OptimizeVector OptimizePhotometricPanel::getOptimizeVector()
{

    int nrLI = m_exp_list->GetCount();
    assert(nrLI >=0);
    unsigned int nr = (unsigned int) nrLI;
    unsigned int nImages = m_pano->getNrOfImages();
    assert(nr == nImages);

    OptimizeVector optvars;

    for (unsigned int i=0; i < nImages; i++) {

        set<string> imgopt;
        // lens variables
        unsigned int lensNr = variable_groups->getLenses().getPartNumber(i);

        if (m_vig_list->IsChecked(lensNr)) {
            imgopt.insert("Vb");
            imgopt.insert("Vc");
            imgopt.insert("Vd");
        }
        if (m_vigc_list->IsChecked(lensNr)) {
            imgopt.insert("Vx");
            imgopt.insert("Vy");
        }
        if (m_resp_list->IsChecked(lensNr)) {
            imgopt.insert("Ra");
            imgopt.insert("Rb");
            imgopt.insert("Rc");
            imgopt.insert("Rd");
            imgopt.insert("Re");
        }

        // image variables
        if (m_exp_list->IsChecked(i)) {
            imgopt.insert("Eev");
        }
        if (m_wb_list->IsChecked(i)) {
            imgopt.insert("Er");
            imgopt.insert("Eb");
        }
        optvars.push_back(imgopt);
    }

    return optvars;
}
void calcCtrlPointErrors (PanoramaData& pano) 
{
    if(pano.getNrOfImages()>0 && pano.getNrOfCtrlPoints()>0)
    {
        char * p=setlocale(LC_ALL,NULL);
#ifndef ANDROID
        char * oldlocale=strdup(p);
#else
	char * oldlocale="";
#endif
        setlocale(LC_ALL,"C");
        UIntSet allImg;
        std::ostringstream scriptbuf;
        fill_set(allImg,0, unsigned(pano.getNrOfImages()-1));
        //create temporary non-empty optimize vector
        OptimizeVector optVec;
        std::set<std::string> opt;
        opt.insert("y");
        for(unsigned int i=0;i<pano.getNrOfImages();i++)
        {
            optVec.push_back(opt);
        };
        pano.printPanoramaScript(scriptbuf, optVec, 
                pano.getOptions(), allImg, true);

        char * script = 0;
        script = strdup(scriptbuf.str().c_str());
        AlignInfo ainf;
        if (ParseScript( script, &ainf ) == 0)
        {
            if( CheckParams( &ainf ) == 0 )
            {
                ainf.fcn = fcnPano;
                SetGlobalPtr( &ainf ); 
                pano.updateCtrlPointErrors( GetAlignInfoCtrlPoints(ainf) );
            }
        }
        setlocale(LC_ALL,oldlocale);
        free(oldlocale);
    };
}
void PhotometricOptimizer::optimizePhotometric(PanoramaData & pano, const OptimizeVector & vars,
                                               const std::vector<vigra_ext::PointPairRGB> & correspondences,
                                               AppBase::ProgressReporter & progress,
                                               double & error)
{

    OptimizeVector photometricVars;
    // keep only the photometric variables
    unsigned int optCount=0;
    for (OptimizeVector::const_iterator it=vars.begin(); it != vars.end(); ++it)
    {
        std::set<std::string> cvars;
        for (std::set<std::string>::const_iterator itv = (*it).begin();
             itv != (*it).end(); ++itv)
        {
            if ((*itv)[0] == 'E' || (*itv)[0] == 'R' || (*itv)[0] == 'V') {
                cvars.insert(*itv);
            }
        }
        photometricVars.push_back(cvars);
        optCount+=cvars.size();
    }
    //if no variables to optimize return
    if(optCount==0)
    {
        return;
    };

    int nMaxIter = 250;
    OptimData data(pano, photometricVars, correspondences, 5/255.0, false, nMaxIter, progress);

    int ret;
    //double opts[LM_OPTS_SZ];
    double info[LM_INFO_SZ];

    // parameters
    int m=data.m_vars.size();
    vigra::ArrayVector<double> p(m, 0.0);

