Пример #1
0
void
test_main(void)
{
  struct knuth_lfib_ctx lfib;
  mpz_t p;
  unsigned bits;

  knuth_lfib_init(&lfib, 17);

  mpz_init(p);
  for (bits = 6; bits < 1000; bits = bits + 1 + bits/20)
    {
      if (verbose)
	fprintf(stderr, "bits = %d\n", bits);
      
      nettle_random_prime(p, bits, 0,
			  &lfib, (nettle_random_func *) knuth_lfib_random,
			  NULL, NULL);
      ASSERT (mpz_sizeinbase (p, 2) == bits);
      ASSERT (mpz_probab_prime_p(p, 25));
    }

  mpz_clear(p);
}
int
main(int argc, char **argv)
{
  long bits;
  mpz_t p;
  struct yarrow256_ctx yarrow;

  int verbose = 0;  
  const char *random_file = NULL;

  int c;
  char *arg_end;

  clock_t start;
  clock_t end;
  
  enum { OPT_HELP = 300 };
  static const struct option options[] =
    {
      /* Name, args, flag, val */
      { "help", no_argument, NULL, OPT_HELP },
      { "verbose", no_argument, NULL, 'v' },
      { "random", required_argument, NULL, 'r' },
      { NULL, 0, NULL, 0}
    };

  while ( (c = getopt_long(argc, argv, "vr:", options, NULL)) != -1)
    switch (c)
      {
      case 'v':
	verbose = 1;
	break;
      case 'r':
	random_file = optarg;
	break;
      case OPT_HELP:
	usage();
	return EXIT_SUCCESS;
      case '?':
	return EXIT_FAILURE;
      default:
	abort();
      }

  argc -= optind;
  argv += optind;

  if (argc != 1)
    {
      usage();
      return EXIT_FAILURE;
    }

  bits = strtol(argv[0], &arg_end, 0);
  if (*arg_end || bits < 0)
    {
      fprintf(stderr, "Invalid number.\n");
      return EXIT_FAILURE;
    }

  if (bits < 3)
    {
      fprintf(stderr, "Bitsize must be at least 3.\n");
      return EXIT_FAILURE;
    }

  /* NOTE: No sources */
  yarrow256_init(&yarrow, 0, NULL);

  /* Read some data to seed the generator */
  if (!simple_random(&yarrow, random_file))
    {
      werror("Initialization of randomness generator failed.\n");
      return EXIT_FAILURE;
    }
  
  mpz_init(p);

  start = clock();

  nettle_random_prime(p, bits, 0,
		      &yarrow, (nettle_random_func *) yarrow256_random,
		      NULL, NULL);

  end = clock();

  mpz_out_str(stdout, 10, p);
  printf("\n");

  if (verbose)
    fprintf(stderr, "time: %.3g s\n",
	    (double)(end - start) / CLOCKS_PER_SEC);

  return EXIT_SUCCESS;
}
Пример #3
0
int
rsa_generate_keypair(struct rsa_public_key *pub,
		     struct rsa_private_key *key,
		     void *random_ctx, nettle_random_func *random,
		     void *progress_ctx, nettle_progress_func *progress,
		     unsigned n_size,
		     unsigned e_size)
{
  mpz_t p1;
  mpz_t q1;
  mpz_t phi;
  mpz_t tmp;

  if (e_size)
    {
      /* We should choose e randomly. Is the size reasonable? */
      if ((e_size < 16) || (e_size >= n_size) )
	return 0;
    }
  else
    {
      /* We have a fixed e. Check that it makes sense */

      /* It must be odd */
      if (!mpz_tstbit(pub->e, 0))
	return 0;

      /* And 3 or larger */
      if (mpz_cmp_ui(pub->e, 3) < 0)
	return 0;

      /* And size less than n */
      if (mpz_sizeinbase(pub->e, 2) >= n_size)
	return 0;
    }

  if (n_size < RSA_MINIMUM_N_BITS)
    return 0;
  
  mpz_init(p1); mpz_init(q1); mpz_init(phi); mpz_init(tmp);

  /* Generate primes */
  for (;;)
    {
      /* Generate p, such that gcd(p-1, e) = 1 */
      for (;;)
	{
	  nettle_random_prime(key->p, (n_size+1)/2, 1,
			      random_ctx, random,
			      progress_ctx, progress);

	  mpz_sub_ui(p1, key->p, 1);
      
	  /* If e was given, we must chose p such that p-1 has no factors in
	   * common with e. */
	  if (e_size)
	    break;
	  
	  mpz_gcd(tmp, pub->e, p1);

	  if (mpz_cmp_ui(tmp, 1) == 0)
	    break;
	  else if (progress) progress(progress_ctx, 'c');
	} 

      if (progress)
	progress(progress_ctx, '\n');
      
      /* Generate q, such that gcd(q-1, e) = 1 */
      for (;;)
	{
	  nettle_random_prime(key->q, n_size/2, 1,
			      random_ctx, random,
			      progress_ctx, progress);

