Пример #1
0
Matrix BaseController::pseudoInverse(const Matrix M)
{
   Matrix result;
   //int rows = this->rows();
   //int cols = this->columns();
   // calculate SVD decomposition
   Matrix U,V;
   DiagonalMatrix D;
   NEWMAT::SVD(M,D,U,V, true, true);
   Matrix Dinv = D.i();
   result = V * Dinv * U.t();
   return result;
}
Пример #2
0
void getGeneralizedInverse(Matrix& G, Matrix& Gi) {
#ifdef DEBUG
  cout << "\n\ngetGeneralizedInverse - Singular Value\n";
#endif  

  // Singular value decomposition method
  
  // do SVD
  Matrix U, V;
  DiagonalMatrix D;
  SVD(G,D,U,V);            // X = U * D * V.t()
  
#ifdef DEBUG
  cout << "D:\n";
  cout << setw(9) << setprecision(6) << (D);
  cout << "\n\n";
#endif
  
  DiagonalMatrix Di;
  Di << D.i();
  
#ifdef DEBUG
  cout << "Di:\n";
  cout << setw(9) << setprecision(6) << (Di);
  cout << "\n\n";
#endif
  

  int i=Di.Nrows();
  for (; i>=1; i--) {
    if (Di(i) > 1000.0) {
      Di(i) = 0.0;
    }
  }
  
#ifdef DEBUG
  cout << "Di with biggies zeroed out:\n";
  cout << setw(9) << setprecision(6) << (Di);
  cout << "\n\n";
#endif
  
  //Matrix Gi;
  Gi << (U * (Di * V.t()));
  
  return;
}
Пример #3
0
void test5(Real* y, Real* x1, Real* x2, int nobs, int npred)
{
   cout << "\n\nTest 5 - singular value\n";

   // Singular value decomposition method
 
   // load data - 1s into col 1 of matrix
   int npred1 = npred+1;
   Matrix X(nobs,npred1); ColumnVector Y(nobs);
   X.Column(1) = 1.0;  X.Column(2) << x1;  X.Column(3) << x2;  Y << y;

   // do SVD
   Matrix U, V; DiagonalMatrix D;
   SVD(X,D,U,V);                              // X = U * D * V.t()
   ColumnVector Fitted = U.t() * Y;
   ColumnVector A = V * ( D.i() * Fitted );
   Fitted = U * Fitted;
   ColumnVector Residual = Y - Fitted;
   Real ResVar = Residual.SumSquare() / (nobs-npred1);

   // get variances of estimates
   D << V * (D * D).i() * V.t();

   // Get diagonals of Hat matrix
   DiagonalMatrix Hat;  Hat << U * U.t();

   // print out answers
   cout << "\nEstimates and their standard errors\n\n";
   ColumnVector SE(npred1);
   for (int i=1; i<=npred1; i++) SE(i) = sqrt(D(i)*ResVar);
   cout << setw(11) << setprecision(5) << (A | SE) << endl;
   cout << "\nObservations, fitted value, residual value, hat value\n";
   cout << setw(9) << setprecision(3) << 
      (X.Columns(2,3) | Y | Fitted | Residual | Hat.AsColumn());
   cout << "\n\n";
}
Пример #4
0
/*
 * Fits a weighted cubic regression on predictor(s)
 *
 * @param contrast - want to predict this value per snp
 * @param strength - covariate of choice
 * @param weights - weight of data points for this genotype
 * @param Predictor - output, prediction function coefficients
 * @param Predicted - output, predicted contrast per snp
 */
void
FitWeightedCubic(const std::vector<double> &contrast,
                 const std::vector<double> &strength,
                 const std::vector<double> &weights,
                 std::vector<double> &Predictor,
                 std::vector<double> &Predicted) {

  	// Singular value decomposition method
	unsigned int i;
	unsigned int nobs;
	unsigned int npred;
	npred = 3+1;
	nobs= contrast.size();

