Пример #1
0
dtStatus dtNavMesh::init(const dtNavMeshParams* params)
{
	memcpy(&m_params, params, sizeof(dtNavMeshParams));
	dtVcopy(m_orig, params->orig);
	m_tileWidth = params->tileWidth;
	m_tileHeight = params->tileHeight;
	
	// Init tiles
	m_maxTiles = params->maxTiles;
	m_tileLutSize = dtNextPow2(params->maxTiles/4);
	if (!m_tileLutSize) m_tileLutSize = 1;
	m_tileLutMask = m_tileLutSize-1;
	
	m_tiles = (dtMeshTile*)dtAlloc(sizeof(dtMeshTile)*m_maxTiles, DT_ALLOC_PERM);
	if (!m_tiles)
		return DT_FAILURE | DT_OUT_OF_MEMORY;
	m_posLookup = (dtMeshTile**)dtAlloc(sizeof(dtMeshTile*)*m_tileLutSize, DT_ALLOC_PERM);
	if (!m_posLookup)
		return DT_FAILURE | DT_OUT_OF_MEMORY;
	memset(m_tiles, 0, sizeof(dtMeshTile)*m_maxTiles);
	memset(m_posLookup, 0, sizeof(dtMeshTile*)*m_tileLutSize);
	m_nextFree = 0;
	for (int i = m_maxTiles-1; i >= 0; --i)
	{
		m_tiles[i].salt = 1;
		m_tiles[i].next = m_nextFree;
		m_nextFree = &m_tiles[i];
	}
	
	// Init ID generator values.
#ifndef DT_POLYREF64
	m_tileBits = dtIlog2(dtNextPow2((unsigned int)params->maxTiles));
	m_polyBits = dtIlog2(dtNextPow2((unsigned int)params->maxPolys));
	// Only allow 31 salt bits, since the salt mask is calculated using 32bit uint and it will overflow.
	m_saltBits = dtMin((unsigned int)31, 32 - m_tileBits - m_polyBits);

	if (m_saltBits < 10)
		return DT_FAILURE | DT_INVALID_PARAM;
#endif
	
	return DT_SUCCESS;
}
dtStatus dtTileCache::init(const dtTileCacheParams* params,
						   dtTileCacheAlloc* talloc,
						   dtTileCacheCompressor* tcomp,
						   dtTileCacheMeshProcess* tmproc)
{
	m_talloc = talloc;
	m_tcomp = tcomp;
	m_tmproc = tmproc;
	m_nreqs = 0;
	memcpy(&m_params, params, sizeof(m_params));
	
	// Alloc space for obstacles.
	m_obstacles = (dtTileCacheObstacle*)dtAlloc(sizeof(dtTileCacheObstacle)*m_params.maxObstacles, DT_ALLOC_PERM);
	if (!m_obstacles)
		return DT_FAILURE | DT_OUT_OF_MEMORY;
	memset(m_obstacles, 0, sizeof(dtTileCacheObstacle)*m_params.maxObstacles);
	m_nextFreeObstacle = 0;
	for (int i = m_params.maxObstacles-1; i >= 0; --i)
	{
		m_obstacles[i].salt = 1;
		m_obstacles[i].next = m_nextFreeObstacle;
		m_nextFreeObstacle = &m_obstacles[i];
	}
	
	// Init tiles
	m_tileLutSize = dtNextPow2(m_params.maxTiles/4);
	if (!m_tileLutSize) m_tileLutSize = 1;
	m_tileLutMask = m_tileLutSize-1;
	
	m_tiles = (dtCompressedTile*)dtAlloc(sizeof(dtCompressedTile)*m_params.maxTiles, DT_ALLOC_PERM);
	if (!m_tiles)
		return DT_FAILURE | DT_OUT_OF_MEMORY;
	m_posLookup = (dtCompressedTile**)dtAlloc(sizeof(dtCompressedTile*)*m_tileLutSize, DT_ALLOC_PERM);
	if (!m_posLookup)
		return DT_FAILURE | DT_OUT_OF_MEMORY;
	memset(m_tiles, 0, sizeof(dtCompressedTile)*m_params.maxTiles);
	memset(m_posLookup, 0, sizeof(dtCompressedTile*)*m_tileLutSize);
	m_nextFreeTile = 0;
	for (int i = m_params.maxTiles-1; i >= 0; --i)
	{
		m_tiles[i].salt = 1;
		m_tiles[i].next = m_nextFreeTile;
		m_nextFreeTile = &m_tiles[i];
	}
	
