Пример #1
0
KMeans::KMeans(int anumOfCores,int anumOfSamples,int anumOfBins)
{
	int i;

	this->numOfCores= anumOfCores; 
	this->numOfSamples=anumOfSamples;
	this->numOfBins=anumOfBins;
	this->itemNum=new int [this->numOfCores];
	this->componentLength = 3*this->numOfBins;
	this->planeB=this->planeG=this->planeR=NULL;
	this->cores = new float * [this->numOfCores];
	this->old_cores = new float * [this->numOfCores];
	for(i=0;i<this->numOfCores;i++)
	{
		this->cores[i] = new float[this->componentLength];		
		this->old_cores[i] = new float[this->componentLength];
		for(int j=0;j<this->componentLength;j++)
		{
			this->cores[i][j]=-2;
			this->old_cores[i][j]=-2;
		}
	}

	if(this->numOfSamples)
	{
		this->candyset = new float * [this->numOfSamples];
		for(i=0;i<this->numOfSamples;i++) this->candyset[i] = new float[this->componentLength];
	}
	else this->candyset=NULL;

	this->imagehist=new float[this->componentLength];	

	this->rangesR = new float * [1];
	this->rangesR[0] = new float[2];
	this->rangesR[0][0]=0;this->rangesR[0][1]=255;

	this->rangesG = new float * [1];
	this->rangesG[0] = new float[2];
	this->rangesG[0][0]=0;this->rangesG[0][1]=255;

	this->rangesB = new float * [1];
	this->rangesB[0] = new float[2];
	this->rangesB[0][0]=0;this->rangesB[0][1]=255;

	this->histR = cvCreateHist(1,&this->numOfBins,CV_HIST_ARRAY,rangesR,1);
    this->histG = cvCreateHist(1,&this->numOfBins,CV_HIST_ARRAY,rangesG,1);
    this->histB = cvCreateHist(1,&this->numOfBins,CV_HIST_ARRAY,rangesB,1);
	 
	this->sorted = new vector<KMeansTriple *> [this->numOfCores];
	this->index=0;
}
void AdaptiveHistogramCamshift::Init(const CvSize& frameSize,
                                     const InitParams& initParams)
{
  // Get frame size
  m_frameSize = frameSize;

  // Load init params.
  m_histDims = initParams.histDims;
  m_vMin = initParams.vMin;
  m_vMax = initParams.vMax;
  m_sMin = initParams.sMin;
  m_sBox = initParams.sBox;
  m_histRanges[0] = initParams.histRanges[0] * 0.5f;
  m_histRanges[1] = initParams.histRanges[1] * 0.5f;

  // Create histograms
  float* histRanges[2] = { &m_histRanges[0], &m_histRanges[1] };
  m_hist = cvCreateHist(1, &m_histDims, CV_HIST_ARRAY, histRanges, 1);
  m_histSubdiv = cvCreateHist(1, &m_histDims, CV_HIST_ARRAY, histRanges, 1);
  m_histTrackWnd = cvCreateHist(1, &m_histDims, CV_HIST_ARRAY, histRanges, 1);

  // Create images
  m_imgHue = cvCreateImage(m_frameSize, 8, 1);
  m_imgMask = cvCreateImage(m_frameSize, 8, 1);
  m_imgHSV = cvCreateImage(m_frameSize, 8, 3);
  m_imgBackproject = cvCreateImage(m_frameSize, 8, 1);
  cvZero(m_imgBackproject);

  // Create histogram image
  m_histImg = cvCreateImage( m_frameSize, 8, 3 );
  cvZero( m_histImg );

  // Show controlsGUI, backproject, histogram
  if (initParams.showControlsGUI)
  {
    ShowControlsGUI();
  }
  if (initParams.showBackproject)
  {
    ShowBackproject();
  }
  if (initParams.showHistogram)
  {
    ShowHistogram();
  }

  // Set initialized flag
  m_initialized = true;
}
Пример #3
0
double pghMatchShapes(CvSeq *shape1, CvSeq *shape2) {
	int dims[] = {8, 8};
	float range[] = {-180, 180, -100, 100};
	float *ranges[] = {&range[0], &range[2]};
    CvHistogram* hist1 = cvCreateHist(2, dims, CV_HIST_ARRAY, ranges, 1);
    CvHistogram* hist2 = cvCreateHist(2, dims, CV_HIST_ARRAY, ranges, 1);
	cvCalcPGH(shape1, hist1);
    cvCalcPGH(shape2, hist2);
	cvNormalizeHist(hist1, 100.0f);
	cvNormalizeHist(hist2, 100.0f);
    double corr = cvCompareHist(hist1, hist2, CV_COMP_BHATTACHARYYA);
    cvReleaseHist(&hist1);
    cvReleaseHist(&hist2);
	return corr;
}
Пример #4
0
Histogram* Histogram::createHSHistogram(const Image* image, const Mask* mask, int sizeH, int sizeS)
{
    Histogram* hist = new Histogram();
    IplImage* hsv = cvCreateImage(image->size(), 8, 3);	//Create HSV image from BGR image
    cvCvtColor(image->cvImage(), hsv, CV_BGR2HSV);
	
    IplImage* h = cvCreateImage(image->size(), 8, 1);	// create diferents planes
    IplImage* s = cvCreateImage(image->size(), 8, 1);
    IplImage* v = cvCreateImage(image->size(), 8, 1);
	