	// convert double into doubles to match newmat
  vector<Real> tmp_vec(nobs);
  Real* tmp_ptr = &tmp_vec[0];
	vector<Real> obs_vec(nobs);
	Real *obs_ptr = &obs_vec[0];
	vector<Real> weight_vec(nobs);

  Matrix covarMat(nobs,npred);
	ColumnVector observedVec(nobs);

	// fill in the data
	// modified by weights
	for (i=0; i<nobs; i++)
		weight_vec[i] = sqrt(weights[i]);

  	// load data - 1s into col 1 of matrix
	for (i=0; i<nobs; i++)
		tmp_vec[i] = weight_vec[i];
  	covarMat.Column(1) << tmp_ptr;
	for (i=0; i<nobs; i++)
		tmp_vec[i] *= strength[i];
  	covarMat.Column(2) << tmp_ptr;
	for (i=0; i<nobs; i++)
		tmp_vec[i] *= strength[i];
  	covarMat.Column(3) << tmp_ptr;
	for (i=0; i<nobs; i++)
		tmp_vec[i] *= strength[i];
  	covarMat.Column(4) << tmp_ptr;

  	for (i=0; i<nobs; i++)
		obs_vec[i] = contrast[i]*weight_vec[i];
  	observedVec << obs_ptr;

  	// do SVD
  	Matrix U, V;
  	DiagonalMatrix D;
    ColumnVector Fitted(nobs);
    ColumnVector A(npred);

  	SVD(covarMat,D,U,V);

  	Fitted = U.t() * observedVec;
  	A = V * ( D.i() * Fitted );

	// this predicts "0" for low weights
	// because of weighted regression
  	Fitted = U * Fitted;

	// this is the predictor
	Predictor.resize(npred);
	for (i=0; i<npred; i++)
		Predictor[i] = A.element(i);


  // export data back to doubles
	// and therefore this predicts "0" for low-weighted points
	// which is >not< the desired outcome!!!!
	// instead we need to predict all points at once
	// >unweighted< as output
	vector<double> Goofy;
	Predicted.resize(nobs);
  	for (i = 0; i < nobs; ++i) {
      Goofy.resize(npred);
      Goofy[0] = 1;
      Goofy[1] = strength[i];
      Goofy[2] = strength[i]*Goofy[1];
      Goofy[3] = strength[i]*Goofy[2];
      Predicted[i] = vprod(Goofy,Predictor);
  	}
}
Пример #5
0
void trymat8()
{
//   cout << "\nEighth test of Matrix package\n";
   Tracer et("Eighth test of Matrix package");
   Tracer::PrintTrace();

   int i;


   DiagonalMatrix D(6);
   for (i=1;i<=6;i++)  D(i,i)=i*i+i-10;
   DiagonalMatrix D2=D;
   Matrix MD=D;