    // vector for errors
    int n=2*3*correspondences.size()+pano.getNrOfImages();
    vigra::ArrayVector<double> x(n, 0.0);

    data.ToX(p.begin());
#ifdef DEBUG
    printf("Parameters before optimisation: ");
    for(int i=0; i<m; ++i)
        printf("%.7g ", p[i]);
    printf("\n");
#endif

    // covariance matrix at solution
    vigra::DImage cov(m,m);
    // TODO: setup optimisation options with some good defaults.
    double optimOpts[5];
    
    optimOpts[0] = 1E-03;  // init mu
    // stop thresholds
    optimOpts[1] = 1e-5;   // ||J^T e||_inf
    optimOpts[2] = 1e-5;   // ||Dp||_2
    optimOpts[3] = 1e-1;   // ||e||_2
    // difference mode
    optimOpts[4] = LM_DIFF_DELTA;
    
    ret=dlevmar_dif(&photometricError, &photometricVis, &(p[0]), &(x[0]), m, n, nMaxIter, optimOpts, info, NULL, &(cov(0,0)), &data);  // no jacobian
    // copy to source images (data.m_imgs)
    data.FromX(p.begin());
    // calculate error at solution
    data.huberSigma = 0;
    photometricError(&(p[0]), &(x[0]), m, n, &data);
    error = 0;
    for (int i=0; i<n; i++) {
        error += x[i]*x[i];
    }
    error = sqrt(error/n);

#ifdef DEBUG
    printf("Levenberg-Marquardt returned %d in %g iter, reason %g\nSolution: ", ret, info[5], info[6]);
    for(int i=0; i<m; ++i)
        printf("%.7g ", p[i]);
    printf("\n\nMinimization info:\n");
    for(int i=0; i<LM_INFO_SZ; ++i)
        printf("%g ", info[i]);
    printf("\n");
#endif

    // copy settings to panorama
    for (unsigned i=0; i<pano.getNrOfImages(); i++) {
        pano.setSrcImage(i, data.m_imgs[i]);
    }
}
void OptimizePhotometricPanel::runOptimizer(const UIntSet & imgs)
{
    DEBUG_TRACE("");
    int mode = m_mode_cb->GetSelection();

    // check if vignetting and response are linked, display a warning if they are not
    // The variables to check:
    const HuginBase::ImageVariableGroup::ImageVariableEnum vars[] = {
            HuginBase::ImageVariableGroup::IVE_EMoRParams,
            HuginBase::ImageVariableGroup::IVE_ResponseType,
            HuginBase::ImageVariableGroup::IVE_VigCorrMode,
            HuginBase::ImageVariableGroup::IVE_RadialVigCorrCoeff,
            HuginBase::ImageVariableGroup::IVE_RadialVigCorrCenterShift
        };
    // keep a list of commands needed to fix it:
    std::vector<PT::PanoCommand *> commands;
    HuginBase::ConstImageVariableGroup & lenses = variable_groups->getLenses();
    for (size_t i = 0; i < lenses.getNumberOfParts(); i++)
    {
        std::set<HuginBase::ImageVariableGroup::ImageVariableEnum> links_needed;
        links_needed.clear();
        for (int v = 0; v < 5; v++)
        {
            if (!lenses.getVarLinkedInPart(vars[v], i))
            {
                links_needed.insert(vars[v]);
            }
        };
        if (!links_needed.empty())
        {
            commands.push_back(new PT::LinkLensVarsCmd(*m_pano, i, links_needed));
        }
    }
    // if the list of commands is empty, all is good and we don't need a warning.
    if (!commands.empty()) {
        int ok = wxMessageBox(_("The same vignetting and response parameters should\nbe applied for all images of a lens.\nCurrently each image can have different parameters.\nLink parameters?"), _("Link parameters"), wxYES_NO | wxICON_INFORMATION);
        if (ok == wxYES) {
            // perform all the commands we stocked up earilier.
            for (std::vector<PT::PanoCommand *>::iterator it = commands.begin();
                    it != commands.end(); it++)
            {
                GlobalCmdHist::getInstance().addCommand(*it);
            }
        } else {
            // free all the commands, the user doesn't want them used.
            for (std::vector<PT::PanoCommand *>::iterator it = commands.begin();
                    it != commands.end(); it++)
            {
                delete *it;
            }
        }
    }

