	    VecNorm( u, NORM_2, &uNorm );
	    VecNorm( q, NORM_2, &rNorm );

	    PetscPrintf( PETSC_COMM_WORLD,  "  |G^T u|_2               = %.6e\n", rNorm );
	    PetscPrintf( PETSC_COMM_WORLD,  "  |G^T u|_2/|u|_2         = %.6e\n", sqrt( (double) uSize / (double) pSize ) * rNorm / uNorm);

	    VecDuplicate( p, &qq );
	    MatMultTranspose( G, u, qq );
	    VecNorm( qq, NORM_2, &rNorm );
	    PetscPrintf( PETSC_COMM_WORLD,  "  |G^T u|/|u|             = %.8e\n", rNorm/uNorm ); /* to compare directly with Uzawa */

	    VecNorm( q, NORM_INFINITY, &rNorm );
	    PetscPrintf( PETSC_COMM_WORLD,  "  |G^T u|_infty/|u|_2     = %.6e\n", sqrt( (double) uSize ) * rNorm / uNorm);
	    /* create G'*u+C*p-h to check on this constraint */
	    /* already have q = D*u */
	    VecZeroEntries(qq);
	    if(C){
          MatMult( C, p, qq );
	    }
	    VecAYPX( q, 1.0, qq ); /* q = q+qq; G'*u + C*p*/
	    VecAXPY( q, -1.0, h ); /* q = q-h;  G'*u + C*p - h  */
	    VecNorm( q, NORM_2, &rNorm );
	    PetscPrintf( PETSC_COMM_WORLD,  "  |G^T u + C p - h|        = %.8e  :constraint\n", rNorm );

	    VecNorm( u, NORM_INFINITY, &uNormInf );
	    VecNorm( u, NORM_2,        &uNorm );
	    VecGetSize( u, &uSize );

	    VecNorm( p, NORM_INFINITY, &pNormInf );
	    VecNorm( p, NORM_2,        &pNorm );

	    PetscPrintf( PETSC_COMM_WORLD,  "  |u|_{\\infty}  = %.6e , u_rms = %.6e\n",
	                 uNormInf, uNorm / sqrt( (double) uSize ) );

	    PetscPrintf( PETSC_COMM_WORLD,  "  |p|_{\\infty}  = %.6e , p_rms = %.6e\n",
	                 pNormInf, pNorm / sqrt( (double) pSize ) );

	    VecMax( u, &lmax, &max );
	    VecMin( u, &lmin, &min );
	    PetscPrintf( PETSC_COMM_WORLD,  "  min/max(u)    = %.6e [%d] / %.6e [%d]\n",min,lmin,max,lmax);
        bsscrp_self->solver->stats.vmin = min;
        bsscrp_self->solver->stats.vmax = max;

	    VecMax( p, &lmax, &max );
	    VecMin( p, &lmin, &min );
	    PetscPrintf( PETSC_COMM_WORLD,  "  min/max(p)    = %.6e [%d] / %.6e [%d]\n",min,lmin,max,lmax);
        bsscrp_self->solver->stats.pmin = min;
        bsscrp_self->solver->stats.pmax = max;

	    VecSum( p, &p_sum );
	    PetscPrintf( PETSC_COMM_WORLD,  "  \\sum_i p_i    = %.6e \n", p_sum );
        bsscrp_self->solver->stats.p_sum=p_sum;

	    solutionAnalysisTime = MPI_Wtime() - solutionAnalysisTime;

	    PetscPrintf( PETSC_COMM_WORLD,  "\n  Time for this analysis  = %.4g secs\n\n",solutionAnalysisTime);

	    Stg_VecDestroy(&t2 );
	    Stg_VecDestroy(&t3 );
	    Stg_VecDestroy(&q );
	    Stg_VecDestroy(&qq );
      }

}
Пример #25
0
static PetscErrorCode  QPIPSetInitialPoint(TAO_BQPIP *qp, Tao tao)
{
  PetscErrorCode ierr;
  PetscReal      two=2.0,p01=1;
  PetscReal      gap1,gap2,fff,mu;

  PetscFunctionBegin;
  /* Compute function, Gradient R=Hx+b, and Hessian */
  ierr = TaoComputeVariableBounds(tao);CHKERRQ(ierr);
  ierr = VecMedian(qp->XL, tao->solution, qp->XU, tao->solution);CHKERRQ(ierr);
  ierr = MatMult(tao->hessian, tao->solution, tao->gradient);CHKERRQ(ierr);
  ierr = VecCopy(qp->C0, qp->Work);CHKERRQ(ierr);
  ierr = VecAXPY(qp->Work, 0.5, tao->gradient);CHKERRQ(ierr);
  ierr = VecAXPY(tao->gradient, 1.0, qp->C0);CHKERRQ(ierr);
  ierr = VecDot(tao->solution, qp->Work, &fff);CHKERRQ(ierr);
  qp->pobj = fff + qp->c;

