bool ChompPlanner::solve(const planning_scene::PlanningSceneConstPtr& planning_scene,
                         const moveit_msgs::GetMotionPlan::Request &req, 
                         const chomp::ChompParameters& params,
                         moveit_msgs::GetMotionPlan::Response &res) const
{
  ros::WallTime start_time = ros::WallTime::now();
  ChompTrajectory trajectory(planning_scene->getRobotModel(),
                             3.0,
                             .03,
                             req.motion_plan_request.group_name);
  jointStateToArray(planning_scene->getRobotModel(),
                    req.motion_plan_request.start_state.joint_state, 
                    req.motion_plan_request.group_name,
                    trajectory.getTrajectoryPoint(0));

  int goal_index = trajectory.getNumPoints()- 1;
  trajectory.getTrajectoryPoint(goal_index) = trajectory.getTrajectoryPoint(0);
  sensor_msgs::JointState js;
  for(unsigned int i = 0; i < req.motion_plan_request.goal_constraints[0].joint_constraints.size(); i++) {
    js.name.push_back(req.motion_plan_request.goal_constraints[0].joint_constraints[i].joint_name);
    js.position.push_back(req.motion_plan_request.goal_constraints[0].joint_constraints[i].position);
    ROS_INFO_STREAM("Setting joint " << req.motion_plan_request.goal_constraints[0].joint_constraints[i].joint_name
                    << " to position " << req.motion_plan_request.goal_constraints[0].joint_constraints[i].position);
  }
  jointStateToArray(planning_scene->getRobotModel(),
                    js, 
                    req.motion_plan_request.group_name, 
                    trajectory.getTrajectoryPoint(goal_index));
  const planning_models::RobotModel::JointModelGroup* model_group = 
    planning_scene->getRobotModel()->getJointModelGroup(req.motion_plan_request.group_name);
  // fix the goal to move the shortest angular distance for wrap-around joints:
  for (size_t i = 0; i < model_group->getJointModels().size(); i++)
  {
    const planning_models::RobotModel::JointModel* model = model_group->getJointModels()[i];
    const planning_models::RobotModel::RevoluteJointModel* revolute_joint = dynamic_cast<const planning_models::RobotModel::RevoluteJointModel*>(model);

    if (revolute_joint != NULL)
    {
      if(revolute_joint->isContinuous())
      {
        double start = (trajectory)(0, i);
        double end = (trajectory)(goal_index, i);
        ROS_INFO_STREAM("Start is " << start << " end " << end << " short " << shortestAngularDistance(start, end));
        (trajectory)(goal_index, i) = start + shortestAngularDistance(start, end);
      }
    }
  }
  
  // fill in an initial quintic spline trajectory
  trajectory.fillInMinJerk();

  // optimize!
  planning_models::RobotState *start_state(planning_scene->getCurrentState());
  planning_models::robotStateMsgToRobotState(*planning_scene->getTransforms(), req.motion_plan_request.start_state, start_state);
    
  ros::WallTime create_time = ros::WallTime::now();
  ChompOptimizer optimizer(&trajectory, 
                           planning_scene, 
                           req.motion_plan_request.group_name,
                           &params,
                           start_state);
  if(!optimizer.isInitialized()) {
    ROS_WARN_STREAM("Could not initialize optimizer");
    res.error_code.val = moveit_msgs::MoveItErrorCodes::PLANNING_FAILED;
    return false;
  }
  ROS_INFO("Optimization took %f sec to create", (ros::WallTime::now() - create_time).toSec());
  ROS_INFO("Optimization took %f sec to create", (ros::WallTime::now() - create_time).toSec());
  optimizer.optimize();
  ROS_INFO("Optimization actually took %f sec to run", (ros::WallTime::now() - create_time).toSec());
  create_time = ros::WallTime::now();
  // assume that the trajectory is now optimized, fill in the output structure:

  ROS_INFO("Output trajectory has %d joints", trajectory.getNumJoints());

  // fill in joint names:
  res.trajectory.joint_trajectory.joint_names.resize(trajectory.getNumJoints());
  for (size_t i = 0; i < model_group->getJointModels().size(); i++)
  {
    res.trajectory.joint_trajectory.joint_names[i] = model_group->getJointModels()[i]->getName();
  }

  res.trajectory.joint_trajectory.header = req.motion_plan_request.start_state.joint_state.header; // @TODO this is probably a hack