    Panorama optPano = m_pano->getSubset(imgs);
    PanoramaOptions opts = optPano.getOptions();

    OptimizeVector optvars;
    if(mode==OPT_CUSTOM)
    {
        optvars = getOptimizeVector();
        if (optPano.getNrOfImages() != m_pano->getNrOfImages())
        {
            OptimizeVector o = optvars;
            optvars.clear();
            for (UIntSet::const_iterator it = imgs.begin(); it != imgs.end(); ++it)
            {
                optvars.push_back(o[*it]);
            }
        }
        unsigned int countVar=0;
        for(unsigned int i=0;i<optvars.size();i++)
        {
            countVar+=optvars[i].size();
        };
        if(countVar==0)
        {
            wxMessageBox(_("You selected no parameters to optimize.\nTherefore optimization will be canceled."), _("Exposure optimization"), wxOK | wxICON_INFORMATION);
            return;
        };
    };


    std::vector<vigra_ext::PointPairRGB> m_points;
    // extract points only if not done previously

    long nPoints = 200;
    wxConfigBase::Get()->Read(wxT("/OptimizePhotometric/nRandomPointsPerImage"), & nPoints);
    // get parameters for estimation.
    nPoints = wxGetNumberFromUser(_("The vignetting and exposure correction is determined by analysing color values in the overlapping areas.\nTo speed up the computation, only a random subset of points is used."),
                                    _("Number of points per image"),
                                    _("Photometric optimization"), nPoints, 0, 32000,
                                    this);
    if (nPoints < 0) {
        return;
    }
    wxConfigBase::Get()->Write(wxT("/OptimizePhotometric/nRandomPointsPerImage"),nPoints);

    ProgressReporterDialog progress(5.0, _("Photometric alignment"), _("Loading images"));

    progress.Show();

    nPoints = nPoints * optPano.getNrOfImages();
    // get the small images
    std::vector<vigra::FRGBImage *> srcImgs;
    for (size_t i=0; i < optPano.getNrOfImages(); i++) {
        ImageCache::EntryPtr e = ImageCache::getInstance().getSmallImage(optPano.getImage(i).getFilename());
        vigra::FRGBImage * img = new FRGBImage;
        if (!e) {
            wxMessageBox(_("Error: could not load all images"), _("Error"));
            return;
        }
        if (e->image8 && e->image8->width() > 0) {
            reduceToNextLevel(*(e->image8), *img);
            transformImage(vigra::srcImageRange(*img), vigra::destImage(*img),
                            vigra::functor::Arg1()/vigra::functor::Param(255.0));
        } else if (e->image16 && e->image16->width() > 0) {
            reduceToNextLevel(*(e->image16), *img);
            transformImage(vigra::srcImageRange(*img), vigra::destImage(*img),
                            vigra::functor::Arg1()/vigra::functor::Param(65535.0));
        } else {
            reduceToNextLevel(*(e->imageFloat), *img);
        }
        srcImgs.push_back(img);
    }
    bool randomPoints = true;
    extractPoints(optPano, srcImgs, nPoints, randomPoints, progress, m_points);

    if (m_points.size() == 0) {
        wxMessageBox(_("Error: no overlapping points found, Photometric optimization aborted"), _("Error"));
        return;
    }

    double error = 0;
    try {
        //wxBusyCursor busyc;
        if (mode != OPT_CUSTOM) {
            // run automatic optimisation
            // ensure that we have a valid anchor.
            PanoramaOptions opts = optPano.getOptions();
            if (opts.colorReferenceImage >= optPano.getNrOfImages()) {
                opts.colorReferenceImage = 0;
                optPano.setOptions(opts);
            }
            smartOptimizePhotometric(optPano, PhotometricOptimizeMode(mode),
                                    m_points, progress, error);
        } else {
            // optimize selected parameters
            optimizePhotometric(optPano, optvars,
                                m_points, progress, error);
        }
    } catch (std::exception & error) {
        wxMessageBox(_("Internal error during photometric optimization:\n") + wxString(error.what(), wxConvLocal), _("Internal error"));
    }

    progress.Close();