    IplImage* planes[] = {h, s};
	
    cvCvtPixToPlane(hsv, h, s, v, NULL);
	
    int histSize[] = {sizeH, sizeS};
    float hRanges[] = { 0, 180 }; /* hue varies from 0 (~0°red) to 180 (~360°red again) */
    float sRanges[] = { 0, 255 }; /* saturation varies from 0 (black-gray-white) to 255 (pure spectrum color) */
    float* ranges[] = {hRanges, sRanges};
	
    hist->m_histogram = cvCreateHist(2, histSize, CV_HIST_ARRAY, ranges, 1);
    cvCalcHist(planes, hist->m_histogram, false, mask ? mask->cvImage() : NULL);

    cvReleaseImage(&hsv);
    cvReleaseImage(&h);
    cvReleaseImage(&s);
    cvReleaseImage(&v);
    return hist;
}
Пример #5
0
//default values h_bins=30,s_bins=32,scale=10
CvHistogram * Histogram::getHShistogramFromRGB(IplImage* src){
	IplImage* h_plane = cvCreateImage( cvGetSize(src), 8, 1 );
	IplImage* s_plane = cvCreateImage( cvGetSize(src), 8, 1 );
	IplImage* v_plane = cvCreateImage( cvGetSize(src), 8, 1 );
	IplImage* planes[] = { h_plane, s_plane };
	IplImage* hsv = cvCreateImage( cvGetSize(src), 8, 3 );
	
	int hist_size[] = {this->h_bins, this->s_bins};
	float h_ranges[] = { 0, 180 }; /* hue varies from 0 (~0°red) to 180 (~360°red again) */
	float s_ranges[] = { 0, 255 }; /* saturation varies from 0 (black-gray-white) to 255 (pure spectrum color) */
	float* ranges[] = { h_ranges, s_ranges };
	
	CvHistogram* hist;

	
	cvCvtColor( src, hsv, CV_BGR2HSV );
	cvCvtPixToPlane( hsv, h_plane, s_plane, v_plane, 0 );
	hist = cvCreateHist( 2, hist_size, CV_HIST_ARRAY, ranges, 1 );
	cvCalcHist( planes, hist, 0, 0 );
	cvNormalizeHist(hist,1.0);
	
	cvReleaseImage(&hsv);
	cvReleaseImage(&h_plane);
	cvReleaseImage(&s_plane);
	cvReleaseImage(&v_plane);
	
	
	return hist;
	
}
Пример #6
0
CamShift::CamShift(const ImgBgr& img)
{
  
  hist = NULL;
  hue = NULL;
  hdims = 16;
  hsv = NULL;
  backproject = NULL;
  histimg = NULL;
  mask = NULL;
  
  float hranges_arr[] = {0,180};
  float* hranges = hranges_arr;
  ImgIplImage frame(img);
  image = cvCreateImage( cvGetSize(frame), 8, 3 );
  image->origin = ((IplImage*) frame)->origin;
  hsv = cvCreateImage( cvGetSize(frame), 8, 3 );
  hue = cvCreateImage( cvGetSize(frame), 8, 1 );
  mask = cvCreateImage( cvGetSize(frame), 8, 1 );
  backproject = cvCreateImage( cvGetSize(frame), 8, 1 );
  hist = cvCreateHist( 1, &hdims, CV_HIST_ARRAY, &hranges, 1 );
  histimg = cvCreateImage( cvSize(320,200), 8, 3 );
  cvZero( histimg );
  //cvReleaseImage( &frame );
  vmin = 10; vmax = 256; smin = 30;

}
Пример #7
0
Tracker::Tracker(const IplImage * pImg)
{
	// Parameters
	nHistBins = 30;                 // number of histogram bins
	rangesArr[0]= 0;          // histogram range
	rangesArr[1] = 180;
	vmin = 65;
	vmax = 256;
	smin = 55; // limits for calculating hue


	// File-level variables
	pHSVImg  = 0; // the input image converted to HSV color mode
	pHueImg  = 0; // the Hue channel of the HSV image
	pMask    = 0; // this image is used for masking pixels
	pProbImg = 0; // the face probability estimates for each pixel
	pHist = 0; // histogram of hue in the original face image


	nFrames = 0;
	// Allocate the main data structures ahead of time
	float * pRanges = rangesArr;
	pHSVImg  = cvCreateImage( cvGetSize(pImg), 8, 3 );
	pHueImg  = cvCreateImage( cvGetSize(pImg), 8, 1 );
	pMask    = cvCreateImage( cvGetSize(pImg), 8, 1 );
	pProbImg = cvCreateImage( cvGetSize(pImg), 8, 1 );

	pHist = cvCreateHist( 1, &nHistBins, CV_HIST_ARRAY, &pRanges, 1 );
}
Пример #8
0
	int LocalisationPupil::estimateThreshold(IplImage *im){
		IplImage* im2 = cvCloneImage(im);
		
