Пример #1
0
 inline MX densify(const MX& x){ MX ret(x); ret.densify(); return ret;}
Пример #2
0
 static _hoc_setdata() {
 Prop *_prop, *hoc_getdata_range();
 _prop = hoc_getdata_range("nax");
 _p = _prop->param; _ppvar = _prop->dparam;
 ret(1.);
}
Пример #3
0
  address generate_getPsrInfo() {
    // Flags to test CPU type.
    const uint32_t EFL_AC           = 0x40000;
    const uint32_t EFL_ID           = 0x200000;
    // Values for when we don't have a CPUID instruction.
    const int      CPU_FAMILY_SHIFT = 8;
    const uint32_t CPU_FAMILY_386   = (3 << CPU_FAMILY_SHIFT);
    const uint32_t CPU_FAMILY_486   = (4 << CPU_FAMILY_SHIFT);

    Label detect_486, cpu486, detect_586, std_cpuid1, std_cpuid4;
    Label ext_cpuid1, ext_cpuid5, done;

    StubCodeMark mark(this, "VM_Version", "getPsrInfo_stub");
#   define __ _masm->

    address start = __ pc();

    //
    // void getPsrInfo(VM_Version::CpuidInfo* cpuid_info);
    //
    // LP64: rcx and rdx are first and second argument registers on windows

    __ push(rbp);
#ifdef _LP64
    __ mov(rbp, c_rarg0); // cpuid_info address
#else
    __ movptr(rbp, Address(rsp, 8)); // cpuid_info address
#endif
    __ push(rbx);
    __ push(rsi);
    __ pushf();          // preserve rbx, and flags
    __ pop(rax);
    __ push(rax);
    __ mov(rcx, rax);
    //
    // if we are unable to change the AC flag, we have a 386
    //
    __ xorl(rax, EFL_AC);
    __ push(rax);
    __ popf();
    __ pushf();
    __ pop(rax);
    __ cmpptr(rax, rcx);
    __ jccb(Assembler::notEqual, detect_486);

    __ movl(rax, CPU_FAMILY_386);
    __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
    __ jmp(done);

    //
    // If we are unable to change the ID flag, we have a 486 which does
    // not support the "cpuid" instruction.
    //
    __ bind(detect_486);
    __ mov(rax, rcx);
    __ xorl(rax, EFL_ID);
    __ push(rax);
    __ popf();
    __ pushf();
    __ pop(rax);
    __ cmpptr(rcx, rax);
    __ jccb(Assembler::notEqual, detect_586);

    __ bind(cpu486);
    __ movl(rax, CPU_FAMILY_486);
    __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
    __ jmp(done);

    //
    // At this point, we have a chip which supports the "cpuid" instruction
    //
    __ bind(detect_586);
    __ xorl(rax, rax);
    __ cpuid();
    __ orl(rax, rax);
    __ jcc(Assembler::equal, cpu486);   // if cpuid doesn't support an input
                                        // value of at least 1, we give up and
                                        // assume a 486
    __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset())));
    __ movl(Address(rsi, 0), rax);
    __ movl(Address(rsi, 4), rbx);
    __ movl(Address(rsi, 8), rcx);
    __ movl(Address(rsi,12), rdx);

    __ cmpl(rax, 0xa);                  // Is cpuid(0xB) supported?
    __ jccb(Assembler::belowEqual, std_cpuid4);

    //
    // cpuid(0xB) Processor Topology
    //
    __ movl(rax, 0xb);
    __ xorl(rcx, rcx);   // Threads level
    __ cpuid();

    __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB0_offset())));
    __ movl(Address(rsi, 0), rax);
    __ movl(Address(rsi, 4), rbx);
    __ movl(Address(rsi, 8), rcx);
    __ movl(Address(rsi,12), rdx);

    __ movl(rax, 0xb);
    __ movl(rcx, 1);     // Cores level
    __ cpuid();
    __ push(rax);
    __ andl(rax, 0x1f);  // Determine if valid topology level
    __ orl(rax, rbx);    // eax[4:0] | ebx[0:15] == 0 indicates invalid level
    __ andl(rax, 0xffff);
    __ pop(rax);
    __ jccb(Assembler::equal, std_cpuid4);