  // fill in the entire trajectory
  res.trajectory.joint_trajectory.points.resize(trajectory.getNumPoints());
  for (int i=0; i < trajectory.getNumPoints(); i++)
  {
    res.trajectory.joint_trajectory.points[i].positions.resize(trajectory.getNumJoints());
    for (size_t j=0; j < res.trajectory.joint_trajectory.points[i].positions.size(); j++)
    {
      res.trajectory.joint_trajectory.points[i].positions[j] = trajectory.getTrajectoryPoint(i)(j);
      if(i == trajectory.getNumPoints()-1) {
        ROS_INFO_STREAM("Joint " << j << " " << res.trajectory.joint_trajectory.points[i].positions[j]);
      }
    }
    // Setting invalid timestamps.
    // Further filtering is required to set valid timestamps accounting for velocity and acceleration constraints.
    res.trajectory.joint_trajectory.points[i].time_from_start = ros::Duration(0.0);
  }
  
  ROS_INFO("Bottom took %f sec to create", (ros::WallTime::now() - create_time).toSec());
  ROS_INFO("Serviced planning request in %f wall-seconds, trajectory duration is %f", (ros::WallTime::now() - start_time).toSec(), res.trajectory.joint_trajectory.points[goal_index].time_from_start.toSec());
  res.error_code.val = moveit_msgs::MoveItErrorCodes::SUCCESS;
  res.planning_time = ros::Duration((ros::WallTime::now() - start_time).toSec());
  return true;
}
Пример #2
0
bool ChompPlanner::solve(const planning_scene::PlanningSceneConstPtr& planning_scene,
                         const moveit_msgs::MotionPlanRequest& req, const chomp::ChompParameters& params,
                         moveit_msgs::MotionPlanDetailedResponse& res) const
{
  if (!planning_scene)
  {
    ROS_ERROR_STREAM_NAMED("chomp_planner", "No planning scene initialized.");
    res.error_code.val = moveit_msgs::MoveItErrorCodes::FAILURE;
    return false;
  }

  if (req.start_state.joint_state.position.empty())
  {
    ROS_ERROR_STREAM_NAMED("chomp_planner", "Start state is empty");
    res.error_code.val = moveit_msgs::MoveItErrorCodes::INVALID_ROBOT_STATE;
    return false;
  }

  if (not planning_scene->getRobotModel()->satisfiesPositionBounds(req.start_state.joint_state.position.data()))
  {
    ROS_ERROR_STREAM_NAMED("chomp_planner", "Start state violates joint limits");
    res.error_code.val = moveit_msgs::MoveItErrorCodes::INVALID_ROBOT_STATE;
    return false;
  }

  ros::WallTime start_time = ros::WallTime::now();
  ChompTrajectory trajectory(planning_scene->getRobotModel(), 3.0, .03, req.group_name);

  jointStateToArray(planning_scene->getRobotModel(), req.start_state.joint_state, req.group_name,
                    trajectory.getTrajectoryPoint(0));

  if (req.goal_constraints.empty())
  {
    ROS_ERROR_STREAM_NAMED("chomp_planner", "No goal constraints specified!");
    res.error_code.val = moveit_msgs::MoveItErrorCodes::INVALID_GOAL_CONSTRAINTS;
    return false;
  }

  if (req.goal_constraints[0].joint_constraints.empty())
  {
    ROS_ERROR_STREAM("Only joint-space goals are supported");
    res.error_code.val = moveit_msgs::MoveItErrorCodes::INVALID_GOAL_CONSTRAINTS;
    return false;
  }

  int goal_index = trajectory.getNumPoints() - 1;
  trajectory.getTrajectoryPoint(goal_index) = trajectory.getTrajectoryPoint(0);
  sensor_msgs::JointState js;
  for (const moveit_msgs::JointConstraint& joint_constraint : req.goal_constraints[0].joint_constraints)
  {
    js.name.push_back(joint_constraint.joint_name);
    js.position.push_back(joint_constraint.position);
    ROS_INFO_STREAM_NAMED("chomp_planner", "Setting joint " << joint_constraint.joint_name << " to position "
                                                            << joint_constraint.position);
  }
  jointStateToArray(planning_scene->getRobotModel(), js, req.group_name, trajectory.getTrajectoryPoint(goal_index));

  const moveit::core::JointModelGroup* model_group =
      planning_scene->getRobotModel()->getJointModelGroup(req.group_name);
  // fix the goal to move the shortest angular distance for wrap-around joints:
  for (size_t i = 0; i < model_group->getActiveJointModels().size(); i++)
  {
    const moveit::core::JointModel* model = model_group->getActiveJointModels()[i];
    const moveit::core::RevoluteJointModel* revolute_joint =
        dynamic_cast<const moveit::core::RevoluteJointModel*>(model);