		// supprimer les bruits
		cvSmooth( im2, im2, CV_GAUSSIAN,3 ,3);
		
		int bins = 50;
		int index_min,index_max;
		int hsize[] = {bins};
		float max_value = 0, min_value = 0;
		//ranges - grayscale 0 to 50
		float xranges[] = { 0, 50 };
		float* ranges[] = { xranges };
		CvHistogram* hist = cvCreateHist( 1, hsize, CV_HIST_ARRAY, ranges,1);
		cvCalcHist( &im2, hist, 0, NULL);
		cvGetMinMaxHistValue( hist, &min_value, &max_value,&index_min,&index_max);
		
		int thresh;
		
		thresh = index_max+10;
		
		cvReleaseImage( &im2);
		
		return thresh;
	}
Пример #9
0
CvAdaptiveSkinDetector::Histogram::Histogram()
{
    int histogramSize[] = { HistogramSize };
    float range[] = { GSD_HUE_LT, GSD_HUE_UT };
    float *ranges[] = { range };
    fHistogram = cvCreateHist(1, histogramSize, CV_HIST_ARRAY, ranges, 1);
    cvClearHist(fHistogram);
};
Пример #10
0
static UNUSED IplImage*
test_find_edges_hist(IplImage *im)
{
  int w = im->width;
  int h = im->height;
  CvSize small_size = {w / 8, h / 8};
  CvPoint middle = {w/2, h/2};

  IplImage *small = cvCreateImage(small_size, IPL_DEPTH_8U, 1); /*for quicker histogram */
  IplImage *mask = cvCreateImage(cvGetSize(im), IPL_DEPTH_8U, 1);
  IplImage *green = cvCreateImage(cvGetSize(im), IPL_DEPTH_8U, 1);
  cvSplit(im, NULL, green, NULL, NULL);

  cvResize(green, small, CV_INTER_NN);
  //small = green;

  int hist_size[] = {255};
  float range[] = {0, 255};
  float *ranges[] = {range};
  CvHistogram* hist = cvCreateHist(1, hist_size, CV_HIST_ARRAY, ranges, 1);
  cvCalcHist(&small, hist, 0, NULL);

  int pixels = small->width * small->height;
  int min_black = pixels / 8;
  int max_black = pixels / 2;
  int totals[256] = {0};

  int best_d = pixels + 1;
  int best_t = 0;

  int total = 0;
  for (int i = 0; i < 255; i++){
    int v = (int)cvQueryHistValue_1D(hist, i + 2);
    total += v;
    totals[i] = total;
    if (total > min_black){
      if (i > 5){
        int diff = totals[i] - totals[i - 5];
        if (diff < best_d){
          best_d = diff;
          best_t = i;
        }
        if (total >= max_black){
          break;
        }
      }
    }
  }
  best_t -= 2;
  printf("found best threshold %d -- %d pixel change at %d/%d pixels\n",
      best_t, best_d, totals[best_t], pixels);

  cvCmpS(green, best_t, mask, CV_CMP_GT);
  IplImage *mask2 = cvCreateImage(cvGetSize(im), IPL_DEPTH_8U, 1);
  memset(mask2->imageData, 255, w*h);
  floodfill_mono_superfast(mask, mask2, middle);
  return mask2;
}
Пример #11
0
HandDetect::HandDetect()
{
	numColorBins = 256;
	max_val = 0.f;
	hand1 = cvLoadImage("hand.png");
	hand2 = cvLoadImage("hand2.png");
	hist1 = cvCreateHist(1, &numColorBins, CV_HIST_ARRAY);
	hist2 = cvCreateHist(1, &numColorBins, CV_HIST_ARRAY);
	
	rad=0;
	vmin=10, vmax=256, smin=30;

	capture = cvCaptureFromCAM(0);
	setImage();
	backproject = cvCreateImage(cvGetSize(image), 8, 1);
	gray = cvCreateImage(cvGetSize(image), 8, 1);
	track_window = cvRect((int)image->width/2, (int)image->height/2, 1, 1);
	track_box.center.x=-1;
	track_box.center.y=-1;

	hsvHand1 = cvCreateImage(cvGetSize(hand1), 8, 3);
	mskHand1 = cvCreateImage(cvGetSize(hand1), 8, 1);
	hueHand1 = cvCreateImage(cvGetSize(hand1), 8, 1);

	hsvHand2 = cvCreateImage(cvGetSize(hand2), 8, 3);
	mskHand2 = cvCreateImage(cvGetSize(hand2), 8, 1);
	hueHand2 = cvCreateImage(cvGetSize(hand2), 8, 1);	

	cvCvtColor(hand1, hsvHand1, CV_RGB2HSV);
	cvInRangeS(hsvHand1, cvScalar(0, smin, MIN(vmin, vmax), 0), cvScalar(180, 256, MAX(vmin, vmax), 0), mskHand1);
	cvSplit(hsvHand1, hueHand1, 0, 0, 0);

	cvCalcHist(&hueHand1, hist1, 0, mskHand1);
	cvGetMinMaxHistValue(hist1, 0, &max_val, 0, 0);
	cvConvertScale(hist1->bins, hist1->bins, max_val ? 255. / max_val : 0., 0);


	cvCvtColor(hand2, hsvHand2, CV_RGB2HSV);
	cvInRangeS(hsvHand2, cvScalar(0, smin, MIN(vmin, vmax), 0), cvScalar(180, 256, MAX(vmin, vmax), 0), mskHand2);
	cvSplit(hsvHand2, hueHand2, 0, 0, 0);