    // display information about the estimation process:
    int ret = wxMessageBox(wxString::Format(_("Photometric optimization results:\nAverage difference (RMSE) between overlapping pixels: %.2f gray values (0..255)\n\nApply results?"), error*255),
                           _("Photometric optimization finished"), wxYES_NO | wxICON_INFORMATION,this);

    if (ret == wxYES) {
        DEBUG_DEBUG("Applying vignetting corr");
        // TODO: merge into a single update command
        const VariableMapVector & vars = optPano.getVariables();
        GlobalCmdHist::getInstance().addCommand(
                new PT::UpdateImagesVariablesCmd(*m_pano, imgs, vars)
                                               );
        //now update panorama exposure value
        PanoramaOptions opts = m_pano->getOptions();
        opts.outputExposureValue = calcMeanExposure(*m_pano);
        GlobalCmdHist::getInstance().addCommand(
                new PT::SetPanoOptionsCmd(*m_pano, opts)
                                               );
    }
}
Пример #5
0
bool PanoDetector::matchMultiRow(PoolExecutor& aExecutor)
{
    //step 1
    std::vector<HuginBase::UIntSet> checkedImagePairs(_panoramaInfo->getNrOfImages());
    std::vector<stack_img> stack_images;
    HuginBase::StandardImageVariableGroups* variable_groups = new HuginBase::StandardImageVariableGroups(*_panoramaInfo);
    for(unsigned int i=0; i<_panoramaInfo->getNrOfImages(); i++)
    {
        unsigned int stack_nr=variable_groups->getStacks().getPartNumber(i);
        //check, if this stack is already in list
        bool found=false;
        unsigned int index=0;
        for(index=0; index<stack_images.size(); index++)
        {
            found=(stack_images[index].layer_nr==stack_nr);
            if(found)
            {
                break;
            };
        };
        if(!found)
        {
            //new stack
            stack_images.resize(stack_images.size()+1);
            index=stack_images.size()-1;
            //add new stack
            stack_images[index].layer_nr=stack_nr;
        };
        //add new image
        unsigned int new_image_index=stack_images[index].images.size();
        stack_images[index].images.resize(new_image_index+1);
        stack_images[index].images[new_image_index].img_nr=i;
        stack_images[index].images[new_image_index].ev=_panoramaInfo->getImage(i).getExposure();
    };
    delete variable_groups;
    //get image with median exposure for search with cp generator
    vector<size_t> images_layer;
    UIntSet images_layer_set;
    for(unsigned int i=0; i<stack_images.size(); i++)
    {
        std::sort(stack_images[i].images.begin(),stack_images[i].images.end(),sort_img_ev);
        unsigned int index=0;
        if(stack_images[i].images[0].ev!=stack_images[i].images[stack_images[i].images.size()-1].ev)
        {
            index=stack_images[i].images.size() / 2;
        };
        images_layer.push_back(stack_images[i].images[index].img_nr);
        images_layer_set.insert(stack_images[i].images[index].img_nr);
        if(stack_images[i].images.size()>1)
        {
            //build match list for stacks
            for(unsigned int j=0; j<stack_images[i].images.size()-1; j++)
            {
                size_t img1=stack_images[i].images[j].img_nr;
                size_t img2=stack_images[i].images[j+1].img_nr;
                _matchesData.push_back(MatchData());
                MatchData& aM=_matchesData.back();
                aM._i1=&(_filesData[img1]);
                aM._i2=&(_filesData[img2]);
                checkedImagePairs[img1].insert(img2);
                checkedImagePairs[img2].insert(img1);
            };
        };
    };
    //build match data list for image pairs
    if(images_layer.size()>1)
    {
        std::sort(images_layer.begin(), images_layer.end());
        for(unsigned int i=0; i<images_layer.size()-1; i++)
        {
            size_t img1=images_layer[i];
            size_t img2=images_layer[i+1];
            _matchesData.push_back(MatchData());
            MatchData& aM = _matchesData.back();
            aM._i1 = &(_filesData[img1]);
            aM._i2 = &(_filesData[img2]);
            checkedImagePairs[img1].insert(img2);
            checkedImagePairs[img2].insert(img1);
        };
    };
    TRACE_INFO(endl<< "--- Find matches ---" << endl);
    try
    {
        BOOST_FOREACH(MatchData& aMD, _matchesData)
        aExecutor.execute(new MatchDataRunnable(aMD, *this));
        aExecutor.wait();
    }
    catch(Synchronization_Exception& e)
    {
        TRACE_ERROR(e.what() << endl);
        return false;
    }