	// Init ID generator values.
	m_tileBits = dtIlog2(dtNextPow2((unsigned int)m_params.maxTiles));
	// Only allow 31 salt bits, since the salt mask is calculated using 32bit uint and it will overflow.
	m_saltBits = dtMin((unsigned int)31, 32 - m_tileBits);
	if (m_saltBits < 10)
		return DT_FAILURE | DT_INVALID_PARAM;
	
	return DT_SUCCESS;
}
Пример #3
0
bool dtNavMesh::init(const dtNavMeshParams* params)
{
	memcpy(&m_params, params, sizeof(dtNavMeshParams));
	dtVcopy(m_orig, params->orig);
	m_tileWidth = params->tileWidth;
	m_tileHeight = params->tileHeight;
	
	// Init tiles
	m_maxTiles = params->maxTiles;
	m_tileLutSize = dtNextPow2(params->maxTiles/4);
	if (!m_tileLutSize) m_tileLutSize = 1;
	m_tileLutMask = m_tileLutSize-1;
	
	m_tiles = (dtMeshTile*)dtAlloc(sizeof(dtMeshTile)*m_maxTiles, DT_ALLOC_PERM);
	if (!m_tiles)
		return false;
	m_posLookup = (dtMeshTile**)dtAlloc(sizeof(dtMeshTile*)*m_tileLutSize, DT_ALLOC_PERM);
	if (!m_posLookup)
		return false;
	memset(m_tiles, 0, sizeof(dtMeshTile)*m_maxTiles);
	memset(m_posLookup, 0, sizeof(dtMeshTile*)*m_tileLutSize);
	m_nextFree = 0;
	for (int i = m_maxTiles-1; i >= 0; --i)
	{
		m_tiles[i].salt = 1;
		m_tiles[i].next = m_nextFree;
		m_nextFree = &m_tiles[i];
	}
	
	// Init ID generator values.
	m_tileBits = dtMax((unsigned int)1, dtIlog2(dtNextPow2((unsigned int)params->maxTiles)));
	m_polyBits = dtMax((unsigned int)1, dtIlog2(dtNextPow2((unsigned int)params->maxPolys)));
	m_saltBits = 32 - m_tileBits - m_polyBits;
	if (m_saltBits < 10)
		return false;
	
	return true;
}
Пример #4
0
bool OgreDetourTileCache::configure(InputGeom *inputGeom)
{
    m_geom = inputGeom;

    // Reuse OgreRecast context for tiled navmesh building
    m_ctx = m_recast->m_ctx;

    if (!m_geom || m_geom->isEmpty()) {
        m_recast->m_pLog->logMessage("ERROR: OgreDetourTileCache::configure: No vertices and triangles.");
        return false;
    }

    if (!m_geom->getChunkyMesh()) {
        m_recast->m_pLog->logMessage("ERROR: OgreDetourTileCache::configure: Input mesh has no chunkyTriMesh built.");
        return false;
    }

    m_tmproc->init(m_geom);


    // Init cache bounding box
    const float* bmin = m_geom->getMeshBoundsMin();
    const float* bmax = m_geom->getMeshBoundsMax();

    // Navmesh generation params.
    // Use config from recast module
    m_cfg = m_recast->m_cfg;

    // Most params are taken from OgreRecast::configure, except for these:
    m_cfg.tileSize = m_tileSize;
    m_cfg.borderSize = (int) (m_cfg.walkableRadius + BORDER_PADDING); // Reserve enough padding.
    m_cfg.width = m_cfg.tileSize + m_cfg.borderSize*2;
    m_cfg.height = m_cfg.tileSize + m_cfg.borderSize*2;