	cvCalcHist(&hueHand2, hist2, 0, mskHand2);
	cvGetMinMaxHistValue(hist2, 0, &max_val, 0, 0);
	cvConvertScale(hist2->bins, hist2->bins, max_val ? 255. / max_val : 0., 0);
}
int main() {
	while(true) {
		int hist_size[] = {40};
		float range[] = {0.0f,255.0f};
		float* ranges[] = {range};
		CvHistogram* hist = cvCreateHist(1, hist_size, CV_HIST_ARRAY, ranges, 1);
		cvReleaseHist(&hist);
	}
}
Пример #13
0
Histogram::Histogram(int dims,
                     int* sizes,
                     float** ranges,
                     int type,
                     Histogram* histToAcomul)
        : m_histogram(histToAcomul ? histToAcomul->m_histogram : NULL)
{
        m_histogram = cvCreateHist(dims, sizes, type, ranges, histToAcomul ? 0 : 1);
}
Пример #14
0
CvHistogram* create_histogram(IplImage* plane, int range, int* bins)
{
	
	float ranges[] = { 0, range };
	float* temp_range[] = { ranges };
	CvHistogram* hist = cvCreateHist( 1, bins, CV_HIST_ARRAY, temp_range, 1 );
	cvCalcHist(&plane, hist, 0, 0 ); // Compute histogram
	return hist;
}
Пример #15
0
Файл: cd.c Проект: j0sh/thesis
CvHistogram *make_hist(IplImage *img)
{
    int numBins = 256;
    float range[] = {0, 255};
    float *ranges[] = { range };
    CvHistogram *hist = cvCreateHist(1, &numBins, CV_HIST_ARRAY, ranges, 1);
    cvCalcHist(&img, hist, 0, 0);
    return hist;
}
Пример #16
0
void Kinect::camshiftarr()
{
	
	//cvSetMouseCallback("CamShiftDemo", on_mouse, 0);
	cvCreateTrackbar("Vmin", "CamShiftDemo", &vmin, 256, 0);
	cvCreateTrackbar("Vmax", "CamShiftDemo", &vmax, 256, 0);
	cvCreateTrackbar("Smin", "CamShiftDemo", &smin, 256, 0);

	
	//if (!KinectColorImg)
	//{
		hsv = cvCreateImage(cvGetSize(KinectColorImg), 8, 3);
		hue = cvCreateImage(cvGetSize(KinectColorImg), 8, 1);
		mask = cvCreateImage(cvGetSize(KinectColorImg), 8, 1);
		backproject = cvCreateImage(cvGetSize(KinectColorImg), 8, 1);
		//히스토그램 생성 (채널,size ,표현방식,x축범위,막대간격
		hist = cvCreateHist(1, &hdims, CV_HIST_ARRAY, &hranges, 1);
		//히스토 그램 출력할 공간 생성 후 초기화
		histimg = cvCreateImage(cvSize(320, 200), 8, 3);
		cvZero(histimg);
	//}
	//
	//cvCvtColor(KinectColorImg, hsv, CV_BGR2HSV);
	////
		
			if (!hsv)
			{

				hsv = cvCreateImage(cvGetSize(KinectColorImg), 8, 3);
				hue = cvCreateImage(cvGetSize(KinectColorImg), 8, 1);
				mask = cvCreateImage(cvGetSize(KinectColorImg), 8, 1);
				backproject = cvCreateImage(cvGetSize(KinectColorImg), 8, 1);
				//히스토그램 생성 (채널,size ,표현방식,x축범위,막대간격
				hist = cvCreateHist(1, &hdims, CV_HIST_ARRAY, &hranges, 1);
				//히스토 그램 출력할 공간 생성 후 초기화
				histimg = cvCreateImage(cvSize(320, 200), 8, 3);
				cvZero(histimg);
			}
			if (trackObject)
			{

			}
		
}
Пример #17
0
/* 获取灰度图的一维直方图
 * grayImageData 灰度图像数据
 * hist_size 直方图中矩形条的数目
 * ranges 灰度级的范围列表
 */
CvHistogram* getHistogram(IplImage* grayImageData, int hist_size, float** ranges)
{
    //创建一维直方图,统计图像在[0 255]像素的均匀分布
    CvHistogram* gray_hist = cvCreateHist(1,&hist_size,CV_HIST_ARRAY,ranges,1);
    //计算灰度图像的一维直方图
    cvCalcHist(&grayImageData,gray_hist,0,0);
    //归一化直方图
    //cvNormalizeHist(gray_hist,1.0);
	return gray_hist;
}
Пример #18
0
// ------------------------------------------------------------------------
LABHistogram2D::LABHistogram2D(void) {
	/* hue varies from 0 (~0°red) to 180 (~360°red again) */
	/* saturation varies from 0 (black-gray-white) to 255 (pure spectrum color) */
    int hist_size[] = {a_bins, b_bins};
	float a_ranges[] = { (float)a_min, (float)a_max }; /* A varies from a_min to a_max */
	float b_ranges[] = { (float)b_min, (float)b_max }; /* B varies from b_min to b_max */
	float* ranges[] = { a_ranges, b_ranges };
 	h = cvCreateHist( 2, hist_size, CV_HIST_ARRAY, ranges, 1 );
	cvClearHist(h);
}
int main( int argc, char** argv )
{
    IplImage *src = 0;
    IplImage *histimg = 0;
    CvHistogram *hist = 0;
    
    int hbins = 255;     // 划分HIST的个数,越高越精确
	int maxcount = 255;
    float hranges_arr[] = {0,maxcount};//
    float* hranges = hranges_arr;
    int bin_w;  
    float max_val;
    int i;
    
    if((src=cvLoadImage("../cvtest/7newsample.jpg", CV_LOAD_IMAGE_GRAYSCALE)) == NULL)  // force to gray image
        return -1;
    
