LabelledRegressionData LabelledRegressionData::getTrainingFoldData(const UINT foldIndex) const{ LabelledRegressionData trainingData; if( !crossValidationSetup ){ errorLog << "getTrainingFoldData(UINT foldIndex) - Cross Validation has not been setup! You need to call the spiltDataIntoKFolds(UINT K,bool useStratifiedSampling) function first before calling this function!" << endl; return trainingData; } if( foldIndex >= kFoldValue ) return trainingData; trainingData.setInputAndTargetDimensions(numInputDimensions, numTargetDimensions); //Add the data to the training set, this will consist of all the data that is NOT in the foldIndex UINT index = 0; for(UINT k=0; k<kFoldValue; k++){ if( k != foldIndex ){ for(UINT i=0; i<crossValidationIndexs[k].size(); i++){ index = crossValidationIndexs[k][i]; trainingData.addSample( data[ index ].getInputVector(), data[ index ].getTargetVector() ); } } } return trainingData; }
LabelledRegressionData LabelledClassificationData::reformatAsLabelledRegressionData() const{ //Turns the classification into a regression data to enable regression algorithms like the MLP to be used as a classifier //This sets the number of targets in the regression data equal to the number of classes in the classification data //The output of each regression training sample will then be all 0's, except for the index matching the classLabel, which will be 1 //For this to work, the labelled classification data cannot have any samples with a classLabel of 0! LabelledRegressionData regressionData; if( totalNumSamples == 0 ){ return regressionData; } const UINT numInputDimensions = numDimensions; const UINT numTargetDimensions = getNumClasses(); regressionData.setInputAndTargetDimensions(numInputDimensions, numTargetDimensions); for(UINT i=0; i<totalNumSamples; i++){ VectorDouble targetVector(numTargetDimensions,0); //Set the class index in the target vector to 1 and all other values in the target vector to 0 UINT classLabel = data[i].getClassLabel(); if( classLabel > 0 ){ targetVector[ classLabel-1 ] = 1; }else{ regressionData.clear(); return regressionData; } regressionData.addSample(data[i].getSample(),targetVector); } return regressionData; }
LabelledRegressionData LabelledRegressionData::getTestFoldData(const UINT foldIndex) const{ LabelledRegressionData testData; if( !crossValidationSetup ) return testData; if( foldIndex >= kFoldValue ) return testData; //Add the data to the training testData.setInputAndTargetDimensions(numInputDimensions, numTargetDimensions); UINT index = 0; for(UINT i=0; i<crossValidationIndexs[ foldIndex ].size(); i++){ index = crossValidationIndexs[ foldIndex ][i]; testData.addSample( data[ index ].getInputVector(), data[ index ].getTargetVector() ); } return testData; }
bool LabelledRegressionData::merge(const LabelledRegressionData ®ressionData){ if( regressionData.getNumInputDimensions() != numInputDimensions ){ errorLog << "merge(LabelledRegressionData ®ressionData) - The number of input dimensions in the regressionData (" << regressionData.getNumInputDimensions() << ") does not match the number of input dimensions of this dataset (" << numInputDimensions << ")" << endl; return false; } if( regressionData.getNumTargetDimensions() != numTargetDimensions ){ errorLog << "merge(LabelledRegressionData ®ressionData) - The number of target dimensions in the regressionData (" << regressionData.getNumTargetDimensions() << ") does not match the number of target dimensions of this dataset (" << numTargetDimensions << ")" << endl; return false; } //Add the data from the labelledData to this instance for(UINT i=0; i<regressionData.getNumSamples(); i++){ addSample(regressionData[i].getInputVector(), regressionData[i].getTargetVector()); } //The dataset has changed so flag that any previous cross validation setup will now not work crossValidationSetup = false; crossValidationIndexs.clear(); return true; }
bool LinearRegression::train(LabelledRegressionData &trainingData){ const unsigned int M = trainingData.getNumSamples(); const unsigned int N = trainingData.getNumInputDimensions(); const unsigned int K = trainingData.getNumTargetDimensions(); trained = false; if( M == 0 ){ errorLog << "train(LabelledRegressionData &trainingData) - Training data has zero samples!" << endl; return false; } if( K == 0 ){ errorLog << "train(LabelledRegressionData &trainingData) - The number of target dimensions is not 1!" << endl; return false; } numFeatures = N; numOutputDimensions = 1; //Logistic Regression will have 1 output inputVectorRanges.clear(); targetVectorRanges.clear(); //Scale the training and validation data, if needed if( useScaling ){ //Find the ranges for the input data inputVectorRanges = trainingData.getInputRanges(); //Find the ranges for the target data targetVectorRanges = trainingData.getTargetRanges(); //Scale the training data trainingData.scale(inputVectorRanges,targetVectorRanges,0.0,1.0); } //Reset the weights Random rand; w0 = rand.getRandomNumberUniform(-0.1,0.1); w.resize(N); for(UINT j=0; j<N; j++){ w[j] = rand.getRandomNumberUniform(-0.1,0.1); } double error = 0; double errorSum = 0; double lastErrorSum = 0; double delta = 0; UINT iter = 0; bool keepTraining = true; Random