   DiagonalMatrix D1(6); for (i=1;i<=6;i++) D1(i,i)=-100+i*i*i;
   Matrix MD1=D1;
   Print(Matrix(D*D1-MD*MD1));
   Print(Matrix((-D)*D1+MD*MD1));
   Print(Matrix(D*(-D1)+MD*MD1));
   DiagonalMatrix DX=D;
   {
      Tracer et1("Stage 1");
      DX=(DX+D1)*DX; Print(Matrix(DX-(MD+MD1)*MD));
      DX=D;
      DX=-DX*DX+(DX-(-D1))*((-D1)+DX);
      // Matrix MX = Matrix(MD1);
      // MD1=DX+(MX.t())*(MX.t()); Print(MD1);
      MD1=DX+(Matrix(MD1).t())*(Matrix(MD1).t()); Print(MD1);
      DX=D; DX=DX; DX=D2-DX; Print(DiagonalMatrix(DX));
      DX=D;
   }
   {
      Tracer et1("Stage 2");
      D.Release(2);
      D1=D; D2=D;
      Print(DiagonalMatrix(D1-DX));
      Print(DiagonalMatrix(D2-DX));
      MD1=1.0;
      Print(Matrix(MD1-1.0));
   }
   {
      Tracer et1("Stage 3");
      //GenericMatrix
      LowerTriangularMatrix LT(4);
      LT << 1 << 2 << 3 << 4 << 5 << 6  << 7 << 8 << 9 << 10;
      UpperTriangularMatrix UT = LT.t() * 2.0;
      GenericMatrix GM1 = LT;
      LowerTriangularMatrix LT1 = GM1-LT; Print(LT1);
      GenericMatrix GM2 = GM1; LT1 = GM2; LT1 = LT1-LT; Print(LT1);
      GM2 = GM1; LT1 = GM2; LT1 = LT1-LT; Print(LT1);
      GM2 = GM1*2; LT1 = GM2; LT1 = LT1-LT*2; Print(LT1);
      GM1.Release();
      GM1=GM1; LT1=GM1-LT; Print(LT1); LT1=GM1-LT; Print(LT1);
      GM1.Release();
      GM1=GM1*4; LT1=GM1-LT*4; Print(LT1);
      LT1=GM1-LT*4; Print(LT1); GM1.CleanUp();
      GM1=LT; GM2=UT; GM1=GM1*GM2; Matrix M=GM1; M=M-LT*UT; Print(M);
      Transposer(LT,GM2); LT1 = LT - GM2.t(); Print(LT1);
      GM1=LT; Transposer(GM1,GM2); LT1 = LT - GM2.t(); Print(LT1);
      GM1 = LT; GM1 = GM1 + GM1; LT1 = LT*2-GM1; Print(LT1);
      DiagonalMatrix D; D << LT; GM1 = D; LT1 = GM1; LT1 -= D; Print(LT1);
      UpperTriangularMatrix UT1 = GM1; UT1 -= D; Print(UT1);
   }
   {
      Tracer et1("Stage 4");
      // Another test of SVD
      Matrix M(12,12); M = 0;
      M(1,1) = M(2,2) = M(4,4) = M(6,6) =
         M(7,7) = M(8,8) = M(10,10) = M(12,12) = -1;
      M(1,6) = M(1,12) = -5.601594;
      M(3,6) = M(3,12) = -0.000165;
      M(7,6) = M(7,12) = -0.008294;
      DiagonalMatrix D;
      SVD(M,D);
      SortDescending(D);
      // answer given by matlab
      DiagonalMatrix DX(12);
      DX(1) = 8.0461;
      DX(2) = DX(3) = DX(4) = DX(5) = DX(6) = DX(7) = 1;
      DX(8) = 0.1243;
      DX(9) = DX(10) = DX(11) = DX(12) = 0;
      D -= DX; Clean(D,0.0001); Print(D);
   }
#ifndef DONT_DO_NRIC
   {
      Tracer et1("Stage 5");
      // test numerical recipes in C interface
      DiagonalMatrix D(10);
      D << 1 << 4 << 6 << 2 << 1 << 6 << 4 << 7 << 3 << 1;
      ColumnVector C(10);
      C << 3 << 7 << 5 << 1 << 4 << 2 << 3 << 9 << 1 << 3;
      RowVector R(6);
      R << 2 << 3 << 5 << 7 << 11 << 13;
      nricMatrix M(10, 6);
      DCR( D.nric(), C.nric(), 10, R.nric(), 6, M.nric() );
      M -= D * C * R;  Print(M);

      D.ReSize(5);
      D << 1.25 << 4.75 << 9.5 << 1.25 << 3.75;
      C.ReSize(5);
      C << 1.5 << 7.5 << 4.25 << 0.0 << 7.25;
      R.ReSize(9);
      R << 2.5 << 3.25 << 5.5 << 7 << 11.25 << 13.5 << 0.0 << 1.5 << 3.5;
      Matrix MX = D * C * R;
      M.ReSize(MX);
      DCR( D.nric(), C.nric(), 5, R.nric(), 9, M.nric() );
      M -= MX;  Print(M);
      