    cvNamedWindow( "Histogram", 0 );
    cvNamedWindow( "src", 0);
    
    hist = cvCreateHist( 1, &hbins, CV_HIST_ARRAY, &hranges, 1 );  // 计算直方图
    histimg = cvCreateImage( cvSize(320,200), 8, 3 );
    cvZero( histimg );
    cvCalcHist( &src, hist, 0, 0 ); // 计算直方图
   float min_val = 0;
    cvGetMinMaxHistValue( hist, &min_val, &max_val, 0, 0 );  // 只找最大值
	printf("max_val:%.4f,min:%.4f\n",max_val,min_val);
cvConvertScale( hist->bins, hist->bins, max_val ? 255. / max_val : 0., 0 ); // 缩放 bin 到区间 [0,255] 
    cvZero( histimg );
    bin_w = histimg->width / hbins;  // hbins: 条的个数,则 bin_w 为条的宽度
    
    // 画直方图
    for( i = 0; i < hbins; i++ )
    {
        double val = ( cvGetReal1D(hist->bins,i)/*255份中的几份*/*histimg->height/maxcount );
		
        CvScalar color = CV_RGB(255,255,0); //(hsv2rgb(i*180.f/hbins);
        cvRectangle( histimg, cvPoint(i*bin_w,histimg->height),
            cvPoint((i+1)*bin_w,(int)(histimg->height - val)),
            color, 1, 8, 0 );
		printf("(%d,%d),(%d,%d)\n",i*bin_w,histimg->height,(i+1)*bin_w,(int)(histimg->height - val));
    }
    
    cvShowImage( "src", src);
    cvShowImage( "Histogram", histimg );
    cvWaitKey(0);

    cvDestroyWindow("src");
    cvDestroyWindow("Histogram");
    cvReleaseImage( &src );
    cvReleaseImage( &histimg );
    cvReleaseHist ( &hist );
    
    return 0; 
}
Пример #20
0
void determine_optimal_sign_classification( IplImage* original_image, IplImage* red_point_image, CvSeq* red_components, CvSeq* background_components, IplImage* result_image )
{
	int width_step=original_image->widthStep;
	int pixel_step=original_image->widthStep/original_image->width;
	IplImage* mask_image = cvCreateImage( cvGetSize(original_image), 8, 1 );
	IplImage* grayscale_image = cvCreateImage( cvGetSize(original_image), 8, 1 );
	cvConvertImage( original_image, grayscale_image );
	IplImage* thresholded_image = cvCreateImage( cvGetSize(original_image), 8, 1 );
	cvZero( thresholded_image );
	cvZero( result_image );
	int row=0,col=0;
	CvSeq* curr_red_region = red_components;
	
	while (curr_red_region != NULL)
	{
		cvZero( mask_image );
		CvScalar color = CV_RGB( 255, 255, 255 );
		CvScalar mask_value = cvScalar( 255 );	//white point
		// Determine which background components are contained within the red component (i.e. holes)
		//  and create a binary mask of those background components.
		CvSeq* curr_background_region = curr_red_region->v_next;
		if (curr_background_region != NULL)
		{
			while (curr_background_region != NULL)
			{
				cvDrawContours( mask_image, curr_background_region, mask_value, mask_value, -1, CV_FILLED, 8 );
				cvDrawContours( result_image, curr_background_region, color, color, -1, CV_FILLED, 8 );
				curr_background_region = curr_background_region->h_next;
			}
			int hist_size=256;
			CvHistogram* hist = cvCreateHist( 1, &hist_size, CV_HIST_ARRAY );
			cvCalcHist( &grayscale_image, hist, 0, mask_image );
			// Determine an optimal threshold on the points within those components (using the mask)
			int optimal_threshold = determine_optimal_threshold( hist );
			apply_threshold_with_mask(grayscale_image,result_image,mask_image,optimal_threshold);
		}
		curr_red_region = curr_red_region->h_next;
	}

	for (row=0; row < result_image->height; row++)
	{
		unsigned char* curr_red = GETPIXELPTRMACRO( red_point_image, 0, row, width_step, pixel_step );
		unsigned char* curr_result = GETPIXELPTRMACRO( result_image, 0, row, width_step, pixel_step );
		for (col=0; col < result_image->width; col++)
		{
			curr_red += pixel_step;
			curr_result += pixel_step;
			if (curr_red[0] > 0)
				curr_result[2] = 255;
		}
	}

	cvReleaseImage( &mask_image );
}
Пример #21
0
void CamShiftPlugin::ProcessStatic
( int i, ImagePlus *img, ImagePlus *oimg, int *hsizes, CvTermCriteria criteria,
IplImage** &planes, CvHistogram* &hist, IplImage* &backproject, CvRect &orect, CvPoint &ocenter, CvRect &searchwin, CvMat* &rotation, CvMat* &shift, bool oready){
	if (hist && hist->mat.dim[0].size!=hsizes[0])
		cvReleaseHist(&hist);
	if( !hist )
        hist = cvCreateHist( 3, hsizes, CV_HIST_ARRAY, NULL, 0);
    if( !backproject )
		backproject = cvCreateImage( cvGetSize(img->orig), IPL_DEPTH_8U, 1 );
	if( !planes ){
	    planes = (IplImage**) malloc(3 * sizeof(IplImage*));
        for (int p=0; p<3; p++)
			planes[p] = cvCreateImage( cvGetSize(img->orig), 8, 1 );
	}
	if (!rotation)
		rotation = cvCreateMat(2,3,CV_32FC1);
	if (!shift)
		shift = cvCreateMat(2,1,CV_32FC1);