    if (revolute_joint != nullptr)
    {
      if (revolute_joint->isContinuous())
      {
        double start = (trajectory)(0, i);
        double end = (trajectory)(goal_index, i);
        ROS_INFO_STREAM("Start is " << start << " end " << end << " short " << shortestAngularDistance(start, end));
        (trajectory)(goal_index, i) = start + shortestAngularDistance(start, end);
      }
    }
  }

  const std::vector<std::string>& active_joint_names = model_group->getActiveJointModelNames();
  const Eigen::MatrixXd goal_state = trajectory.getTrajectoryPoint(goal_index);
  moveit::core::RobotState goal_robot_state = planning_scene->getCurrentState();
  goal_robot_state.setVariablePositions(
      active_joint_names, std::vector<double>(goal_state.data(), goal_state.data() + active_joint_names.size()));

  if (not goal_robot_state.satisfiesBounds())
  {
    ROS_ERROR_STREAM_NAMED("chomp_planner", "Goal state violates joint limits");
    res.error_code.val = moveit_msgs::MoveItErrorCodes::INVALID_ROBOT_STATE;
    return false;
  }

  // fill in an initial trajectory based on user choice from the chomp_config.yaml file
  if (params.trajectory_initialization_method_.compare("quintic-spline") == 0)
    trajectory.fillInMinJerk();
  else if (params.trajectory_initialization_method_.compare("linear") == 0)
    trajectory.fillInLinearInterpolation();
  else if (params.trajectory_initialization_method_.compare("cubic") == 0)
    trajectory.fillInCubicInterpolation();
  else if (params.trajectory_initialization_method_.compare("fillTrajectory") == 0)
  {
    if (!(trajectory.fillInFromTrajectory(res)))
    {
      ROS_ERROR_STREAM_NAMED("chomp_planner", "Input trajectory has less than 2 points, "
                                              "trajectory must contain at least start and goal state");
      return false;
    }
  }
  else
    ROS_ERROR_STREAM_NAMED("chomp_planner", "invalid interpolation method specified in the chomp_planner file");

  ROS_INFO_NAMED("chomp_planner", "CHOMP trajectory initialized using method: %s ",
                 (params.trajectory_initialization_method_).c_str());

  // optimize!
  moveit::core::RobotState start_state(planning_scene->getCurrentState());
  moveit::core::robotStateMsgToRobotState(req.start_state, start_state);
  start_state.update();

  ros::WallTime create_time = ros::WallTime::now();

  int replan_count = 0;
  bool replan_flag = false;
  double org_learning_rate = 0.04, org_ridge_factor = 0.0, org_planning_time_limit = 10;
  int org_max_iterations = 200;

  // storing the initial chomp parameters values
  org_learning_rate = params.learning_rate_;
  org_ridge_factor = params.ridge_factor_;
  org_planning_time_limit = params.planning_time_limit_;
  org_max_iterations = params.max_iterations_;

  std::unique_ptr<ChompOptimizer> optimizer;

  // create a non_const_params variable which stores the non constant version of the const params variable
  ChompParameters params_nonconst = params;

  // while loop for replanning (recovery behaviour) if collision free optimized solution not found
  while (true)
  {
    if (replan_flag)
    {
      // increase learning rate in hope to find a successful path; increase ridge factor to avoid obstacles; add 5
      // additional secs in hope to find a solution; increase maximum iterations
      params_nonconst.setRecoveryParams(params_nonconst.learning_rate_ + 0.02, params_nonconst.ridge_factor_ + 0.002,
                                        params_nonconst.planning_time_limit_ + 5, params_nonconst.max_iterations_ + 50);
    }

    // initialize a ChompOptimizer object to load up the optimizer with default parameters or with updated parameters in
    // case of a recovery behaviour
    optimizer.reset(new ChompOptimizer(&trajectory, planning_scene, req.group_name, &params_nonconst, start_state));
    if (!optimizer->isInitialized())
    {
      ROS_ERROR_STREAM_NAMED("chomp_planner", "Could not initialize optimizer");
      res.error_code.val = moveit_msgs::MoveItErrorCodes::PLANNING_FAILED;
      return false;
    }