      // test swap
      nricMatrix A(3,4); nricMatrix B(4,5);
      A.Row(1) << 2 << 7 << 3 << 6;
      A.Row(2) << 6 << 2 << 5 << 9;
      A.Row(3) << 1 << 0 << 1 << 6;
      B.Row(1) << 2 << 8 << 4 << 5 << 3;
      B.Row(2) << 1 << 7 << 5 << 3 << 9;
      B.Row(3) << 7 << 8 << 2 << 1 << 6;
      B.Row(4) << 5 << 2 << 9 << 0 << 9;
      nricMatrix A1(1,2); nricMatrix B1;
      nricMatrix X(3,5); Matrix X1 = A * B;
      swap(A, A1); swap(B1, B);
      for (int i = 1; i <= 3; ++i) for (int j = 1; j <= 5; ++j)
      {
         X.nric()[i][j] = 0.0;
         for (int k = 1; k <= 4; ++k)
            X.nric()[i][j] += A1.nric()[i][k] * B1.nric()[k][j];
      }
      X1 -= X; Print(X1); 
   }
#endif
   {
      Tracer et1("Stage 6");
      // test dotproduct
      DiagonalMatrix test(5); test = 1;
      ColumnVector C(10);
      C << 3 << 7 << 5 << 1 << 4 << 2 << 3 << 9 << 1 << 3;
      RowVector R(10);
      R << 2 << 3 << 5 << 7 << 11 << 13 << -3 << -4 << 2 << 4;
      test(1) = (R * C).AsScalar() - DotProduct(C, R);
      test(2) = C.SumSquare() - DotProduct(C, C);
      test(3) = 6.0 * (C.t() * R.t()).AsScalar() - DotProduct(2.0 * C, 3.0 * R);
      Matrix MC = C.AsMatrix(2,5), MR = R.AsMatrix(5,2);
      test(4) = DotProduct(MC, MR) - (R * C).AsScalar();
      UpperTriangularMatrix UT(5);
      UT << 3 << 5 << 2 << 1 << 7
              << 1 << 1 << 8 << 2
                   << 7 << 0 << 1
                        << 3 << 5
                             << 6;
      LowerTriangularMatrix LT(5);
      LT << 5
         << 2 << 3
         << 1 << 0 << 7
         << 9 << 8 << 1 << 2
         << 0 << 2 << 1 << 9 << 2;
      test(5) = DotProduct(UT, LT) - Sum(SP(UT, LT));
      Print(test);
      // check row-wise load;
      LowerTriangularMatrix LT1(5);
      LT1.Row(1) << 5;
      LT1.Row(2) << 2   << 3;
      LT1.Row(3) << 1   << 0   << 7;
      LT1.Row(4) << 9   << 8   << 1   << 2;
      LT1.Row(5) << 0   << 2   << 1   << 9   << 2;
      Matrix M = LT1 - LT; Print(M);
      // check solution with identity matrix
      IdentityMatrix IM(5); IM *= 2;
      LinearEquationSolver LES1(IM);
      LowerTriangularMatrix LTX = LES1.i() * LT;
      M = LTX * 2 - LT; Print(M);
      DiagonalMatrix D = IM;
      LinearEquationSolver LES2(IM);
      LTX = LES2.i() * LT;
      M = LTX * 2 - LT; Print(M);
      UpperTriangularMatrix UTX = LES1.i() * UT;
      M = UTX * 2 - UT; Print(M);
      UTX = LES2.i() * UT;
      M = UTX * 2 - UT; Print(M);
   }