    __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB1_offset())));
    __ movl(Address(rsi, 0), rax);
    __ movl(Address(rsi, 4), rbx);
    __ movl(Address(rsi, 8), rcx);
    __ movl(Address(rsi,12), rdx);

    __ movl(rax, 0xb);
    __ movl(rcx, 2);     // Packages level
    __ cpuid();
    __ push(rax);
    __ andl(rax, 0x1f);  // Determine if valid topology level
    __ orl(rax, rbx);    // eax[4:0] | ebx[0:15] == 0 indicates invalid level
    __ andl(rax, 0xffff);
    __ pop(rax);
    __ jccb(Assembler::equal, std_cpuid4);

    __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB2_offset())));
    __ movl(Address(rsi, 0), rax);
    __ movl(Address(rsi, 4), rbx);
    __ movl(Address(rsi, 8), rcx);
    __ movl(Address(rsi,12), rdx);

    //
    // cpuid(0x4) Deterministic cache params
    //
    __ bind(std_cpuid4);
    __ movl(rax, 4);
    __ cmpl(rax, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); // Is cpuid(0x4) supported?
    __ jccb(Assembler::greater, std_cpuid1);

    __ xorl(rcx, rcx);   // L1 cache
    __ cpuid();
    __ push(rax);
    __ andl(rax, 0x1f);  // Determine if valid cache parameters used
    __ orl(rax, rax);    // eax[4:0] == 0 indicates invalid cache
    __ pop(rax);
    __ jccb(Assembler::equal, std_cpuid1);

    __ lea(rsi, Address(rbp, in_bytes(VM_Version::dcp_cpuid4_offset())));
    __ movl(Address(rsi, 0), rax);
    __ movl(Address(rsi, 4), rbx);
    __ movl(Address(rsi, 8), rcx);
    __ movl(Address(rsi,12), rdx);

    //
    // Standard cpuid(0x1)
    //
    __ bind(std_cpuid1);
    __ movl(rax, 1);
    __ cpuid();
    __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())));
    __ movl(Address(rsi, 0), rax);
    __ movl(Address(rsi, 4), rbx);
    __ movl(Address(rsi, 8), rcx);
    __ movl(Address(rsi,12), rdx);

    __ movl(rax, 0x80000000);
    __ cpuid();
    __ cmpl(rax, 0x80000000);     // Is cpuid(0x80000001) supported?
    __ jcc(Assembler::belowEqual, done);
    __ cmpl(rax, 0x80000004);     // Is cpuid(0x80000005) supported?
    __ jccb(Assembler::belowEqual, ext_cpuid1);
    __ cmpl(rax, 0x80000007);     // Is cpuid(0x80000008) supported?
    __ jccb(Assembler::belowEqual, ext_cpuid5);
    //
    // Extended cpuid(0x80000008)
    //
    __ movl(rax, 0x80000008);
    __ cpuid();
    __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid8_offset())));
    __ movl(Address(rsi, 0), rax);
    __ movl(Address(rsi, 4), rbx);
    __ movl(Address(rsi, 8), rcx);
    __ movl(Address(rsi,12), rdx);

    //
    // Extended cpuid(0x80000005)
    //
    __ bind(ext_cpuid5);
    __ movl(rax, 0x80000005);
    __ cpuid();
    __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid5_offset())));
    __ movl(Address(rsi, 0), rax);
    __ movl(Address(rsi, 4), rbx);
    __ movl(Address(rsi, 8), rcx);
    __ movl(Address(rsi,12), rdx);

    //
    // Extended cpuid(0x80000001)
    //
    __ bind(ext_cpuid1);
    __ movl(rax, 0x80000001);
    __ cpuid();
    __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid1_offset())));
    __ movl(Address(rsi, 0), rax);
    __ movl(Address(rsi, 4), rbx);
    __ movl(Address(rsi, 8), rcx);
    __ movl(Address(rsi,12), rdx);

    //
    // return
    //
    __ bind(done);
    __ popf();
    __ pop(rsi);
    __ pop(rbx);
    __ pop(rbp);
    __ ret(0);