random; vector< UINT > randomTrainingOrder(M); //In most cases, the training data is grouped into classes (100 samples for class 1, followed by 100 samples for class 2, etc.) //This can cause a problem for stochastic gradient descent algorithm. To avoid this issue, we randomly shuffle the order of the //training samples. This random order is then used at each epoch. for(UINT i=0; i<M; i++){ randomTrainingOrder[i] = i; } std::random_shuffle(randomTrainingOrder.begin(), randomTrainingOrder.end()); //Run the main stochastic gradient descent training algorithm while( keepTraining ){ //Run one epoch of training using stochastic gradient descent errorSum = 0; for(UINT m=0; m<M; m++){ //Select the random sample UINT i = randomTrainingOrder[m]; //Compute the error, given the current weights VectorDouble x = trainingData[i].getInputVector(); VectorDouble y = trainingData[i].getTargetVector(); double h = w0; for(UINT j=0; j<N; j++){ h += x[j] * w[j]; } error = y[0] - sigmoid( h ); errorSum += error; //Update the weights for(UINT j=0; j<N; j++){ w[j] += learningRate * error * x[j]; } w0 += learningRate * error; } //Compute the error delta = fabs( errorSum-lastErrorSum ); lastErrorSum = errorSum; //Check to see if we should stop if( delta <= minChange ){ keepTraining = false; } if( ++iter >= maxNumIterations ){ keepTraining = false; } trainingLog << "Epoch: " << iter << " TotalError: " << errorSum << " Delta: " << delta << endl; } //Flag that the algorithm has been trained regressionData.resize(1,0); trained = true; return trained; }
bool LogisticRegression::train(LabelledRegressionData trainingData){ const unsigned int M = trainingData.getNumSamples(); const unsigned int N = trainingData.getNumInputDimensions(); const unsigned int K = trainingData.getNumTargetDimensions(); trained = false; trainingResults.clear(); if( M == 0 ){ errorLog << "train(LabelledRegressionData trainingData) - Training data has zero samples!" << endl; return false; } if( K == 0 ){ errorLog << "train(LabelledRegressionData trainingData) - The number of target dimensions is not 1!" << endl; return false; } numInputDimensions = N; numOutputDimensions = 1; //Logistic Regression will have 1 output inputVectorRanges.clear(); targetVectorRanges.clear(); //Scale the training and validation data, if needed if( useScaling ){ //Find the ranges for the input data inputVectorRanges = trainingData.getInputRanges(); //Find the ranges for the target data targetVectorRanges = trainingData.getTargetRanges(); //Scale the training data trainingData.scale(inputVectorRanges,targetVectorRanges,0.0,1.0); } //Reset the weights Random rand; w0 = rand.getRandomNumberUniform(-0.1,0.1); w.resize(N); for(UINT j=0; j<N; j++){ w[j] = rand.getRandomNumberUniform(-0.1,0.1); } double error = 0; double lastSquaredError = 0; double delta = 0; UINT iter = 0; bool keepTraining = true; Random random; vector< UINT > randomTrainingOrder(M); TrainingResult result; trainingResults.reserve(M); //In most cases, the training data is grouped into classes (100 samples for class 1, followed by 100 samples for class 2, etc.) //This can cause a problem for stochastic gradient descent algorithm. To avoid this issue, we randomly shuffle the order of the //training samples. This random order is then used at each epoch. for(UINT i=0; i<M; i++){ randomTrainingOrder[i] = i; } std::random_shuffle(randomTrainingOrder.begin(), randomTrainingOrder.end()); //Run the main stochastic gradient descent training algorithm while( keepTraining ){ //Run one epoch of training using stochastic gradient descent totalSquaredTrainingError = 0; for(UINT m=0; m<M; m++){ //Select the random sample UINT i = randomTrainingOrder[m]; //Compute the error, given the current weights VectorDouble x = trainingData[i].getInputVector(); VectorDouble y = trainingData[i].getTargetVector(); double h = w0; for(UINT j=0; j<N; j++){ h += x[j] * w[j]; } error = y[0] - sigmoid( h ); totalSquaredTrainingError += SQR(error); //Update the weights for(UINT j=0; j<N; j++){ w[j] += learningRate * error * x[j]; } w0 += learningRate * error; } //Compute the error delta = fabs( totalSquaredTrainingError-lastSquaredError ); lastSquaredError = totalSquaredTrainingError; //Check to see if we should stop if( delta <= minChange ){ keepTraining = false; } if( ++iter >= maxNumEpochs ){ keepTraining = false; } if( isinf( totalSquaredTrainingError ) || isnan( totalSquaredTrainingError ) ){ errorLog << "train(LabelledRegressionData &trainingData) - Training failed! Total squared error is NAN. If scaling is not enabled then you should try to scale your data and see if this solves the issue." << endl; return false; } //Store the training results rootMeanSquaredTrainingError = sqrt( totalSquaredTrainingError / double(M) ); result.setRegressionResult(iter,totalSquaredTrainingError,rootMeanSquaredTrainingError); trainingResults.push_back( result ); //Notify any observers of the new training data trainingResultsObserverManager.notifyObservers( result ); trainingLog << "Epoch: " << iter << " SSE: " << totalSquaredTrainingError << " Delta: " << delta << endl; } //Flag that the algorithm has been trained regressionData.resize(1,0); trained = true; return trained; }