    ROS_DEBUG_NAMED("chomp_planner", "Optimization took %f sec to create",
                    (ros::WallTime::now() - create_time).toSec());

    bool optimization_result = optimizer->optimize();

    // replan with updated parameters if no solution is found
    if (params_nonconst.enable_failure_recovery_)
    {
      ROS_INFO_NAMED("chomp_planner", "Planned with Chomp Parameters (learning_rate, ridge_factor, "
                                      "planning_time_limit, max_iterations), attempt: # %d ",
                     (replan_count + 1));
      ROS_INFO_NAMED("chomp_planner", "Learning rate: %f ridge factor: %f planning time limit: %f max_iterations %d ",
                     params_nonconst.learning_rate_, params_nonconst.ridge_factor_,
                     params_nonconst.planning_time_limit_, params_nonconst.max_iterations_);

      if (!optimization_result && replan_count < params_nonconst.max_recovery_attempts_)
      {
        replan_count++;
        replan_flag = true;
      }
      else
      {
        break;
      }
    }
    else
      break;
  }  // end of while loop

  // resetting the CHOMP Parameters to the original values after a successful plan
  params_nonconst.setRecoveryParams(org_learning_rate, org_ridge_factor, org_planning_time_limit, org_max_iterations);

  ROS_DEBUG_NAMED("chomp_planner", "Optimization actually took %f sec to run",
                  (ros::WallTime::now() - create_time).toSec());
  create_time = ros::WallTime::now();
  // assume that the trajectory is now optimized, fill in the output structure:

  ROS_DEBUG_NAMED("chomp_planner", "Output trajectory has %d joints", trajectory.getNumJoints());

  res.trajectory.resize(1);

  res.trajectory[0].joint_trajectory.joint_names = active_joint_names;

  res.trajectory[0].joint_trajectory.header = req.start_state.joint_state.header;  // @TODO this is probably a hack

  // fill in the entire trajectory
  res.trajectory[0].joint_trajectory.points.resize(trajectory.getNumPoints());
  for (int i = 0; i < trajectory.getNumPoints(); i++)
  {
    res.trajectory[0].joint_trajectory.points[i].positions.resize(trajectory.getNumJoints());
    for (size_t j = 0; j < res.trajectory[0].joint_trajectory.points[i].positions.size(); j++)
    {
      res.trajectory[0].joint_trajectory.points[i].positions[j] = trajectory.getTrajectoryPoint(i)(j);
    }
    // Setting invalid timestamps.
    // Further filtering is required to set valid timestamps accounting for velocity and acceleration constraints.
    res.trajectory[0].joint_trajectory.points[i].time_from_start = ros::Duration(0.0);
  }

  ROS_DEBUG_NAMED("chomp_planner", "Bottom took %f sec to create", (ros::WallTime::now() - create_time).toSec());
  ROS_DEBUG_NAMED("chomp_planner", "Serviced planning request in %f wall-seconds, trajectory duration is %f",
                  (ros::WallTime::now() - start_time).toSec(),
                  res.trajectory[0].joint_trajectory.points[goal_index].time_from_start.toSec());
  res.error_code.val = moveit_msgs::MoveItErrorCodes::SUCCESS;
  res.processing_time.push_back((ros::WallTime::now() - start_time).toSec());

  // report planning failure if path has collisions
  if (not optimizer->isCollisionFree())
  {
    ROS_ERROR_STREAM_NAMED("chomp_planner", "Motion plan is invalid.");
    res.error_code.val = moveit_msgs::MoveItErrorCodes::INVALID_MOTION_PLAN;
    return false;
  }

  // check that final state is within goal tolerances
  kinematic_constraints::JointConstraint jc(planning_scene->getRobotModel());
  robot_state::RobotState last_state(start_state);
  last_state.setVariablePositions(res.trajectory[0].joint_trajectory.joint_names,
                                  res.trajectory[0].joint_trajectory.points.back().positions);

  bool constraints_are_ok = true;
  for (const moveit_msgs::JointConstraint& constraint : req.goal_constraints[0].joint_constraints)
  {
    constraints_are_ok = constraints_are_ok and jc.configure(constraint);
    constraints_are_ok = constraints_are_ok and jc.decide(last_state).satisfied;
    if (not constraints_are_ok)
    {
      ROS_ERROR_STREAM_NAMED("chomp_planner", "Goal constraints are violated: " << constraint.joint_name);
      res.error_code.val = moveit_msgs::MoveItErrorCodes::GOAL_CONSTRAINTS_VIOLATED;
      return false;
    }
  }

  return true;
}