    // Set mesh bounds
    rcVcopy(m_cfg.bmin, bmin);
    rcVcopy(m_cfg.bmax, bmax);
    // Also define navmesh bounds in recast component
    rcVcopy(m_recast->m_cfg.bmin, bmin);
    rcVcopy(m_recast->m_cfg.bmax, bmax);

    // Cell size navmesh generation property is copied from OgreRecast config
    m_cellSize = m_cfg.cs;

    // Determine grid size (number of tiles) based on bounding box and grid cell size
    int gw = 0, gh = 0;
    rcCalcGridSize(bmin, bmax, m_cellSize, &gw, &gh);   // Calculates total size of voxel grid
    const int ts = m_tileSize;
    const int tw = (gw + ts-1) / ts;    // Tile width
    const int th = (gh + ts-1) / ts;    // Tile height
    m_tw = tw;
    m_th = th;
    Ogre::LogManager::getSingletonPtr()->logMessage("Total Voxels: "+Ogre::StringConverter::toString(gw) + " x " + Ogre::StringConverter::toString(gh));
    Ogre::LogManager::getSingletonPtr()->logMessage("Tilesize: "+Ogre::StringConverter::toString(m_tileSize)+"  Cellsize: "+Ogre::StringConverter::toString(m_cellSize));
    Ogre::LogManager::getSingletonPtr()->logMessage("Tiles: "+Ogre::StringConverter::toString(m_tw)+" x "+Ogre::StringConverter::toString(m_th));


    // Max tiles and max polys affect how the tile IDs are caculated.
    // There are 22 bits available for identifying a tile and a polygon.
    int tileBits = rcMin((int)dtIlog2(dtNextPow2(tw*th*EXPECTED_LAYERS_PER_TILE)), 14);
    if (tileBits > 14) tileBits = 14;
    int polyBits = 22 - tileBits;
    m_maxTiles = 1 << tileBits;
    m_maxPolysPerTile = 1 << polyBits;
    Ogre::LogManager::getSingletonPtr()->logMessage("Max Tiles: " + Ogre::StringConverter::toString(m_maxTiles));
    Ogre::LogManager::getSingletonPtr()->logMessage("Max Polys: " + Ogre::StringConverter::toString(m_maxPolysPerTile));


    // Tile cache params.
    memset(&m_tcparams, 0, sizeof(m_tcparams));
    rcVcopy(m_tcparams.orig, bmin);
    m_tcparams.width = m_tileSize;
    m_tcparams.height = m_tileSize;
    m_tcparams.maxTiles = tw*th*EXPECTED_LAYERS_PER_TILE;
    m_tcparams.maxObstacles = MAX_OBSTACLES;    // Max number of temp obstacles that can be added to or removed from navmesh

    // Copy the rest of the parameters from OgreRecast config
    m_tcparams.cs = m_cfg.cs;
    m_tcparams.ch = m_cfg.ch;
    m_tcparams.walkableHeight = (float) m_cfg.walkableHeight;
    m_tcparams.walkableRadius = (float) m_cfg.walkableRadius;
    m_tcparams.walkableClimb = (float) m_cfg.walkableClimb;
    m_tcparams.maxSimplificationError = m_cfg.maxSimplificationError;

    return initTileCache();
}
Пример #5
0
bool OgreDetourTileCache::loadAll(Ogre::String filename)
{
       FILE* fp = fopen(filename.data(), "rb");
       if (!fp) {
           Ogre::LogManager::getSingletonPtr()->logMessage("Error: OgreDetourTileCache::loadAll("+filename+"). Could not open file.");
           return false;
       }