#   undef __

    return start;
  };
Пример #4
0
	Sequence::const_input_iterator Sequence::const_input_iterator::operator ++(int)
	{
		this_type ret(*this);
		operator ++();
		return ret;
	}
Пример #5
0
std::string Value::getDescription()
{
    std::string ret("\n");
    ret += visit(*this, 0);
    return ret;
}
Пример #6
0
 // Limit the magnitude of the Vec to a maximum value
 Vec2D<Type> limit(double max){
     Vec2D<Type> ret(x,y);
     ret = ret.normalise();
     return ret.multiply(max);
 }
Пример #7
0
Number Node::evaluteNode(List<Data> &var)
{
	Number ret(0,0);
	ret.decimalSystem = -1;
	ret.ifInited = false;
	ret.ifINF = false;

	static int recursiveDepth = 0;
	if (recursiveDepth == 25){
		ret.decimalSystem = -1;
		return ret;
	}
	if (this==nullptr){
		ret.decimalSystem = 0;
		return ret;
	}
	if (this->data.type == Word::cast::number)
		return this->getValue();
	if (this->data.type == Word::cast::variable){

		//TODO: Find by name, not by value!
		List<Data>::Node* mem = var.search(this->data);
		if (mem!=nullptr){
			recursiveDepth++;
			Number ret;
			if (mem->data.tree == nullptr) {
				ret.setValue(0,1);
				ret.decimalSystem = 10;
				ret.ifInited = true;
				ret.ifNumber = true;
			} else
				 ret = mem->data.tree->evaluteNode(var);
			recursiveDepth--;	
			return ret;
		}else{
			Number res(0,1);
			res.decimalSystem = -2;
			return res;
		}
	}
	if (this->data.type == Word::cast::delimiter){

		//Special construction for "="
		bool isAssign = !strncmp(this->data.name,"=",1);
		if (!strncmp(this->data.name,"==",2))
			isAssign = false;
		if (!strncmp(this->data.name,"]=",2))
			isAssign = true;
		if (!strncmp(this->data.name,"=[",2))
			isAssign = true;
		if (isAssign){
			recursiveDepth++;
			Node* ret = assign_(this->left,this->right,var);
			Number result = ret->evaluteNode(var);
			recursiveDepth--;
			return result;
		}
		Number a,b;

		if(this->left!=nullptr){
			recursiveDepth++;
			a = this->left->evaluteNode(var);
			recursiveDepth--;
		}else
			a.decimalSystem=-1;

		if(this->right!=nullptr){
			recursiveDepth++;
			b = this->right->evaluteNode(var);
			recursiveDepth--;
		} else
			b.decimalSystem=-1;
		recursiveDepth++;
		Number ret = this->data.evalute(a,b);
		recursiveDepth--;
		return ret;
	}
	return ret;
}
Пример #8
0
std::auto_ptr<VideoDecoder>
MediaHandlerHaiku::createVideoDecoder(const VideoInfo& info)
{
	std::auto_ptr<VideoDecoder> ret(new VideoDecoderHaiku(info));
	return ret;
}
Пример #9
0
Py::Object
Transformation::numerix_x_y(const Py::Tuple & args) {
  _VERBOSE("Transformation::numerix_x_y");
  args.verify_length(2);


  Py::Object xo = args[0];
  Py::Object yo = args[1];

  PyArrayObject *x = (PyArrayObject *) PyArray_ContiguousFromObject(xo.ptr(), PyArray_DOUBLE, 1, 1); 
  
  if (x==NULL) 
    throw Py::TypeError("Transformation::numerix_x_y expected numerix array");

  
  PyArrayObject *y = (PyArrayObject *) PyArray_ContiguousFromObject(yo.ptr(), PyArray_DOUBLE, 1, 1); 
  
  if (y==NULL) 
    throw Py::TypeError("Transformation::numerix_x_y expected numerix array");

  
  size_t Nx = x->dimensions[0];
  size_t Ny = y->dimensions[0];
  
  if (Nx!=Ny) 
    throw Py::ValueError("x and y must be equal length sequences");

  // evaluate the lazy objects  
  if (!_frozen) eval_scalars();

  int dimensions[1];
  dimensions[0] = Nx;

  
  PyArrayObject *retx = (PyArrayObject *)PyArray_FromDims(1,dimensions,PyArray_DOUBLE);
  if (retx==NULL) {
    Py_XDECREF(x);
    Py_XDECREF(y);
    throw Py::RuntimeError("Could not create return x array");
  }