  /* Initialize Primal Vectors */
  /* T = XU - X; G = X - XL */
  ierr = VecCopy(qp->XU, qp->T);CHKERRQ(ierr);
  ierr = VecAXPY(qp->T, -1.0, tao->solution);CHKERRQ(ierr);
  ierr = VecCopy(tao->solution, qp->G);CHKERRQ(ierr);
  ierr = VecAXPY(qp->G, -1.0, qp->XL);CHKERRQ(ierr);

  ierr = VecSet(qp->GZwork, p01);CHKERRQ(ierr);
  ierr = VecSet(qp->TSwork, p01);CHKERRQ(ierr);

  ierr = VecPointwiseMax(qp->G, qp->G, qp->GZwork);CHKERRQ(ierr);
  ierr = VecPointwiseMax(qp->T, qp->T, qp->TSwork);CHKERRQ(ierr);

  /* Initialize Dual Variable Vectors */
  ierr = VecCopy(qp->G, qp->Z);CHKERRQ(ierr);
  ierr = VecReciprocal(qp->Z);CHKERRQ(ierr);

  ierr = VecCopy(qp->T, qp->S);CHKERRQ(ierr);
  ierr = VecReciprocal(qp->S);CHKERRQ(ierr);

  ierr = MatMult(tao->hessian, qp->Work, qp->RHS);CHKERRQ(ierr);
  ierr = VecAbs(qp->RHS);CHKERRQ(ierr);
  ierr = VecSet(qp->Work, p01);CHKERRQ(ierr);
  ierr = VecPointwiseMax(qp->RHS, qp->RHS, qp->Work);CHKERRQ(ierr);

  ierr = VecPointwiseDivide(qp->RHS, tao->gradient, qp->RHS);CHKERRQ(ierr);
  ierr = VecNorm(qp->RHS, NORM_1, &gap1);CHKERRQ(ierr);
  mu = PetscMin(10.0,(gap1+10.0)/qp->m);

  ierr = VecScale(qp->S, mu);CHKERRQ(ierr);
  ierr = VecScale(qp->Z, mu);CHKERRQ(ierr);

  ierr = VecSet(qp->TSwork, p01);CHKERRQ(ierr);
  ierr = VecSet(qp->GZwork, p01);CHKERRQ(ierr);
  ierr = VecPointwiseMax(qp->S, qp->S, qp->TSwork);CHKERRQ(ierr);
  ierr = VecPointwiseMax(qp->Z, qp->Z, qp->GZwork);CHKERRQ(ierr);

  qp->mu=0;qp->dinfeas=1.0;qp->pinfeas=1.0;
  while ( (qp->dinfeas+qp->pinfeas)/(qp->m+qp->n) >= qp->mu ){

    ierr = VecScale(qp->G, two);CHKERRQ(ierr);
    ierr = VecScale(qp->Z, two);CHKERRQ(ierr);
    ierr = VecScale(qp->S, two);CHKERRQ(ierr);
    ierr = VecScale(qp->T, two);CHKERRQ(ierr);

    ierr = QPIPComputeResidual(qp,tao);CHKERRQ(ierr);

    ierr = VecCopy(tao->solution, qp->R3);CHKERRQ(ierr);
    ierr = VecAXPY(qp->R3, -1.0, qp->G);CHKERRQ(ierr);
    ierr = VecAXPY(qp->R3, -1.0, qp->XL);CHKERRQ(ierr);

    ierr = VecCopy(tao->solution, qp->R5);CHKERRQ(ierr);
    ierr = VecAXPY(qp->R5, 1.0, qp->T);CHKERRQ(ierr);
    ierr = VecAXPY(qp->R5, -1.0, qp->XU);CHKERRQ(ierr);

    ierr = VecNorm(qp->R3, NORM_INFINITY, &gap1);CHKERRQ(ierr);
    ierr = VecNorm(qp->R5, NORM_INFINITY, &gap2);CHKERRQ(ierr);
    qp->pinfeas=PetscMax(gap1,gap2);

    /* Compute the duality gap */
    ierr = VecDot(qp->G, qp->Z, &gap1);CHKERRQ(ierr);
    ierr = VecDot(qp->T, qp->S, &gap2);CHKERRQ(ierr);

    qp->gap = (gap1+gap2);
    qp->dobj = qp->pobj - qp->gap;
    if (qp->m>0) qp->mu=qp->gap/(qp->m); else qp->mu=0.0;
    qp->rgap=qp->gap/( PetscAbsReal(qp->dobj) + PetscAbsReal(qp->pobj) + 1.0 );
  }
  PetscFunctionReturn(0);
}
Пример #26
0
Example: mpiexec -n <np> ./ex130 -f <matrix binary file> -mat_solver_type 1 -mat_superlu_equil \n\n";