       // Read header.
       TileCacheSetHeader header;
       fread(&header, sizeof(TileCacheSetHeader), 1, fp);
       if (header.magic != TILECACHESET_MAGIC)
       {
           fclose(fp);
           Ogre::LogManager::getSingletonPtr()->logMessage("Error: OgreDetourTileCache::loadAll("+filename+"). File does not appear to contain valid tilecache data.");
           return false;
       }
       if (header.version != TILECACHESET_VERSION)
       {
           fclose(fp);
           Ogre::LogManager::getSingletonPtr()->logMessage("Error: OgreDetourTileCache::loadAll("+filename+"). File contains a different version of the tilecache data format ("+Ogre::StringConverter::toString(header.version)+" instead of "+Ogre::StringConverter::toString(TILECACHESET_VERSION)+").");
           return false;
       }

       m_recast->m_navMesh = dtAllocNavMesh();
       if (!m_recast->m_navMesh)
       {
           fclose(fp);
           Ogre::LogManager::getSingletonPtr()->logMessage("Error: OgreDetourTileCache::loadAll("+filename+"). Could not allocate navmesh.");
           return false;
       }
       dtStatus status = m_recast->m_navMesh->init(&header.meshParams);
       if (dtStatusFailed(status))
       {
           fclose(fp);
           Ogre::LogManager::getSingletonPtr()->logMessage("Error: OgreDetourTileCache::loadAll("+filename+"). Could not init navmesh.");
           return false;
       }

       m_tileCache = dtAllocTileCache();
       if (!m_tileCache)
       {
           fclose(fp);
           Ogre::LogManager::getSingletonPtr()->logMessage("Error: OgreDetourTileCache::loadAll("+filename+"). Could not allocate tilecache.");
           return false;
       }
       status = m_tileCache->init(&header.cacheParams, m_talloc, m_tcomp, m_tmproc);
       if (dtStatusFailed(status))
       {
           fclose(fp);
           Ogre::LogManager::getSingletonPtr()->logMessage("Error: OgreDetourTileCache::loadAll("+filename+"). Could not init tilecache.");
           return false;
       }

       memcpy(&m_cfg, &header.recastConfig, sizeof(rcConfig));

       // Read tiles.
       for (int i = 0; i < header.numTiles; ++i)
       {
               TileCacheTileHeader tileHeader;
               fread(&tileHeader, sizeof(tileHeader), 1, fp);
               if (!tileHeader.tileRef || !tileHeader.dataSize)
                       break;

               unsigned char* data = (unsigned char*)dtAlloc(tileHeader.dataSize, DT_ALLOC_PERM);
               if (!data) break;
               memset(data, 0, tileHeader.dataSize);
               fread(data, tileHeader.dataSize, 1, fp);

               dtCompressedTileRef tile = 0;
               m_tileCache->addTile(data, tileHeader.dataSize, DT_COMPRESSEDTILE_FREE_DATA, &tile);

               if (tile)
                       m_tileCache->buildNavMeshTile(tile, m_recast->m_navMesh);
       }

       fclose(fp);


       // Init recast navmeshquery with created navmesh (in OgreRecast component)
       m_recast->m_navQuery = dtAllocNavMeshQuery();
       m_recast->m_navQuery->init(m_recast->m_navMesh, 2048);


       // Config
       // TODO handle this nicer, also inputGeom is not inited, making some functions crash
       m_cellSize = m_cfg.cs;
       m_tileSize = m_cfg.tileSize;

       // cache bounding box
       const float* bmin = m_cfg.bmin;
       const float* bmax = m_cfg.bmax;

       // Copy loaded config back to recast module
       memcpy(&m_recast->m_cfg, &m_cfg, sizeof(rcConfig));

       m_tileSize = m_cfg.tileSize;
       m_cellSize = m_cfg.cs;
       m_tcparams = header.cacheParams;

       // Determine grid size (number of tiles) based on bounding box and grid cell size
       int gw = 0, gh = 0;
       rcCalcGridSize(bmin, bmax, m_cellSize, &gw, &gh);   // Calculates total size of voxel grid
       const int ts = m_tileSize;
       const int tw = (gw + ts-1) / ts;    // Tile width
       const int th = (gh + ts-1) / ts;    // Tile height
       m_tw = tw;
       m_th = th;