  PyArrayObject *rety = (PyArrayObject *)PyArray_FromDims(1,dimensions,PyArray_DOUBLE);
  if (rety==NULL) {
    Py_XDECREF(x);
    Py_XDECREF(y);
    throw Py::RuntimeError("Could not create return x array");
  }

  for (size_t i=0; i< Nx; ++i) {

    double thisx = *(double *)(x->data + i*x->strides[0]);
    double thisy = *(double *)(y->data + i*y->strides[0]);
    //std::cout << "calling operator " << thisx << " " << thisy << " " << std::endl;
    this->operator()(thisx, thisy);
    *(double *)(retx->data + i*retx->strides[0]) = xy.first;
    *(double *)(rety->data + i*rety->strides[0]) = xy.second;
  }
  
  Py_XDECREF(x);
  Py_XDECREF(y);

  Py::Tuple ret(2);
  ret[0] = Py::Object((PyObject*)retx);
  ret[1] = Py::Object((PyObject*)rety);
  Py_XDECREF(retx);
  Py_XDECREF(rety);
  return ret;
}
Пример #10
0
//---------------------------------------------------------------------------
tTJSString operator + (const tjs_char *lhs, const tTJSString &rhs)
{
	tTJSString ret(lhs);
	ret += rhs;
	return ret;
}
Пример #11
0
address JNI_FastGetField::generate_fast_get_int_field0(BasicType type) {
  const char *name = NULL;
  switch (type) {
    case T_BOOLEAN: name = "jni_fast_GetBooleanField"; break;
    case T_BYTE:    name = "jni_fast_GetByteField";    break;
    case T_CHAR:    name = "jni_fast_GetCharField";    break;
    case T_SHORT:   name = "jni_fast_GetShortField";   break;
    case T_INT:     name = "jni_fast_GetIntField";     break;
    case T_LONG:    name = "jni_fast_GetLongField";    break;
    default:        ShouldNotReachHere();
  }
  ResourceMark rm;
  BufferBlob* blob = BufferBlob::create(name, BUFFER_SIZE);
  CodeBuffer cbuf(blob);
  MacroAssembler* masm = new MacroAssembler(&cbuf);
  address fast_entry = __ pc();

  Label slow;

  ExternalAddress counter(SafepointSynchronize::safepoint_counter_addr());
  __ mov32 (rcounter, counter);
  __ mov   (robj, c_rarg1);
  __ testb (rcounter, 1);
  __ jcc (Assembler::notZero, slow);
  if (os::is_MP()) {
    __ xorptr(robj, rcounter);
    __ xorptr(robj, rcounter);                   // obj, since
                                                // robj ^ rcounter ^ rcounter == robj
                                                // robj is data dependent on rcounter.
  }

  __ clear_jweak_tag(robj);

  __ movptr(robj, Address(robj, 0));             // *obj
  __ mov   (roffset, c_rarg2);
  __ shrptr(roffset, 2);                         // offset

  assert(count < LIST_CAPACITY, "LIST_CAPACITY too small");
  speculative_load_pclist[count] = __ pc();
  switch (type) {
    case T_BOOLEAN: __ movzbl (rax, Address(robj, roffset, Address::times_1)); break;
    case T_BYTE:    __ movsbl (rax, Address(robj, roffset, Address::times_1)); break;
    case T_CHAR:    __ movzwl (rax, Address(robj, roffset, Address::times_1)); break;
    case T_SHORT:   __ movswl (rax, Address(robj, roffset, Address::times_1)); break;
    case T_INT:     __ movl   (rax, Address(robj, roffset, Address::times_1)); break;
    case T_LONG:    __ movq   (rax, Address(robj, roffset, Address::times_1)); break;
    default:        ShouldNotReachHere();
  }

  if (os::is_MP()) {
    __ lea(rcounter_addr, counter);
    // ca is data dependent on rax.
    __ xorptr(rcounter_addr, rax);
    __ xorptr(rcounter_addr, rax);
    __ cmpl (rcounter, Address(rcounter_addr, 0));
  } else {
    __ cmp32 (rcounter, counter);
  }
  __ jcc (Assembler::notEqual, slow);