   {
      Tracer et1("Stage 7");
      // Some more GenericMatrix stuff with *= |= &=
      // but don't any additional checks
      BandMatrix BM1(6,2,3);
      BM1.Row(1) << 3 << 8 << 4 << 1;
      BM1.Row(2) << 5 << 1 << 9 << 7 << 2;
      BM1.Row(3) << 1 << 0 << 6 << 3 << 1 << 3;
      BM1.Row(4)      << 4 << 2 << 5 << 2 << 4;
      BM1.Row(5)           << 3 << 3 << 9 << 1;
      BM1.Row(6)                << 4 << 2 << 9;
      BandMatrix BM2(6,1,1);
      BM2.Row(1) << 2.5 << 7.5;
      BM2.Row(2) << 1.5 << 3.0 << 8.5;
      BM2.Row(3)        << 6.0 << 6.5 << 7.0;
      BM2.Row(4)               << 2.5 << 2.0 << 8.0;
      BM2.Row(5)                      << 0.5 << 4.5 << 3.5;
      BM2.Row(6)                             << 9.5 << 7.5;
      Matrix RM1 = BM1, RM2 = BM2;
      Matrix X;
      GenericMatrix GRM1 = RM1, GBM1 = BM1, GRM2 = RM2, GBM2 = BM2;
      Matrix Z(6,0); Z = 5; Print(Z);
      GRM1 |= Z; GBM1 |= Z; GRM2 &= Z.t(); GBM2 &= Z.t();
      X = GRM1 - BM1; Print(X); X = GBM1 - BM1; Print(X);
      X = GRM2 - BM2; Print(X); X = GBM2 - BM2; Print(X);

      GRM1 = RM1; GBM1 = BM1; GRM2 = RM2; GBM2 = BM2;
      GRM1 *= GRM2; GBM1 *= GBM2;
      X = GRM1 - BM1 * BM2; Print(X);
      X = RM1 * RM2 - GBM1; Print(X);

      GRM1 = RM1; GBM1 = BM1; GRM2 = RM2; GBM2 = BM2;
      GRM1 *= GBM2; GBM1 *= GRM2;          // Bs and Rs swapped on LHS
      X = GRM1 - BM1 * BM2; Print(X);
      X = RM1 * RM2 - GBM1; Print(X);

      X = BM1.t(); BandMatrix BM1X = BM1.t();
      GRM1 = RM1; X -= GRM1.t(); Print(X); X = BM1X - BM1.t(); Print(X);

      // check that linear equation solver works with Identity Matrix
      IdentityMatrix IM(6); IM *= 2;
      GBM1 = BM1; GBM1 *= 4; GRM1 = RM1; GRM1 *= 4;
      DiagonalMatrix D = IM;
      LinearEquationSolver LES1(D);
      BandMatrix BX;
      BX = LES1.i() * GBM1; BX -= BM1 * 2; X = BX; Print(X);
      LinearEquationSolver LES2(IM);
      BX = LES2.i() * GBM1; BX -= BM1 * 2; X = BX; Print(X);
      BX = D.i() * GBM1; BX -= BM1 * 2; X = BX; Print(X);
      BX = IM.i() * GBM1; BX -= BM1 * 2; X = BX; Print(X);
      BX = IM.i(); BX *= GBM1; BX -= BM1 * 2; X = BX; Print(X);

      // try symmetric band matrices
      SymmetricBandMatrix SBM; SBM << SP(BM1, BM1.t());
      SBM << IM.i() * SBM;
      X = 2 * SBM - SP(RM1, RM1.t()); Print(X);

      // Do this again with more general D
      D << 2.5 << 7.5 << 2 << 5 << 4.5 << 7.5;
      BX = D.i() * BM1; X = BX - D.i() * RM1;
      Clean(X,0.00000001); Print(X);
      BX = D.i(); BX *= BM1; X = BX - D.i() * RM1;
      Clean(X,0.00000001); Print(X);
      SBM << SP(BM1, BM1.t());
      BX = D.i() * SBM; X = BX - D.i() * SP(RM1, RM1.t());
      Clean(X,0.00000001); Print(X);

      // test return
      BX = TestReturn(BM1); X = BX - BM1;
      if (BX.BandWidth() != BM1.BandWidth()) X = 5;
      Print(X);
   }

//   cout << "\nEnd of eighth test\n";
}