       Ogre::LogManager::getSingletonPtr()->logMessage("Total Voxels: "+Ogre::StringConverter::toString(gw) + " x " + Ogre::StringConverter::toString(gh));
       Ogre::LogManager::getSingletonPtr()->logMessage("Tilesize: "+Ogre::StringConverter::toString(m_tileSize)+"  Cellsize: "+Ogre::StringConverter::toString(m_cellSize));
       Ogre::LogManager::getSingletonPtr()->logMessage("Tiles: "+Ogre::StringConverter::toString(m_tw)+" x "+Ogre::StringConverter::toString(m_th));


       // Max tiles and max polys affect how the tile IDs are caculated.
       // There are 22 bits available for identifying a tile and a polygon.
       int tileBits = rcMin((int)dtIlog2(dtNextPow2(tw*th*EXPECTED_LAYERS_PER_TILE)), 14);
       if (tileBits > 14) tileBits = 14;
       int polyBits = 22 - tileBits;
       m_maxTiles = 1 << tileBits;
       m_maxPolysPerTile = 1 << polyBits;
       Ogre::LogManager::getSingletonPtr()->logMessage("Max Tiles: " + Ogre::StringConverter::toString(m_maxTiles));
       Ogre::LogManager::getSingletonPtr()->logMessage("Max Polys: " + Ogre::StringConverter::toString(m_maxPolysPerTile));
       // End config ////

       buildInitialNavmesh();
       return true;
}
Пример #6
0
//-----------------------------------------------------------------------------
// Purpose: 
//-----------------------------------------------------------------------------
bool CRecastMesh::Build( CMapMesh *pMapMesh )
{
	double fStartTime = Plat_FloatTime();

	Reset(); // Clean any existing data

	BuildContext ctx;

	ctx.enableLog( true );

	dtStatus status;
	
	V_memset(&m_cfg, 0, sizeof(m_cfg));

	// Init cache
	rcCalcBounds( pMapMesh->GetVerts(), pMapMesh->GetNumVerts(), m_cfg.bmin, m_cfg.bmax );
	rcCalcGridSize(m_cfg.bmin, m_cfg.bmax, m_cfg.cs, &m_cfg.width, &m_cfg.height);
	int gw = 0, gh = 0;
	rcCalcGridSize(m_cfg.bmin, m_cfg.bmax, m_cellSize, &gw, &gh);
	const int ts = (int)m_tileSize;
	const int tw = (gw + ts-1) / ts;
	const int th = (gh + ts-1) / ts;

	// Max tiles and max polys affect how the tile IDs are caculated.
	// There are 22 bits available for identifying a tile and a polygon.
	int tileBits = rcMin((int)dtIlog2(dtNextPow2(tw*th*EXPECTED_LAYERS_PER_TILE)), 14);
	if (tileBits > 14) tileBits = 14;
	int polyBits = 22 - tileBits;
	m_maxTiles = 1 << tileBits;
	m_maxPolysPerTile = 1 << polyBits;

	// Generation params.
	m_cfg.cs = m_cellSize;
	m_cfg.ch = m_cellHeight;
	m_cfg.walkableSlopeAngle = m_agentMaxSlope;
	m_cfg.walkableHeight = (int)ceilf(m_agentHeight / m_cfg.ch);
	m_cfg.walkableClimb = (int)floorf(m_agentMaxClimb / m_cfg.ch);
	m_cfg.walkableRadius = (int)ceilf(m_agentRadius / m_cfg.cs);
	m_cfg.maxEdgeLen = (int)(m_edgeMaxLen / m_cellSize);
	m_cfg.maxSimplificationError = m_edgeMaxError;
	m_cfg.minRegionArea = (int)rcSqr(m_regionMinSize);		// Note: area = size*size
	m_cfg.mergeRegionArea = (int)rcSqr(m_regionMergeSize);	// Note: area = size*size
	m_cfg.maxVertsPerPoly = (int)m_vertsPerPoly;
	m_cfg.tileSize = (int)m_tileSize;
	m_cfg.borderSize = m_cfg.walkableRadius + 3; // Reserve enough padding.
	m_cfg.width = m_cfg.tileSize + m_cfg.borderSize*2;
	m_cfg.height = m_cfg.tileSize + m_cfg.borderSize*2;
	m_cfg.detailSampleDist = m_detailSampleDist < 0.9f ? 0 : m_cellSize * m_detailSampleDist;
	m_cfg.detailSampleMaxError = m_cellHeight * m_detailSampleMaxError;
	