#include <petscmat.h>

int main(int argc,char **args)
{
  Mat            A,F;
  Vec            u,x,b;
  PetscErrorCode ierr;
  PetscMPIInt    rank,size;
  PetscInt       m,n,nfact,ipack=0;
  PetscReal      norm,tol=1.e-12,Anorm;
  IS             perm,iperm;
  MatFactorInfo  info;
  PetscBool      flg,testMatSolve=PETSC_TRUE;
  PetscViewer    fd;              /* viewer */
  char           file[PETSC_MAX_PATH_LEN]; /* input file name */

  ierr = PetscInitialize(&argc,&args,(char*)0,help);if (ierr) return ierr;
  ierr = MPI_Comm_rank(PETSC_COMM_WORLD, &rank);CHKERRQ(ierr);
  ierr = MPI_Comm_size(PETSC_COMM_WORLD, &size);CHKERRQ(ierr);

  /* Determine file from which we read the matrix A */
  ierr = PetscOptionsGetString(NULL,NULL,"-f",file,PETSC_MAX_PATH_LEN,&flg);CHKERRQ(ierr);
  if (!flg) SETERRQ(PETSC_COMM_WORLD,1,"Must indicate binary file with the -f option");

  /* Load matrix A */
  ierr = PetscViewerBinaryOpen(PETSC_COMM_WORLD,file,FILE_MODE_READ,&fd);CHKERRQ(ierr);
  ierr = MatCreate(PETSC_COMM_WORLD,&A);CHKERRQ(ierr);
  ierr = MatLoad(A,fd);CHKERRQ(ierr);
  ierr = VecCreate(PETSC_COMM_WORLD,&b);CHKERRQ(ierr);
  ierr = VecLoad(b,fd);CHKERRQ(ierr);
  ierr = PetscViewerDestroy(&fd);CHKERRQ(ierr);
  ierr = MatGetLocalSize(A,&m,&n);CHKERRQ(ierr);
  if (m != n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ, "This example is not intended for rectangular matrices (%d, %d)", m, n);
  ierr = MatNorm(A,NORM_INFINITY,&Anorm);CHKERRQ(ierr);

  /* Create vectors */
  ierr = VecDuplicate(b,&x);CHKERRQ(ierr);
  ierr = VecDuplicate(x,&u);CHKERRQ(ierr); /* save the true solution */

  /* Test LU Factorization */
  ierr = MatGetOrdering(A,MATORDERINGNATURAL,&perm,&iperm);CHKERRQ(ierr);

  ierr = PetscOptionsGetInt(NULL,NULL,"-mat_solver_type",&ipack,NULL);CHKERRQ(ierr);
  switch (ipack) {
  case 1:
#if defined(PETSC_HAVE_SUPERLU)
    if (!rank) printf(" SUPERLU LU:\n");
    ierr = MatGetFactor(A,MATSOLVERSUPERLU,MAT_FACTOR_LU,&F);CHKERRQ(ierr);
    break;
#endif
  case 2:
#if defined(PETSC_HAVE_MUMPS)
    if (!rank) printf(" MUMPS LU:\n");
    ierr = MatGetFactor(A,MATSOLVERMUMPS,MAT_FACTOR_LU,&F);CHKERRQ(ierr);
    {
      /* test mumps options */
      PetscInt icntl_7 = 5;
      ierr = MatMumpsSetIcntl(F,7,icntl_7);CHKERRQ(ierr);
    }
    break;
#endif
  default:
    if (!rank) printf(" PETSC LU:\n");
    ierr = MatGetFactor(A,MATSOLVERPETSC,MAT_FACTOR_LU,&F);CHKERRQ(ierr);
  }

  info.fill = 5.0;
  ierr      = MatLUFactorSymbolic(F,A,perm,iperm,&info);CHKERRQ(ierr);

  for (nfact = 0; nfact < 1; nfact++) {
    if (!rank) printf(" %d-the LU numfactorization \n",nfact);
    ierr = MatLUFactorNumeric(F,A,&info);CHKERRQ(ierr);

    /* Test MatSolve() */
    if (testMatSolve) {
      ierr = MatSolve(F,b,x);CHKERRQ(ierr);

      /* Check the residual */
      ierr = MatMult(A,x,u);CHKERRQ(ierr);
      ierr = VecAXPY(u,-1.0,b);CHKERRQ(ierr);
      ierr = VecNorm(u,NORM_INFINITY,&norm);CHKERRQ(ierr);
      if (norm > tol) {
        if (!rank) {
          ierr = PetscPrintf(PETSC_COMM_SELF,"MatSolve: rel residual %g/%g = %g, LU numfact %d\n",norm,Anorm,norm/Anorm,nfact);CHKERRQ(ierr);
        }
      }
    }
  }