  __ ret (0);

  slowcase_entry_pclist[count++] = __ pc();
  __ bind (slow);
  address slow_case_addr = NULL;
  switch (type) {
    case T_BOOLEAN: slow_case_addr = jni_GetBooleanField_addr(); break;
    case T_BYTE:    slow_case_addr = jni_GetByteField_addr();    break;
    case T_CHAR:    slow_case_addr = jni_GetCharField_addr();    break;
    case T_SHORT:   slow_case_addr = jni_GetShortField_addr();   break;
    case T_INT:     slow_case_addr = jni_GetIntField_addr();     break;
    case T_LONG:    slow_case_addr = jni_GetLongField_addr();
  }
  // tail call
  __ jump (ExternalAddress(slow_case_addr));

  __ flush ();

  return fast_entry;
}
Пример #12
0
			const_iterator operator--(int)
			{ const_iterator ret(*this); dec(); return ret; }
Пример #13
0
 //---------------------------------------------------------------------
 PeerSubscribeRequestPtr PeerSubscribeRequest::create()
 {
   PeerSubscribeRequestPtr ret(new PeerSubscribeRequest);
   return ret;
 }
Пример #14
0
std::vector<doc_id> disk_index::docs() const
{
    std::vector<doc_id> ret(impl_->doc_id_mapping_->size());
    std::iota(ret.begin(), ret.end(), 0);
    return ret;
}
EXPORT_C MBBData* TBBTupleMeta::CloneL(const TDesC&) const
{
	bb_auto_ptr<TBBTupleMeta> ret(new (ELeave) TBBTupleMeta());
	*ret=*this;
	return ret.release();
}
Пример #16
0
  void startElement(const XMLCh* const uri, const XMLCh* const localnameXML, const XMLCh* const qname, const Attributes& attrs)
  {
    if (localnameXML[0] == OSM::szNODE[0]) /* node*/      {
      if (localnameXML[1] == OSM::szNODE[1]) /* node */  {
	if (XMLString::equals(localnameXML,OSM::szNODE)) /* node*/  {
	  pCur=&node;
	  node.startNodeElement(uri,localnameXML,qname, attrs);
	}
	else
	  {
	    char * val  = XMLString::transcode(localnameXML);
	    string ret(val); // hack it!
	    XMLString::release(&val);  // dont forget forget to delete !
	    cerr << "ERRO:Unknown name:" << ret << "\n";
	  }
      }// end of no
      else
	if (localnameXML[1] == OSM::szND[1]) // way/nd
	  {
	    way.startND(uri,localnameXML,qname, attrs);
	  }
	else
	  {
	    cerr << "Unknown Node Name:" << localnameXML<< "\n";
	  }	
    }// end of n
    else if (localnameXML[0] == OSM::szWAY[0])   {
      if (XMLString::equals(localnameXML,OSM::szWAY)) /* way*/  {
	pCur=&way;
	way.startWayElement(uri,localnameXML,qname, attrs);
      }
      else {
	cerr << "not way localname" << localnameXML << "\n";
      }    
    }
    else if (localnameXML[0] ==OSM::szTAG[0])   {
      if (XMLString::equals(localnameXML,OSM::szTAG))   {
	if(pCur)
	  {
	    // call a virtual dispatch based on what type of object
	    pCur->ProcessTag(uri,localnameXML,qname, attrs);
	  }
	else
	  {
	    cerr << "Unexpected name\n";
	  }
      }
      else
	{
	  cerr << "ERRO:Unknown name4:\n";
	}	  
    }
    else
      if ( localnameXML[0]== OSM::szRELATION[0])
	{
	  if ( localnameXML[1]== OSM::szRELATION[1])