	if (!oready){
		orect = cvBoundingRect(oimg->contourArray[i],1);
		cvCvtPixToPlane( oimg->orig, planes[0], planes[1], planes[2], 0 );
        for (int p=0; p<3; p++)
            cvSetImageROI(planes[p],orect);
        cvCalcHist( planes, hist, 0, NULL );
		cvNormalizeHist(hist, 255);
        for (int p=0; p<3; p++)
            cvResetImageROI(planes[p]);
		searchwin = orect; //cvRect(0,0,img->orig->width, img->orig->height);
		ocenter = cvPoint(orect.x+orect.width/2, orect.y+orect.height/2);
	}
	//The following checks shouldn't be needed.
	RestrictRect(searchwin, cvRect(0,0,backproject->width,backproject->height));

	cvCvtPixToPlane( img->orig, planes[0], planes[1], planes[2], 0 );
    cvCalcBackProject( planes, backproject, hist );
	CvBox2D track_box;
	CvConnectedComp track_comp;
    cvCamShift( backproject, searchwin,
                criteria,
                &track_comp, &track_box );
	searchwin = track_comp.rect;
	cvmSet(shift,0,0,track_box.center.x - ocenter.x);
	cvmSet(shift,1,0,track_box.center.y - ocenter.y);
//	shift->data.fl[0] = track_box.center.x - ocenter.x;
//	shift->data.fl[1] = track_box.center.y - ocenter.y;
	cv2DRotationMatrix(track_box.center, track_box.angle, 1.0, rotation);
	cvTransform(oimg->contourArray[i],img->contourArray[i],rotation,shift);
//	CvMat *ofm = FeatPointsToMat(oimg->feats[i]);
//	Cvmat *fm  = FeatPointsToMat(img->feats[i]);
//	cvTransform(ofm,img->contourArray[i],rotation,shift);
	TransformFeatPoints(oimg->feats[i], img->feats[i], rotation, shift);
}
Пример #22
0
size_t calcularHistograma(IplImage *src, size_t *binsCount, size_t **bins) {
	if (src == NULL || bins == NULL) {
		return -1;
	}
	static int _trueChannels = 1;
	static int _trueChannel = 1;
	int channels = src->nChannels;
	int hist_size = 256;
	if (*bins == NULL) {
		*bins = (size_t *)calloc(channels * hist_size, sizeof(size_t));
		*binsCount = channels;
	}
	//if (channels == 3) printf("%d (%p)", *binsCount, *bins);

	//Actuo en funcion la cantidad de colores de la imagen
	if (channels == 1) {
		float range[] = { 0, 256 };
		float* ranges[] = { range };

		CvHistogram *hist_bw = cvCreateHist(1, &hist_size, CV_HIST_ARRAY, ranges, 1);
		cvCalcHist(&src, hist_bw, 0, NULL);

		for (int i = 0; i < hist_size; i++) {
			(*bins)[_trueChannel * hist_size + i] = cvRound(cvGetReal1D(hist_bw->bins, i));
		}

		cvReleaseHist(&hist_bw);
	} else if (src->nChannels == 3) {
		_trueChannels = 3;
		IplImage *channelA = cvCreateImage(cvGetSize(src), IPL_DEPTH_8U, 1);
		IplImage *channelB = cvCreateImage(cvGetSize(src), IPL_DEPTH_8U, 1);
		IplImage *channelC = cvCreateImage(cvGetSize(src), IPL_DEPTH_8U, 1);
		cvSplit(src, channelA, channelB, channelC, NULL);

		_trueChannel = 0;
		calcularHistograma(channelA, binsCount, bins);
		cvReleaseImage(&channelA);

		_trueChannel = 1;
		calcularHistograma(channelB, binsCount, bins);
		cvReleaseImage(&channelB);

		_trueChannel = 2;
		calcularHistograma(channelC, binsCount, bins);
		cvReleaseImage(&channelC);

		_trueChannels = 1;
		_trueChannel = 1;
	} else {
		return -1;
	}
	return 0;
}
Пример #23
0
void Draw_hist(IplImage* img,CvRect Rect)
{
    if(Rect.x<=0||Rect.y<=0||Rect.width<=0||Rect.height<=0)
    {
        return;
    }   
    cvSetImageROI(img,Rect);
    IplImage* hsv=cvCreateImage(cvGetSize(img),8,3);
    IplImage* h_plane=cvCreateImage(cvGetSize(img),8,1);
    IplImage* s_plane=cvCreateImage(cvSize(Rect.width,Rect.height),8,1);
    IplImage* v_plane=cvCreateImage(cvSize(Rect.width,Rect.height),8,1);
    IplImage* planes[]={h_plane,s_plane};
    int h_bins=16,s_bins=8;
    int hist_size[]={h_bins,s_bins};
    float h_ranges[]={0,180};
    float s_ranges[]={0,255};
    float* ranges[]={h_ranges,s_ranges};
    cvCvtColor(img,hsv,CV_BGR2HSV);
    cvResetImageROI(img);
    cvSplit(hsv,h_plane,s_plane,v_plane,0);
    CvHistogram *hist=cvCreateHist(2,hist_size,CV_HIST_ARRAY,ranges,1);
    cvCalcHist(planes,hist,0,0);
    float max_value;
    cvGetMinMaxHistValue(hist,0,&max_value,0,0);
    int height=480;
    int width=(h_bins*s_bins*6);
    IplImage* hist_img=cvCreateImage(cvSize(width,height),8,3);
    cvZero(hist_img);
    IplImage* hsv_color=cvCreateImage(cvSize(1,1),8,3);
    IplImage* rgb_color=cvCreateImage(cvSize(1,1),8,3);
    int bin_w=width/(h_bins*s_bins);
    for(int h=0;h<h_bins;h++)
    {
        for(int s=0;s<s_bins;s++)
        {
            int i=h*s_bins+s;
            //获取直方图中统计的次数,计算显示在图像中的高度
            float bin_val=cvQueryHistValue_2D(hist,h,s);
            int intensity=cvRound(bin_val*height/max_value);