  /* Free data structures */
  ierr = MatDestroy(&A);CHKERRQ(ierr);
  ierr = MatDestroy(&F);CHKERRQ(ierr);
  ierr = ISDestroy(&perm);CHKERRQ(ierr);
  ierr = ISDestroy(&iperm);CHKERRQ(ierr);
  ierr = VecDestroy(&x);CHKERRQ(ierr);
  ierr = VecDestroy(&b);CHKERRQ(ierr);
  ierr = VecDestroy(&u);CHKERRQ(ierr);
  ierr = PetscFinalize();
  return ierr;
}
Пример #27
0
int main(int argc,char **args)
{
  Mat            C,C1,F; 
  Vec            u,x,b;
  PetscErrorCode ierr;
  PetscMPIInt    rank,nproc;
  PetscInt       i,M = 10,m,n,nfact,nsolve;
  PetscScalar    *array,rval;
  PetscReal      norm,tol=1.e-12;
  IS             perm,iperm;
  MatFactorInfo  info;
  PetscRandom    rand;
  PetscTruth     flg;

  PetscInitialize(&argc,&args,(char *)0,help);
  ierr = MPI_Comm_rank(PETSC_COMM_WORLD, &rank);CHKERRQ(ierr);
  ierr = MPI_Comm_size(PETSC_COMM_WORLD, &nproc);CHKERRQ(ierr);

  /* Create matrix and vectors */
  ierr = PetscOptionsGetInt(PETSC_NULL,"-M",&M,PETSC_NULL);CHKERRQ(ierr);
  ierr = MatCreate(PETSC_COMM_WORLD,&C);CHKERRQ(ierr);
  ierr = MatSetSizes(C,PETSC_DECIDE,PETSC_DECIDE,M,M);CHKERRQ(ierr);
  ierr = MatSetType(C,MATDENSE);CHKERRQ(ierr); 
  ierr = MatSetFromOptions(C);CHKERRQ(ierr); 
  
  ierr = MatGetLocalSize(C,&m,&n);CHKERRQ(ierr);
  if (m != n) SETERRQ2(PETSC_ERR_ARG_WRONG,"Matrix local size m %d must equal n %d",m,n);

  ierr = VecCreate(PETSC_COMM_WORLD,&x);CHKERRQ(ierr);
  ierr = VecSetSizes(x,n,PETSC_DECIDE);CHKERRQ(ierr);
  ierr = VecSetFromOptions(x);CHKERRQ(ierr);
  ierr = VecDuplicate(x,&b);CHKERRQ(ierr);
  ierr = VecDuplicate(x,&u);CHKERRQ(ierr); /* save the true solution */

  /* Assembly */
  ierr = PetscRandomCreate(PETSC_COMM_WORLD,&rand);CHKERRQ(ierr);
  ierr = PetscRandomSetFromOptions(rand);CHKERRQ(ierr);
  ierr = MatGetArray(C,&array);CHKERRQ(ierr);
  for (i=0; i<m*M; i++){
    ierr = PetscRandomGetValue(rand,&rval);CHKERRQ(ierr);
    array[i] = rval; 
  }
  ierr = MatRestoreArray(C,&array);CHKERRQ(ierr);
  ierr = MatAssemblyBegin(C,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
  ierr = MatAssemblyEnd(C,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);   
  /*if (!rank) {printf("main, C: \n");}
    ierr = MatView(C,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr); */

  /* Test MatDuplicate() */
  ierr = MatDuplicate(C,MAT_COPY_VALUES,&C1);CHKERRQ(ierr); 
  ierr = MatEqual(C,C1,&flg);CHKERRQ(ierr);
  if (!flg){
    SETERRQ(PETSC_ERR_ARG_WRONG,"Duplicate C1 != C");
  }

  /* Test LU Factorization */
  ierr = MatGetOrdering(C1,MATORDERING_NATURAL,&perm,&iperm);CHKERRQ(ierr);
  if (nproc == 1){
    ierr = MatGetFactor(C1,MAT_SOLVER_PETSC,MAT_FACTOR_LU,&F);CHKERRQ(ierr);
  } else {
    ierr = MatGetFactor(C1,MAT_SOLVER_PLAPACK,MAT_FACTOR_LU,&F);CHKERRQ(ierr);
  }
  ierr = MatLUFactorSymbolic(F,C1,perm,iperm,&info);CHKERRQ(ierr);

  for (nfact = 0; nfact < 2; nfact++){
    if (!rank) printf(" LU nfact %d\n",nfact);
    ierr = MatLUFactorNumeric(F,C1,&info);CHKERRQ(ierr);