	    if ( localnameXML[2]== OSM::szRELATION[2])
	      {
		pCur=&rel;
		rel.startRelElement(uri,localnameXML,qname,attrs);
	      }
	    else{
	      cerr << "ERRO:Unknown name1:\n";
	    }
	  else{
	    cerr << "ERRO:Unknown name2:\n";
	  }	  
	} 
      else if ( localnameXML[0]== OSM::szMEMBER[0]) // m
	{
	  if ( localnameXML[1]== OSM::szMEMBER[1]) // e
	    if ( localnameXML[2]== OSM::szMEMBER[2]) // m
	      if ( localnameXML[3]== OSM::szMEMBER[3]) // b
		if ( localnameXML[4]== OSM::szMEMBER[4]) // e
		  if ( localnameXML[5]== OSM::szMEMBER[5]) // r
		    {
		      rel.Member(uri,localnameXML,qname,attrs);
		    }
	}   
      else if ( localnameXML[0]== OSM::szBOUND[0]) // b 
	{
	  if ( localnameXML[1]== OSM::szBOUND[1]) // o 
	    if ( localnameXML[2]== OSM::szBOUND[2]) // u
	      if ( localnameXML[3]== OSM::szBOUND[3]) // n
		if ( localnameXML[4]== OSM::szBOUND[4]) //d
		  {
		    //way.startElement(uri,localnameXML,qname,attrs);
		    world.Bound(uri,localnameXML,qname,attrs);
		  }
	}
      else if ( localnameXML[0]== OSM::szOSM[0]) // o
	{
	  if ( localnameXML[1]== OSM::szOSM[1]) // s
	    if ( localnameXML[2]== OSM::szOSM[2]) // m
	      {		
	      }
	}   
      else
	{
	  char * val  = XMLString::transcode(localnameXML);
	  string ret(val); // hack it!
	  XMLString::release(&val);  // dont forget forget to delete !
	  cerr << "ERRO:Unknown name:" << ret << "\n";  
	}
  }
Пример #17
0
static inline Vec2 v2f(float x, float y)
{
    Vec2 ret(x, y);
    return ret;
}
Пример #18
0
Object f_timezone_open(const String& timezone) {
  c_DateTimeZone *ctz = NEWOBJ(c_DateTimeZone)();
  Object ret(ctz);
  ctz->t___construct(timezone);
  return ret;
}
Пример #19
0
 PlanStageStats* TwoD::getStats() {
     _commonStats.isEOF = isEOF();
     auto_ptr<PlanStageStats> ret(new PlanStageStats(_commonStats, STAGE_GEO_2D));
     ret->specific.reset(new TwoDStats(_specificStats));
     return ret.release();
 }
Пример #20
0
RS_VectorSolutions RS_Line::getRefPoints() {
    RS_VectorSolutions ret(data.startpoint, data.endpoint);
    return ret;
}
Пример #21
0
String String::operator~() const {
  String ret(NEW(StringData)(slice(), CopyString));
  ret->negate();
  return ret;
}
Пример #22
0
vec vec_replace_z(avec a, float b)
{
    vec ret(a);
    ret.z = b;
    return ret;
}
Пример #23
0
vec vec_replace_w(avec a, float b)
{
    vec ret(a);
    ret.w = b;
    return ret;
}
Пример #24
0
vec vec_replace_x(avec a, float b)
{
    vec ret(a);
    ret.x = b;
    return ret;
}
Пример #25
0
vec vec_replace_y(avec a, float b)
{
    vec ret(a);
    ret.y = b;
    return ret;
}
Пример #26
0
RS_VectorSolutions RS_DimAligned::getRefPoints() {
        RS_VectorSolutions ret(edata.extensionPoint1, edata.extensionPoint2,
                                                data.definitionPoint, data.middleOfText);
        return ret;
}
Пример #27
0
arma::vec DIIS::get_w_adiis() const {
  // Number of parameters
  size_t N=PiF.n_elem;