	// Tile cache params.
	dtTileCacheParams tcparams;
	memset(&tcparams, 0, sizeof(tcparams));
	rcVcopy(tcparams.orig, m_cfg.bmin);
	tcparams.cs = m_cellSize;
	tcparams.ch = m_cellHeight;
	tcparams.width = (int)m_tileSize;
	tcparams.height = (int)m_tileSize;
	tcparams.walkableHeight = m_agentHeight;
	tcparams.walkableRadius = m_agentRadius;
	tcparams.walkableClimb = m_agentMaxClimb;
	tcparams.maxSimplificationError = m_edgeMaxError;
	tcparams.maxTiles = tw*th*EXPECTED_LAYERS_PER_TILE;
	tcparams.maxObstacles = 2048;

	dtFreeTileCache(m_tileCache);

	m_tileCache = dtAllocTileCache();
	if (!m_tileCache)
	{
		ctx.log(RC_LOG_ERROR, "buildTiledNavigation: Could not allocate tile cache.");
		return false;
	}
	status = m_tileCache->init(&tcparams, m_talloc, m_tcomp, m_tmproc);
	if (dtStatusFailed(status))
	{
		ctx.log(RC_LOG_ERROR, "buildTiledNavigation: Could not init tile cache.");
		return false;
	}
	
	dtFreeNavMesh(m_navMesh);
	
	m_navMesh = dtAllocNavMesh();
	if (!m_navMesh)
	{
		ctx.log(RC_LOG_ERROR, "buildTiledNavigation: Could not allocate navmesh.");
		return false;
	}

	dtNavMeshParams params;
	memset(&params, 0, sizeof(params));
	rcVcopy(params.orig, m_cfg.bmin);
	params.tileWidth = m_tileSize*m_cellSize;
	params.tileHeight = m_tileSize*m_cellSize;
	params.maxTiles = m_maxTiles;
	params.maxPolys = m_maxPolysPerTile;
	
	status = m_navMesh->init(&params);
	if (dtStatusFailed(status))
	{
		ctx.log(RC_LOG_ERROR, "buildTiledNavigation: Could not init navmesh.");
		return false;
	}
	
	status = m_navQuery->init( m_navMesh, RECAST_NAVQUERY_MAXNODES );
	if (dtStatusFailed(status))
	{
		ctx.log(RC_LOG_ERROR, "buildTiledNavigation: Could not init Detour navmesh query");
		return false;
	}
	

	// Preprocess tiles.
	
	ctx.resetTimers();
	
	m_cacheLayerCount = 0;
	m_cacheCompressedSize = 0;
	m_cacheRawSize = 0;
	
	for (int y = 0; y < th; ++y)
	{
		for (int x = 0; x < tw; ++x)
		{
			TileCacheData tiles[MAX_LAYERS];
			memset(tiles, 0, sizeof(tiles));
			int ntiles = rasterizeTileLayers(&ctx, pMapMesh, x, y, m_cfg, tiles, MAX_LAYERS);

			for (int i = 0; i < ntiles; ++i)
			{
				TileCacheData* tile = &tiles[i];
				status = m_tileCache->addTile(tile->data, tile->dataSize, DT_COMPRESSEDTILE_FREE_DATA, 0);
				if (dtStatusFailed(status))
				{
					dtFree(tile->data);
					tile->data = 0;
					continue;
				}
				
				m_cacheLayerCount++;
				m_cacheCompressedSize += tile->dataSize;
				m_cacheRawSize += calcLayerBufferSize(tcparams.width, tcparams.height);
			}
		}
	}