    /* Test MatSolve() */
    for (nsolve = 0; nsolve < 5; nsolve++){
      ierr = VecGetArray(x,&array);CHKERRQ(ierr);
      for (i=0; i<m; i++){
        ierr = PetscRandomGetValue(rand,&rval);CHKERRQ(ierr);
        array[i] = rval; 
      }
      ierr = VecRestoreArray(x,&array);CHKERRQ(ierr);
      ierr = VecCopy(x,u);CHKERRQ(ierr); 
      ierr = MatMult(C,x,b);CHKERRQ(ierr);

      ierr = MatSolve(F,b,x);CHKERRQ(ierr); 

      /* Check the error */
      ierr = VecAXPY(u,-1.0,x);CHKERRQ(ierr);  /* u <- (-1.0)x + u */
      ierr = VecNorm(u,NORM_2,&norm);CHKERRQ(ierr);
      if (norm > tol){ 
        if (!rank){
          ierr = PetscPrintf(PETSC_COMM_SELF,"Error: Norm of error %g, LU nfact %d\n",norm,nfact);CHKERRQ(ierr);
        }
      }
    }
  }
  ierr = MatDestroy(C1);CHKERRQ(ierr);
  ierr = MatDestroy(F);CHKERRQ(ierr);

  /* Test Cholesky Factorization */
  ierr = MatTranspose(C,MAT_INITIAL_MATRIX,&C1);CHKERRQ(ierr); /* C1 = C^T */
  ierr = MatAXPY(C,1.0,C1,SAME_NONZERO_PATTERN);CHKERRQ(ierr); /* make C symmetric: C <- C + C^T */
  ierr = MatShift(C,M);CHKERRQ(ierr);  /* make C positive definite */
  ierr = MatDestroy(C1);CHKERRQ(ierr);
  
  ierr = MatSetOption(C,MAT_SYMMETRIC,PETSC_TRUE);CHKERRQ(ierr);
  ierr = MatSetOption(C,MAT_SYMMETRY_ETERNAL,PETSC_TRUE);CHKERRQ(ierr); 
  
  if (nproc == 1){
    ierr = MatGetFactor(C,MAT_SOLVER_PETSC,MAT_FACTOR_CHOLESKY,&F);CHKERRQ(ierr);
  } else {
    ierr = MatGetFactor(C,MAT_SOLVER_PLAPACK,MAT_FACTOR_CHOLESKY,&F);CHKERRQ(ierr);
  }
  ierr = MatCholeskyFactorSymbolic(F,C,perm,&info);CHKERRQ(ierr);
  for (nfact = 0; nfact < 2; nfact++){
    if (!rank) printf(" Cholesky nfact %d\n",nfact);
    ierr = MatCholeskyFactorNumeric(F,C,&info);CHKERRQ(ierr);

    /* Test MatSolve() */
    for (nsolve = 0; nsolve < 5; nsolve++){
      ierr = VecGetArray(x,&array);CHKERRQ(ierr);
      for (i=0; i<m; i++){
        ierr = PetscRandomGetValue(rand,&rval);CHKERRQ(ierr);
        array[i] = rval; 
      }
      ierr = VecRestoreArray(x,&array);CHKERRQ(ierr);
      ierr = VecCopy(x,u);CHKERRQ(ierr); 
      ierr = MatMult(C,x,b);CHKERRQ(ierr);

      ierr = MatSolve(F,b,x);CHKERRQ(ierr); 

      /* Check the error */
      ierr = VecAXPY(u,-1.0,x);CHKERRQ(ierr);  /* u <- (-1.0)x + u */
      ierr = VecNorm(u,NORM_2,&norm);CHKERRQ(ierr);
      if (norm > tol){ 
        if (!rank){
          ierr = PetscPrintf(PETSC_COMM_SELF,"Error: Norm of error %g, Cholesky nfact %d\n",norm,nfact);CHKERRQ(ierr);
        }
      }
    }
  }
  ierr = MatDestroy(F);CHKERRQ(ierr);

  /* Free data structures */
  ierr = PetscRandomDestroy(rand);CHKERRQ(ierr);
  ierr = ISDestroy(perm);CHKERRQ(ierr);
  ierr = ISDestroy(iperm);CHKERRQ(ierr);
  ierr = VecDestroy(x);CHKERRQ(ierr); 
  ierr = VecDestroy(b);CHKERRQ(ierr);
  ierr = VecDestroy(u);CHKERRQ(ierr); 
  ierr = MatDestroy(C);CHKERRQ(ierr); 

  ierr = PetscFinalize();CHKERRQ(ierr);
  return 0;
}
Пример #28
0
PetscErrorCode  KSPSolve_GROPPCG(KSP ksp)
{
  PetscErrorCode ierr;
  PetscInt       i;
  PetscScalar    alpha,beta = 0.0,gamma,gammaNew,t;
  PetscReal      dp = 0.0;
  Vec            x,b,r,p,s,S,z,Z;
  Mat            Amat,Pmat;
  MatStructure   pflag;
  PetscBool      diagonalscale;