  if(N==1) {
    // Trivial case.
    arma::vec ret(1);
    ret.ones();
    return ret;
  }

  const gsl_multimin_fdfminimizer_type *T;
  gsl_multimin_fdfminimizer *s;

  gsl_vector *x;
  gsl_multimin_function_fdf minfunc;
  minfunc.f = adiis::min_f;
  minfunc.df = adiis::min_df;
  minfunc.fdf = adiis::min_fdf;
  minfunc.n = N;
  minfunc.params = (void *) this;

  T=gsl_multimin_fdfminimizer_vector_bfgs2;
  s=gsl_multimin_fdfminimizer_alloc(T,N);

  // Starting point: equal weights on all matrices
  x=gsl_vector_alloc(N);
  gsl_vector_set_all(x,1.0/N);

  // Initial energy estimate
  // double E_initial=get_E(x);

  // Initialize the optimizer. Use initial step size 0.02, and an
  // orthogonality tolerance of 0.1 in the line searches (recommended
  // by GSL manual for bfgs).
  gsl_multimin_fdfminimizer_set(s, &minfunc, x, 0.02, 0.1);

  size_t iter=0;
  int status;
  do {
    iter++;
    //    printf("iteration %lu\n",iter);
    status = gsl_multimin_fdfminimizer_iterate (s);

    if (status) {
      //      printf("Error %i in minimization\n",status);
      break;
    }

    status = gsl_multimin_test_gradient (s->gradient, 1e-7);

    /*
    if (status == GSL_SUCCESS)
      printf ("Minimum found at:\n");

    printf("%5lu ", iter);
    for(size_t i=0;i<N;i++)
      printf("%.5g ",gsl_vector_get(s->x,i));
    printf("%10.5g\n",s->f);
    */
  }
  while (status == GSL_CONTINUE && iter < 1000);

  // Final estimate
  // double E_final=get_E(s->x);

  // Form minimum
  arma::vec c=adiis::compute_c(s->x);

  gsl_multimin_fdfminimizer_free (s);
  gsl_vector_free (x);

  //  printf("Minimized estimate of %lu matrices by %e from %e to %e in %lu iterations.\n",D.size(),E_final-E_initial,E_initial,E_final,iter);

  return c;
}
Пример #28
0
 PlanStageStats* TextStage::getStats() {
     _commonStats.isEOF = isEOF();
     auto_ptr<PlanStageStats> ret(new PlanStageStats(_commonStats, STAGE_TEXT));
     ret->specific.reset(new TextStats(_specificStats));
     return ret.release();
 }
Пример #29
0
/*! hybrid-36 decoder: converts string s to integer result

      width: must be 4 (e.g. for residue sequence numbers)
                  or 5 (e.g. for atom serial numbers)

      s: string to be converted
         does not have to be null-terminated

      s_size: size of s
              must be equal to width, or an error message is
              returned otherwise

      result: integer holding the conversion result

      return value: pointer to error message, if any,
                    or 0 on success

    Example usage (from C++):
      int result;
      const char* errmsg = hy36decode(width, "A1T5", 4, &result);
      if (errmsg) throw std::runtime_error(errmsg);
 */
const char*
hy36decode(unsigned width, const char* s, unsigned s_size, int* result)
{
  static const std::vector<int> digits_values_upper_vector([]() {
    std::vector<int> ret(128U,-1);
    for(unsigned i=0; i<36U; i++) {
      int di = digits_upper()[i];
      if (di < 0 || di > 127) {
        plumed_error()<<"internal error hy36decode: integer value out of range";
      }
      ret[di] = i;
    }
    return ret;
  }());
  static const int* digits_values_upper=digits_values_upper_vector.data();
  static const std::vector<int> digits_values_lower_vector([]() {
    std::vector<int> ret(128U,-1);
    for(unsigned i=0; i<36U; i++) {
      int di = digits_lower()[i];
      if (di < 0 || di > 127) {
        plumed_error()<<"internal error hy36decode: integer value out of range";
      }
      ret[di] = i;
    }
    return ret;
  }());
  static const int* digits_values_lower=digits_values_lower_vector.data();
  int di;
  const char* errmsg;
  if (s_size == width) {
    di = s[0];
    if (di >= 0 && di <= 127) {
      if (digits_values_upper[di] >= 10) {
        errmsg = decode_pure(digits_values_upper, 36U, s, s_size, result);
        if (errmsg == 0) {
          /* result - 10*36**(width-1) + 10**width */
          if      (width == 4U) (*result) -= 456560;
          else if (width == 5U) (*result) -= 16696160;
          else {
            *result = 0;
            return unsupported_width();
          }
          return 0;
        }
      }
      else if (digits_values_lower[di] >= 10) {
        errmsg = decode_pure(digits_values_lower, 36U, s, s_size, result);
        if (errmsg == 0) {
          /* result + 16*36**(width-1) + 10**width */
          if      (width == 4U) (*result) += 756496;
          else if (width == 5U) (*result) += 26973856;
          else {
            *result = 0;
            return unsupported_width();
          }
          return 0;
        }
      }
      else {
        errmsg = decode_pure(digits_values_upper, 10U, s, s_size, result);
        if (errmsg) return errmsg;
        if (!(width == 4U || width == 5U)) {
          *result = 0;
          return unsupported_width();
        }
        return 0;
      }
    }
  }
  *result = 0;
  return invalid_number_literal();
}
Пример #30
-1
Py::Object
Transformation::nonlinear_only_numerix(const Py::Tuple & args, const Py::Dict &kwargs) {
  _VERBOSE("Transformation::nonlinear_only_numerix");
  args.verify_length(2);