	// Build initial meshes
	ctx.startTimer(RC_TIMER_TOTAL);
	for (int y = 0; y < th; ++y)
		for (int x = 0; x < tw; ++x)
			m_tileCache->buildNavMeshTilesAt(x,y, m_navMesh);
	ctx.stopTimer(RC_TIMER_TOTAL);
	
	m_cacheBuildTimeMs = ctx.getAccumulatedTime(RC_TIMER_TOTAL)/1000.0f;
	m_cacheBuildMemUsage = ((LinearAllocator *)m_talloc)->high;
	

	const dtNavMesh* nav = m_navMesh;
	int navmeshMemUsage = 0;
	for (int i = 0; i < nav->getMaxTiles(); ++i)
	{
		const dtMeshTile* tile = nav->getTile(i);
		if (tile->header)
			navmeshMemUsage += tile->dataSize;
	}

	DevMsg( "CRecastMesh: Generated navigation mesh %s in %f seconds\n", m_Name.Get(), Plat_FloatTime() - fStartTime );

	return true;
}
void Sample_TempObstacles::handleSettings()
{
    Sample::handleCommonSettings();

    if (imguiCheck("Keep Itermediate Results", m_keepInterResults))
        m_keepInterResults = !m_keepInterResults;

    imguiLabel("Tiling");
    imguiSlider("TileSize", &m_tileSize, 16.0f, 128.0f, 8.0f);

    int gridSize = 1;
    if (m_geom)
    {
        const float* bmin = m_geom->getNavMeshBoundsMin();
        const float* bmax = m_geom->getNavMeshBoundsMax();
        char text[64];
        int gw = 0, gh = 0;
        rcCalcGridSize(bmin, bmax, m_cellSize, &gw, &gh);
        const int ts = (int)m_tileSize;
        const int tw = (gw + ts-1) / ts;
        const int th = (gh + ts-1) / ts;
        snprintf(text, 64, "Tiles  %d x %d", tw, th);
        imguiValue(text);

        // Max tiles and max polys affect how the tile IDs are caculated.
        // There are 22 bits available for identifying a tile and a polygon.
        int tileBits = rcMin((int)dtIlog2(dtNextPow2(tw*th*EXPECTED_LAYERS_PER_TILE)), 14);
        if (tileBits > 14) tileBits = 14;
        int polyBits = 22 - tileBits;
        m_maxTiles = 1 << tileBits;
        m_maxPolysPerTile = 1 << polyBits;
        snprintf(text, 64, "Max Tiles  %d", m_maxTiles);
        imguiValue(text);
        snprintf(text, 64, "Max Polys  %d", m_maxPolysPerTile);
        imguiValue(text);
        gridSize = tw*th;
    }
    else
    {
        m_maxTiles = 0;
        m_maxPolysPerTile = 0;
    }

    imguiSeparator();

    imguiLabel("Tile Cache");
    char msg[64];

    const float compressionRatio = (float)m_cacheCompressedSize / (float)(m_cacheRawSize+1);

    snprintf(msg, 64, "Layers  %d", m_cacheLayerCount);
    imguiValue(msg);
    snprintf(msg, 64, "Layers (per tile)  %.1f", (float)m_cacheLayerCount/(float)gridSize);
    imguiValue(msg);

    snprintf(msg, 64, "Memory  %.1f kB / %.1f kB (%.1f%%)", m_cacheCompressedSize/1024.0f, m_cacheRawSize/1024.0f, compressionRatio*100.0f);
    imguiValue(msg);
    snprintf(msg, 64, "Navmesh Build Time  %.1f ms", m_cacheBuildTimeMs);
    imguiValue(msg);
    snprintf(msg, 64, "Build Peak Mem Usage  %.1f kB", m_cacheBuildMemUsage/1024.0f);
    imguiValue(msg);

    imguiSeparator();

    imguiIndent();
    imguiIndent();

    if (imguiButton("Save"))
    {
        saveAll("all_tiles_tilecache.bin");
    }

    if (imguiButton("Load"))
    {
        dtFreeNavMesh(m_navMesh);
        dtFreeTileCache(m_tileCache);
        loadAll("all_tiles_tilecache.bin");
        m_navQuery->init(m_navMesh, 2048);
    }

    imguiUnindent();
    imguiUnindent();

    imguiSeparator();
}