  PetscFunctionBegin;
  ierr    = PCGetDiagonalScale(ksp->pc,&diagonalscale);CHKERRQ(ierr);
  if (diagonalscale) SETERRQ1(((PetscObject)ksp)->comm,PETSC_ERR_SUP,"Krylov method %s does not support diagonal scaling",((PetscObject)ksp)->type_name);

  x = ksp->vec_sol;
  b = ksp->vec_rhs;
  r = ksp->work[0];
  p = ksp->work[1];
  s = ksp->work[2];
  S = ksp->work[3];
  z = ksp->work[4];
  Z = ksp->work[5];

  ierr = PCGetOperators(ksp->pc,&Amat,&Pmat,&pflag);CHKERRQ(ierr);

  ksp->its = 0;
  if (!ksp->guess_zero) {
    ierr = KSP_MatMult(ksp,Amat,x,r);CHKERRQ(ierr);            /*     r <- b - Ax     */
    ierr = VecAYPX(r,-1.0,b);CHKERRQ(ierr);
  } else {
    ierr = VecCopy(b,r);CHKERRQ(ierr);                         /*     r <- b (x is 0) */
  }

  ierr = KSP_PCApply(ksp,r,z);CHKERRQ(ierr);                   /*     z <- Br   */
  ierr = VecCopy(z,p);CHKERRQ(ierr);                           /*     p <- z    */
  ierr = VecDotBegin(r,z,&gamma);CHKERRQ(ierr);                  /*     gamma <- z'*r       */
  ierr = PetscCommSplitReductionBegin(((PetscObject)r)->comm);CHKERRQ(ierr);
  ierr = KSP_MatMult(ksp,Amat,p,s);CHKERRQ(ierr);              /*     s <- Ap   */
  ierr = VecDotEnd(r,z,&gamma);CHKERRQ(ierr);                  /*     gamma <- z'*r       */

  switch (ksp->normtype) {
  case KSP_NORM_PRECONDITIONED:
    /* This could be merged with the computation of gamma above */
    ierr = VecNorm(z,NORM_2,&dp);CHKERRQ(ierr);                /*     dp <- z'*z = e'*A'*B'*B*A'*e'     */
    break;
  case KSP_NORM_UNPRECONDITIONED:
    /* This could be merged with the computation of gamma above */
    ierr = VecNorm(r,NORM_2,&dp);CHKERRQ(ierr);                /*     dp <- r'*r = e'*A'*A*e            */
    break;
  case KSP_NORM_NATURAL:
    if (PetscIsInfOrNanScalar(gamma)) SETERRQ(((PetscObject)ksp)->comm,PETSC_ERR_FP,"Infinite or not-a-number generated in dot product");
    dp = PetscSqrtReal(PetscAbsScalar(gamma));                  /*     dp <- r'*z = r'*B*r = e'*A'*B*A*e */
    break;
  case KSP_NORM_NONE:
    dp = 0.0;
    break;
  default: SETERRQ1(((PetscObject)ksp)->comm,PETSC_ERR_SUP,"%s",KSPNormTypes[ksp->normtype]);
  }
  KSPLogResidualHistory(ksp,dp);
  ierr = KSPMonitor(ksp,0,dp);CHKERRQ(ierr);
  ksp->rnorm = dp;
  ierr = (*ksp->converged)(ksp,0,dp,&ksp->reason,ksp->cnvP);CHKERRQ(ierr);      /* test for convergence */
  if (ksp->reason) PetscFunctionReturn(0);

  i = 0;
  do {
    ksp->its = i+1;
    i++;

    ierr = VecDotBegin(p,s,&t);CHKERRQ(ierr);
    ierr = PetscCommSplitReductionBegin(((PetscObject)p)->comm);CHKERRQ(ierr);

    ierr = KSP_PCApply(ksp,s,S);CHKERRQ(ierr);         /*   S <- Bs       */

    ierr = VecDotEnd(p,s,&t);CHKERRQ(ierr);

    alpha = gamma / t;
    ierr = VecAXPY(x, alpha,p);CHKERRQ(ierr);    /*     x <- x + alpha * p   */
    ierr = VecAXPY(r,-alpha,s);CHKERRQ(ierr);    /*     r <- r - alpha * s   */
    ierr = VecAXPY(z,-alpha,S);CHKERRQ(ierr);    /*     z <- z - alpha * S   */