            cvSet2D(hsv_color,0,0,cvScalar(h*180.f/h_bins,s*255.f/s_bins,255,0));
            cvCvtColor(hsv_color,rgb_color,CV_HSV2BGR);
            CvScalar color=cvGet2D(rgb_color,0,0);

            cvRectangle(hist_img,cvPoint(i*bin_w,height),cvPoint((i+1)*bin_w,height-intensity),color,-1,8,0);


        }
    }
    cvNamedWindow("H-S Histogram",1);
    cvShowImage("H-S Histogram",hist_img);
}
Пример #24
0
size_t calcularHistograma(IplImage *src, size_t *binsCount, size_t **bins) {
	if (src == NULL || bins == NULL) {
		return -1;
	}

	int channels = src->nChannels;
	int hist_size = 256;
	if (*bins == NULL) {
		*bins = (size_t*)calloc(channels * hist_size, sizeof(size_t));
		*binsCount = channels;
	}
	//if (channels == 3) printf("%d (%p)", *binsCount, *bins);

	//Actúo en función de la cantidad de colores de la imágen
	if (channels == 1) {
		float range[] = { 0, 256 };
		float* ranges[] = { range };

		float max = 0.0;
		float w_scale = 0.0;

		CvHistogram *hist_bw = cvCreateHist(1, &hist_size, CV_HIST_ARRAY, ranges, 1);
		cvCalcHist(&src, hist_bw, 0, NULL);
		//float max_value = 0.0;
		//cvGetMinMaxHistValue(hist_bw, 0, &max_value, 0, 0);
		//cvScale(hist_bw->bins, hist_bw->bins, (float)(src->width*src->height) / max_value, 0);

		for (int i = 1; i < hist_size; i++) {
			(*bins)[(*binsCount - 1) * hist_size + i] = cvRound(cvGetReal1D(hist_bw->bins, i));
		}

		cvReleaseHist(&hist_bw);
	} else if (src->nChannels == 3) {

		IplImage *channelA = cvCreateImage(cvGetSize(src), IPL_DEPTH_8U, 1);
		IplImage *channelB = cvCreateImage(cvGetSize(src), IPL_DEPTH_8U, 1);
		IplImage *channelC = cvCreateImage(cvGetSize(src), IPL_DEPTH_8U, 1);
		cvSplit(src, channelA, channelB, channelC, NULL);

		calcularHistograma(channelA, binsCount, bins);
		cvReleaseImage(&channelA);

		calcularHistograma(channelB, binsCount, bins);
		cvReleaseImage(&channelB);

		calcularHistograma(channelC, binsCount, bins);
		cvReleaseImage(&channelC);
	} else {
		return -1;
	}
	return 0;
}
Пример #25
0
//////////////////////////////////
// createTracker()
//
int createTracker(const IplImage * pImg)
{
	// Allocate the main data structures ahead of time
	float * pRanges = rangesArr;
	pHSVImg  = cvCreateImage( cvGetSize(pImg), 8, 3 );
	pHueImg  = cvCreateImage( cvGetSize(pImg), 8, 1 );
	pMask    = cvCreateImage( cvGetSize(pImg), 8, 1 );
	pProbImg = cvCreateImage( cvGetSize(pImg), 8, 1 );

	pHist = cvCreateHist( 1, &nHistBins, CV_HIST_ARRAY, &pRanges, 1 );

	return 1;
}
Пример #26
0
int th_create_hist(CvHistogram** hist, int dims, int* sizes, int type, float** ranges, int uniform) {
	int R = 0;
	CvHistogram* src = *hist;
	if (src == 0x0) {
		// yes it exists, but has wrong properties -> delete it!
		if (src != 0x0)
			cvReleaseHist(hist);
		// now the new one can safely be created
		*hist = cvCreateHist(dims, sizes, type, ranges, uniform);
		R = 1;
	}
	return R;
}
int BoatDetecting::setupImages(int frameWidth, int frameHeight)
{
	image = cvCreateImage(cvSize(frameWidth, frameHeight), IPL_DEPTH_8U, 3);
	hsv = cvCreateImage(cvSize(frameWidth, frameHeight), IPL_DEPTH_8U, 3);
	hue = cvCreateImage(cvSize(frameWidth, frameHeight), IPL_DEPTH_8U, 1);
	mask = cvCreateImage(cvSize(frameWidth, frameHeight), IPL_DEPTH_8U, 1);
	backproject = cvCreateImage(cvSize(frameWidth, frameHeight), IPL_DEPTH_8U, 1);