	  /* Very unlikely. */
	  if (mpz_cmp (key->q, key->p) == 0)
	    continue;

	  mpz_sub_ui(q1, key->q, 1);
      
	  /* If e was given, we must chose q such that q-1 has no factors in
	   * common with e. */
	  if (e_size)
	    break;
	  
	  mpz_gcd(tmp, pub->e, q1);

	  if (mpz_cmp_ui(tmp, 1) == 0)
	    break;
	  else if (progress) progress(progress_ctx, 'c');
	}

      /* Now we have the primes. Is the product of the right size? */
      mpz_mul(pub->n, key->p, key->q);

      assert (mpz_sizeinbase(pub->n, 2) == n_size);

      if (progress)
	progress(progress_ctx, '\n');

      /* c = q^{-1} (mod p) */
      if (mpz_invert(key->c, key->q, key->p))
	/* This should succeed everytime. But if it doesn't,
	 * we try again. */
	break;
      else if (progress) progress(progress_ctx, '?');
    }

  mpz_mul(phi, p1, q1);
  
  /* If we didn't have a given e, generate one now. */
  if (e_size)
    {
      int retried = 0;
      for (;;)
	{
	  nettle_mpz_random_size(pub->e,
				 random_ctx, random,
				 e_size);
	
	  /* Make sure it's odd and that the most significant bit is
	   * set */
	  mpz_setbit(pub->e, 0);
	  mpz_setbit(pub->e, e_size - 1);

	  /* Needs gmp-3, or inverse might be negative. */
	  if (mpz_invert(key->d, pub->e, phi))
	    break;

	  if (progress) progress(progress_ctx, 'e');
	  retried = 1;
	}
      if (retried && progress)
	progress(progress_ctx, '\n');	
    }
  else
    {
      /* Must always succeed, as we already that e
       * doesn't have any common factor with p-1 or q-1. */
      int res = mpz_invert(key->d, pub->e, phi);
      assert(res);
    }

  /* Done! Almost, we must compute the auxillary private values. */
  /* a = d % (p-1) */
  mpz_fdiv_r(key->a, key->d, p1);

  /* b = d % (q-1) */
  mpz_fdiv_r(key->b, key->d, q1);

  /* c was computed earlier */

  pub->size = key->size = (n_size + 7) / 8;
  assert(pub->size >= RSA_MINIMUM_N_OCTETS);
  
  mpz_clear(p1); mpz_clear(q1); mpz_clear(phi); mpz_clear(tmp);

  return 1;
}
Пример #4
0
/* Valid sizes, according to FIPS 186-3 are (1024, 160), (2048. 224),
   (2048, 256), (3072, 256). Currenty, we use only q_bits of 160 or
   256. */
int
dsa_generate_keypair(struct dsa_public_key *pub,
		     struct dsa_private_key *key,
		     void *random_ctx, nettle_random_func *random,
		     void *progress_ctx, nettle_progress_func *progress,
		     unsigned p_bits, unsigned q_bits)
{
  mpz_t p0, p0q, r;
  unsigned p0_bits;
  unsigned a;

  switch (q_bits)
    {
    case 160:
      if (p_bits < DSA_SHA1_MIN_P_BITS)
	return 0;
      break;
    case 256:
      if (p_bits < DSA_SHA256_MIN_P_BITS)
	return 0;
      break;
    default:
      return 0;
    }

  mpz_init (p0);
  mpz_init (p0q);
  mpz_init (r);

  nettle_random_prime (pub->q, q_bits, 0, random_ctx, random,
		       progress_ctx, progress);

  p0_bits = (p_bits + 3)/2;
  
  nettle_random_prime (p0, p0_bits, 0,
		       random_ctx, random,
		       progress_ctx, progress);

  if (progress)
    progress (progress_ctx, 'q');
  
  /* Generate p = 2 r q p0 + 1, such that 2^{n-1} < p < 2^n.
   *
   * We select r in the range i + 1 < r <= 2i, with i = floor (2^{n-2} / (p0 q). */

  mpz_mul (p0q, p0, pub->q);

  _nettle_generate_pocklington_prime (pub->p, r, p_bits, 0,
				      random_ctx, random,
				      p0, pub->q, p0q);

  if (progress)
    progress (progress_ctx, 'p');

  mpz_mul (r, r, p0);

  for (a = 2; ; a++)
    {
      mpz_set_ui (pub->g, a);
      mpz_powm (pub->g, pub->g, r, pub->p);
      if (mpz_cmp_ui (pub->g, 1) != 0)
	break;
    }

  if (progress)
    progress (progress_ctx, 'g');

  mpz_set(r, pub->q);
  mpz_sub_ui(r, r, 2);
  nettle_mpz_random(key->x, random_ctx, random, r);

  mpz_add_ui(key->x, key->x, 1);

  mpz_powm(pub->y, pub->g, key->x, pub->p);

  if (progress)
    progress (progress_ctx, '\n');
  
  mpz_clear (p0);
  mpz_clear (p0q);
  mpz_clear (r);

  return 1;
}