  int returnMask = false;
  if (kwargs.hasKey("returnMask")) {
    returnMask = Py::Int(kwargs["returnMask"]);
  }

  Py::Object xo = args[0];
  Py::Object yo = args[1];

  PyArrayObject *x = (PyArrayObject *) PyArray_ContiguousFromObject(xo.ptr(), PyArray_DOUBLE, 1, 1);

  if (x==NULL)
    throw Py::TypeError("Transformation::nonlinear_only_numerix expected numerix array");


  PyArrayObject *y = (PyArrayObject *) PyArray_ContiguousFromObject(yo.ptr(), PyArray_DOUBLE, 1, 1);

  if (y==NULL)
    throw Py::TypeError("Transformation::nonlinear_only_numerix expected numerix array");


  size_t Nx = x->dimensions[0];
  size_t Ny = y->dimensions[0];

  if (Nx!=Ny)
    throw Py::ValueError("x and y must be equal length sequences");

  int dimensions[1];
  dimensions[0] = Nx;


  PyArrayObject *retx = (PyArrayObject *)PyArray_FromDims(1,dimensions,PyArray_DOUBLE);
  if (retx==NULL) {
    Py_XDECREF(x);
    Py_XDECREF(y);
    throw Py::RuntimeError("Could not create return x array");
  }

  PyArrayObject *rety = (PyArrayObject *)PyArray_FromDims(1,dimensions,PyArray_DOUBLE);
  if (rety==NULL) {
    Py_XDECREF(x);
    Py_XDECREF(y);
    Py_XDECREF(retx);
    throw Py::RuntimeError("Could not create return x array");
  }

  PyArrayObject *retmask = NULL;

  if (returnMask) {
    retmask = (PyArrayObject *)PyArray_FromDims(1,dimensions,PyArray_UBYTE);
    if (retmask==NULL) {
      Py_XDECREF(x);
      Py_XDECREF(y);
      Py_XDECREF(retx);
      Py_XDECREF(rety);
      throw Py::RuntimeError("Could not create return mask array");
    }

  }


  for (size_t i=0; i< Nx; ++i) {

    double thisx = *(double *)(x->data + i*x->strides[0]);
    double thisy = *(double *)(y->data + i*y->strides[0]);
    try {
      this->nonlinear_only_api(&thisx, &thisy);
    }
    catch(...) {

      if (returnMask) {
	*(unsigned char *)(retmask->data + i*retmask->strides[0]) = 0;
	*(double *)(retx->data + i*retx->strides[0]) = 0.0;
	*(double *)(rety->data + i*rety->strides[0]) = 0.0;
	continue;
      }
      else {
	throw Py::ValueError("Domain error on this->nonlinear_only_api(&thisx, &thisy) in Transformation::nonlinear_only_numerix");
      }
    }

    *(double *)(retx->data + i*retx->strides[0]) = thisx;
    *(double *)(rety->data + i*rety->strides[0]) = thisy;
    if (returnMask) {
      *(unsigned char *)(retmask->data + i*retmask->strides[0]) = 1;
    }

  }

  Py_XDECREF(x);
  Py_XDECREF(y);

  if (returnMask) {
    Py::Tuple ret(3);
    ret[0] = Py::Object((PyObject*)retx);
    ret[1] = Py::Object((PyObject*)rety);
    ret[2] = Py::Object((PyObject*)retmask);
    Py_XDECREF(retx);
    Py_XDECREF(rety);
    Py_XDECREF(retmask);
    return ret;
  }
  else {
    Py::Tuple ret(2);
    ret[0] = Py::Object((PyObject*)retx);
    ret[1] = Py::Object((PyObject*)rety);
    Py_XDECREF(retx);
    Py_XDECREF(rety);
    return ret;

  }


}