    // Add detected matches to _panoramaInfo
    BOOST_FOREACH(MatchData& aM, _matchesData)
    BOOST_FOREACH(lfeat::PointMatchPtr& aPM, aM._matches)
    _panoramaInfo->addCtrlPoint(ControlPoint(aM._i1->_number, aPM->_img1_x, aPM->_img1_y,
                                aM._i2->_number, aPM->_img2_x, aPM->_img2_y));

    // step 2: connect all image groups
    _matchesData.clear();
    Panorama mediumPano=_panoramaInfo->getSubset(images_layer_set);
    CPGraph graph;
    createCPGraph(mediumPano, graph);
    CPComponents comps;
    unsigned int n = findCPComponents(graph, comps);
    if(n>1)
    {
        vector<unsigned int> ImagesGroups;
        for(unsigned int i=0; i<n; i++)
        {
            ImagesGroups.push_back(images_layer[*(comps[i].begin())]);
            if(comps[i].size()>1)
            {
                ImagesGroups.push_back(images_layer[*(comps[i].rbegin())]);
            }
        };
        for(unsigned int i=0; i<ImagesGroups.size()-1; i++)
        {
            for(unsigned int j=i+1; j<ImagesGroups.size(); j++)
            {
                size_t img1=ImagesGroups[i];
                size_t img2=ImagesGroups[j];
                //skip already checked image pairs
                if(set_contains(checkedImagePairs[img1],img2))
                {
                    continue;
                };
                _matchesData.push_back(MatchData());
                MatchData& aM = _matchesData.back();
                aM._i1 = &(_filesData[img1]);
                aM._i2 = &(_filesData[img2]);
                checkedImagePairs[img1].insert(img2);
                checkedImagePairs[img2].insert(img1);
            };
        };
        TRACE_INFO(endl<< "--- Find matches in images groups ---" << endl);
        try
        {
            BOOST_FOREACH(MatchData& aMD, _matchesData)
            aExecutor.execute(new MatchDataRunnable(aMD, *this));
            aExecutor.wait();
        }
        catch(Synchronization_Exception& e)
        {
            TRACE_ERROR(e.what() << endl);
            return false;
        }
        BOOST_FOREACH(MatchData& aM, _matchesData)
        BOOST_FOREACH(lfeat::PointMatchPtr& aPM, aM._matches)
        _panoramaInfo->addCtrlPoint(ControlPoint(aM._i1->_number, aPM->_img1_x, aPM->_img1_y,
                                    aM._i2->_number, aPM->_img2_x, aPM->_img2_y));
    };
    // step 3: now connect all overlapping images
    _matchesData.clear();
    PT::Panorama optPano=_panoramaInfo->getSubset(images_layer_set);
    createCPGraph(optPano, graph);
    if(findCPComponents(graph, comps)==1)
    {
        if(images_layer.size()>2)
        {
            //reset translation parameters
            VariableMapVector varMapVec=optPano.getVariables();
            for(size_t i=0; i<varMapVec.size(); i++)
            {
                map_get(varMapVec[i], "TrX").setValue(0);
                map_get(varMapVec[i], "TrY").setValue(0);
                map_get(varMapVec[i], "TrZ").setValue(0);
            };
            optPano.updateVariables(varMapVec);
            //next steps happens only when all images are connected;
            //now optimize panorama
            PanoramaOptions opts = optPano.getOptions();
            opts.setProjection(PanoramaOptions::EQUIRECTANGULAR);
            opts.optimizeReferenceImage=0;
            // calculate proper scaling, 1:1 resolution.
            // Otherwise optimizer distances are meaningless.
            opts.setWidth(30000, false);
            opts.setHeight(15000);

            optPano.setOptions(opts);
            int w = optPano.calcOptimalWidth();
            opts.setWidth(w);
            opts.setHeight(w/2);
            optPano.setOptions(opts);