	int hdims = 16; float hranges_arr[] = { 0, 180 }; float *hranges = hranges_arr;
	hist = cvCreateHist(1, &hdims, CV_HIST_ARRAY, &hranges, 1);

	return 1;
}
Пример #28
0
int main(int argc, char* argv[])
{
    cvNamedWindow("Original",CV_WINDOW_AUTOSIZE);
    cvNamedWindow("Binaria",CV_WINDOW_AUTOSIZE);
    cvNamedWindow("Histograma",CV_WINDOW_AUTOSIZE);
    imatge = cvLoadImage("C:\\EUPMT\\Projects\\OpenCV_Contours\\exemple03.jpg", 0);
    IplImage* binaria = cvCreateImage(cvGetSize(imatge), 8, 1);
    imgHistogram = 0;


    int hsize[] = {bins};
    float max_value = 0, min_value = 0;
    float xranges[] = { 0, 256 };
    float* ranges[] = { xranges };

    hist = cvCreateHist( 1, hsize, CV_HIST_ARRAY, ranges,1);
    cvCalcHist( &imatge, hist, 0, NULL);
    cvGetMinMaxHistValue( hist, &min_value, &max_value);

    dibuixarHistograma(max_value);


    int llindar = llindar_gaussian(imatge, hist);

    int step =imatge->widthStep;
    int canals = imatge->nChannels;
    uchar* imgData = (uchar*) imatge->imageData;
    uchar* imgDataBinaria = (uchar*) binaria->imageData;

    for( int i = 0; i < imatge->height; i++)
        for( int j = 0; j < imatge->width; j++)
        {
            if((imgData[i*step+j*canals]) > llindar)
            {
                imgDataBinaria[i*binaria->widthStep+j*binaria->nChannels]=0;
            }
            else
            {
                imgDataBinaria[i*binaria->widthStep+j*binaria->nChannels]=255;
            }
        }


    cvShowImage("Original", imatge);
    cvShowImage("Histograma", imgHistogram);
    cvShowImage("Binaria", binaria);
    cvWaitKey(0);
    cvDestroyAllWindows();
    return 0;
}
IplImage* CamShiftPatch::drawHistImg(CvRect selectROI, CvScalar maskRange)
{
	IplImage* hue = 0;
	hue = cvCreateImage(cvGetSize(originImage), 8, 1);
	IplImage *mask = getInRangeMask(maskRange, hue);//CvScalar 0->Vmin  1->Vmax  2->Smin

	//---設定ROI和畫出直方圖---

	float max_val = 0.f;
	cvSetImageROI(hue, selectROI);
	cvSetImageROI(mask, selectROI);

	
	int hdims = 48; //劃分HIST的個數,越高越精確 
	float hranges_arr[] = { 0, 180 }; //直方圖範圍
	float* hranges = hranges_arr;//指向值方圖範圍
	histogram = cvCreateHist(1, &hdims, CV_HIST_ARRAY, &hranges, 1); //設定直方圖的格式
	cvCalcHist(&hue, histogram, 0, mask); //以hue資訊 得到直方圖 (只有ROI部分的資訊)
	cvGetMinMaxHistValue(histogram, 0, &max_val, 0, 0); //只找最大值 
	cvConvertScale(histogram->bins, histogram->bins, max_val ? 255. / max_val : 0., 0); //縮放bin到區間[0,255]  
	//input      output        尺度放大或縮小         全部顏色的增減       
	cvResetImageROI(hue); // remove ROI  
	cvResetImageROI(mask);
	//track_window = selectROI; //搜索窗即一開始ROI框

	//----畫直方圖hist to histimg------------------

	IplImage* histimg = cvCreateImage(cvSize(320, 200), 8, 3);  //直方圖顯示空間,三通道
	cvZero(histimg); //置背景為黑色

	int bin_w = 0;
	bin_w = histimg->width / hdims; // hdims:條的個數,則bin_w為條的寬度  

	for (int i = 0; i < hdims; i++)
	{
		int val = cvRound(cvGetReal1D(histogram->bins, i)*histimg->height / 255);  //cvGetReal1D(直方條高度,第幾條) 
		CvScalar color = hsv2rgb(i*180.f / hdims); //在RGB空間上,直方圖每條的顏色計算   180/hdims表示每一格多寬 , i*180/hdims代表到橫軸的哪個位置了 由那個位置的顏色資訊轉換成RGB  
		cvRectangle(histimg, cvPoint(i*bin_w, histimg->height), cvPoint((i + 1)*bin_w, histimg->height - val), color, -1, 8, 0);//畫出不同顏色的直方長條來
	}
	//---設定ROI和畫出直方圖 end---
	IplImage* returnImg = nullptr;
	returnImg = cvCloneImage(histimg);

	cvReleaseImage(&hue);
	cvReleaseImage(&mask);
	cvReleaseImage(&histimg);

	return returnImg;
}
Пример #30
0
Histogram* Histogram::create1ChHistogram(const Image* image, const Mask* mask)
{
    Histogram* hist = new Histogram();
	
    int histSize[] = {256};
    float range[] = { 0, 255 };
    float* ranges[] = {range};
    IplImage* cvimage = image->cvImage();
	
    hist->m_histogram = cvCreateHist(1, histSize, CV_HIST_ARRAY, ranges, 1);
    cvCalcHist(&cvimage , hist->m_histogram, false, mask ? mask->cvImage() : NULL);
    hist->normalize();
	
    return hist;
}