    if (ksp->normtype == KSP_NORM_UNPRECONDITIONED) {
      ierr = VecNormBegin(r,NORM_2,&dp);CHKERRQ(ierr);
    } else if (ksp->normtype == KSP_NORM_PRECONDITIONED) {
      ierr = VecNormBegin(z,NORM_2,&dp);CHKERRQ(ierr);
    }
    ierr = VecDotBegin(r,z,&gammaNew);CHKERRQ(ierr);
    ierr = PetscCommSplitReductionBegin(((PetscObject)r)->comm);CHKERRQ(ierr);

    ierr = KSP_MatMult(ksp,Amat,z,Z);CHKERRQ(ierr);      /*   Z <- Az       */

    if (ksp->normtype == KSP_NORM_UNPRECONDITIONED) {
      ierr = VecNormEnd(r,NORM_2,&dp);CHKERRQ(ierr);
    } else if (ksp->normtype == KSP_NORM_PRECONDITIONED) {
      ierr = VecNormEnd(z,NORM_2,&dp);CHKERRQ(ierr);
    }
    ierr = VecDotEnd(r,z,&gammaNew);CHKERRQ(ierr);

    if (ksp->normtype == KSP_NORM_NATURAL) {
      if (PetscIsInfOrNanScalar(gammaNew)) SETERRQ(((PetscObject)ksp)->comm,PETSC_ERR_FP,"Infinite or not-a-number generated in dot product");
      dp = PetscSqrtReal(PetscAbsScalar(gammaNew));                  /*     dp <- r'*z = r'*B*r = e'*A'*B*A*e */
    } else if (ksp->normtype == KSP_NORM_NONE) {
      dp = 0.0;
    }
    ksp->rnorm = dp;
    KSPLogResidualHistory(ksp,dp);
    ierr = KSPMonitor(ksp,i,dp);CHKERRQ(ierr);
    ierr = (*ksp->converged)(ksp,i,dp,&ksp->reason,ksp->cnvP);CHKERRQ(ierr);
    if (ksp->reason) break;

    beta = gammaNew / gamma;
    gamma = gammaNew;
    ierr = VecAYPX(p,beta,z);CHKERRQ(ierr);    /*     p <- z + beta * p   */
    ierr = VecAYPX(s,beta,Z);CHKERRQ(ierr);    /*     s <- Z + beta * s   */

  } while (i<ksp->max_it);
  if (i >= ksp->max_it) {
    ksp->reason = KSP_DIVERGED_ITS;
  }
  PetscFunctionReturn(0);
}
Пример #29
0
PetscErrorCode CkEigenSolutions(PetscInt *fcklvl,Mat *mats,PetscReal *eval,Vec *evec,PetscInt *ievbd_loc,PetscInt *offset,PetscReal *tols)
{
  PetscInt  ierr,cklvl=*fcklvl,nev_loc,i,j;
  Mat       A=mats[0], B=mats[1];
  Vec       vt1,vt2;    /* tmp vectors */
  PetscReal norm,tmp,dot,norm_max,dot_max;

  PetscFunctionBegin;
  nev_loc = ievbd_loc[1] - ievbd_loc[0];
  if (nev_loc == 0) PetscFunctionReturn(0);

  nev_loc += (*offset);
  ierr     = VecDuplicate(evec[*offset],&vt1);
  ierr     = VecDuplicate(evec[*offset],&vt2);

  switch (cklvl) {
  case 2:
    dot_max = 0.0;
    for (i = *offset; i<nev_loc; i++) {
      ierr = MatMult(B, evec[i], vt1);
      for (j=i; j<nev_loc; j++) {
        ierr = VecDot(evec[j],vt1,&dot);
        if (j == i) {
          dot = PetscAbsScalar(dot - 1.0);
        } else {
          dot = PetscAbsScalar(dot);
        }
        if (dot > dot_max) dot_max = dot;
#if defined(DEBUG_CkEigenSolutions)
        if (dot > tols[1]) {
          ierr = VecNorm(evec[i],NORM_INFINITY,&norm);
          ierr = PetscPrintf(PETSC_COMM_SELF,"|delta(%d,%d)|: %G, norm: %G\n",i,j,dot,norm);
        }
#endif
      } /* for (j=i; j<nev_loc; j++) */
    }
    ierr = PetscPrintf(PETSC_COMM_SELF,"    max|(x_j*B*x_i) - delta_ji|: %G\n",dot_max);

  case 1:
    norm_max = 0.0;
    for (i = *offset; i< nev_loc; i++) {
      ierr = MatMult(A, evec[i], vt1);
      ierr = MatMult(B, evec[i], vt2);
      tmp  = -eval[i];
      ierr = VecAXPY(vt1,tmp,vt2);
      ierr = VecNorm(vt1, NORM_INFINITY, &norm);
      norm = PetscAbsScalar(norm);
      if (norm > norm_max) norm_max = norm;
#if defined(DEBUG_CkEigenSolutions)
      /* sniff, and bark if necessary */
      if (norm > tols[0]) {
        printf("  residual violation: %d, resi: %g\n",i, norm);
      }
#endif
    }

    ierr = PetscPrintf(PETSC_COMM_SELF,"    max_resi:                    %G\n", norm_max);

    break;
  default:
    ierr = PetscPrintf(PETSC_COMM_SELF,"Error: cklvl=%d is not supported \n",cklvl);
  }
  ierr = VecDestroy(&vt2);
  ierr = VecDestroy(&vt1);
  PetscFunctionReturn(0);
}
Пример #30
0
PetscErrorCode SNESQNApply_Broyden(SNES snes,PetscInt it,Vec Y,Vec X,Vec Xold, Vec D, Vec Dold)
{
  PetscErrorCode     ierr;
  SNES_QN            *qn = (SNES_QN*)snes->data;
  Vec                W   = snes->work[3];
  Vec                *U  = qn->U;
  Vec                *V  = qn->V;
  KSPConvergedReason kspreason;
  PetscInt           k,i,lits;
  PetscInt           m = qn->m;
  PetscScalar        gdot;
  PetscInt           l = m;

  PetscFunctionBegin;
  if (it < m) l = it;
  if (qn->scale_type == SNES_QN_SCALE_JACOBIAN) {
    ierr = KSPSolve(snes->ksp,D,W);CHKERRQ(ierr);
    ierr = KSPGetConvergedReason(snes->ksp,&kspreason);CHKERRQ(ierr);
    if (kspreason < 0) {
      if (++snes->numLinearSolveFailures >= snes->maxLinearSolveFailures) {
        ierr         = PetscInfo2(snes,"iter=%D, number linear solve failures %D greater than current SNES allowed, stopping solve\n",snes->iter,snes->numLinearSolveFailures);CHKERRQ(ierr);
        snes->reason = SNES_DIVERGED_LINEAR_SOLVE;
        PetscFunctionReturn(0);
      }
    }
    ierr              = KSPGetIterationNumber(snes->ksp,&lits);CHKERRQ(ierr);
    snes->linear_its += lits;
    ierr              = VecCopy(W,Y);CHKERRQ(ierr);
  } else {
    ierr = VecCopy(D,Y);CHKERRQ(ierr);
    ierr = VecScale(Y,qn->scaling);CHKERRQ(ierr);
  }

  /* inward recursion starting at the first update and working forward */
  if (it > 1) {
    for (i = 0; i < l-1; i++) {
      k    = (it+i-l)%l;
      ierr = VecDot(U[k],Y,&gdot);CHKERRQ(ierr);
      ierr = VecAXPY(Y,gdot,V[k]);CHKERRQ(ierr);
      if (qn->monitor) {
        ierr = PetscViewerASCIIAddTab(qn->monitor,((PetscObject)snes)->tablevel+2);CHKERRQ(ierr);
        ierr = PetscViewerASCIIPrintf(qn->monitor, "it: %d k: %d gdot: %14.12e\n", it, k, PetscRealPart(gdot));CHKERRQ(ierr);
        ierr = PetscViewerASCIISubtractTab(qn->monitor,((PetscObject)snes)->tablevel+2);CHKERRQ(ierr);
      }
    }
  }
  if (it < m) l = it;

  /* set W to be the last step, post-linesearch */
  ierr = VecCopy(Xold,W);CHKERRQ(ierr);
  ierr = VecAXPY(W,-1.0,X);CHKERRQ(ierr);

  if (l > 0) {
    k    = (it-1)%l;
    ierr = VecCopy(W,U[k]);CHKERRQ(ierr);
    ierr = VecAXPY(W,-1.0,Y);CHKERRQ(ierr);
    ierr = VecDot(U[k],W,&gdot);CHKERRQ(ierr);
    ierr = VecCopy(Y,V[k]);CHKERRQ(ierr);
    ierr = VecScale(V[k],1.0/gdot);CHKERRQ(ierr);
    ierr = VecDot(U[k],Y,&gdot);CHKERRQ(ierr);
    ierr = VecAXPY(Y,gdot,V[k]);CHKERRQ(ierr);
    if (qn->monitor) {
      ierr = PetscViewerASCIIAddTab(qn->monitor,((PetscObject)snes)->tablevel+2);CHKERRQ(ierr);
      ierr = PetscViewerASCIIPrintf(qn->monitor, "update: %d k: %d gdot: %14.12e\n", it, k, PetscRealPart(gdot));CHKERRQ(ierr);
      ierr = PetscViewerASCIISubtractTab(qn->monitor,((PetscObject)snes)->tablevel+2);CHKERRQ(ierr);
    }
  }
  PetscFunctionReturn(0);
}