            //generate optimize vector, optimize only yaw and pitch
            OptimizeVector optvars;
            const SrcPanoImage& anchorImage = optPano.getImage(opts.optimizeReferenceImage);
            for (unsigned i=0; i < optPano.getNrOfImages(); i++)
            {
                std::set<std::string> imgopt;
                if(i==opts.optimizeReferenceImage)
                {
                    //optimize only anchors pitch, not yaw
                    imgopt.insert("p");
                }
                else
                {
                    imgopt.insert("p");
                    imgopt.insert("y");
                };
                optvars.push_back(imgopt);
            }
            optPano.setOptimizeVector(optvars);

            // remove vertical and horizontal control points
            CPVector cps = optPano.getCtrlPoints();
            CPVector newCP;
            for (CPVector::const_iterator it = cps.begin(); it != cps.end(); it++)
            {
                if (it->mode == ControlPoint::X_Y)
                {
                    newCP.push_back(*it);
                }
            }
            optPano.setCtrlPoints(newCP);

            if (getVerbose() < 2)
            {
                PT_setProgressFcn(ptProgress);
                PT_setInfoDlgFcn(ptinfoDlg);
            };
            //in a first step do a pairwise optimisation
            HuginBase::AutoOptimise::autoOptimise(optPano, false);
            //now the final optimisation
            HuginBase::PTools::optimize(optPano);
            if (getVerbose() < 2)
            {
                PT_setProgressFcn(NULL);
                PT_setInfoDlgFcn(NULL);
            };

            //now match overlapping images
            if(!matchPrealigned(aExecutor, &optPano, checkedImagePairs, images_layer, false))
            {
                return false;
            };
        };
    }
    else
    {
        if(!match(aExecutor, checkedImagePairs))
        {
            return false;
        };
    };
    return true;
};
CPVector AutoPanoSiftMultiRow::automatch(CPDetectorSetting &setting, Panorama & pano, const UIntSet & imgs,
                                     int nFeatures, int & ret_value, wxWindow *parent)
{
    CPVector cps;
    if (imgs.size() < 2) 
    {
        return cps;
    };
    std::vector<wxString> keyFiles(pano.getNrOfImages());
    //generate cp for every consecutive image pair
    unsigned int counter=0;
    for(UIntSet::const_iterator it = imgs.begin(); it != imgs.end(); )
    {
        if(counter==imgs.size()-1)
            break;
        counter++;
        UIntSet ImagePair;
        ImagePair.clear();
        ImagePair.insert(*it);
        it++;
        ImagePair.insert(*it);
        AutoPanoSift matcher;
        CPVector new_cps;
        new_cps.clear();
        if(setting.IsTwoStepDetector())
            new_cps=matcher.automatch(setting, pano, ImagePair, nFeatures, keyFiles, ret_value, parent);
        else
            new_cps=matcher.automatch(setting, pano, ImagePair, nFeatures, ret_value, parent);
        if(new_cps.size()>0)
            AddControlPointsWithCheck(cps,new_cps);
        if(ret_value!=0)
        {
            Cleanup(setting, pano, imgs, keyFiles, parent);
            return cps;
        };
    };
    // now connect all image groups
    // generate temporary panorama to add all found cps
    UIntSet allImgs;
    fill_set(allImgs, 0, pano.getNrOfImages()-1);
    Panorama optPano=pano.getSubset(allImgs);
    for (CPVector::const_iterator it=cps.begin();it!=cps.end();++it)
        optPano.addCtrlPoint(*it);

    CPGraph graph;
    createCPGraph(optPano, graph);
    CPComponents comps;
    int n = findCPComponents(graph, comps);
    if(n>1)
    {
        UIntSet ImagesGroups;
        for(unsigned int i=0;i<n;i++)
        {
            ImagesGroups.insert(*(comps[i].begin()));
            if(comps[i].size()>1)
                ImagesGroups.insert(*(comps[i].rbegin()));
        };
        AutoPanoSift matcher;
        CPVector new_cps;
        if(setting.IsTwoStepDetector())
            new_cps=matcher.automatch(setting, optPano, ImagesGroups, nFeatures, keyFiles, ret_value, parent);
        else
            new_cps=matcher.automatch(setting, optPano, ImagesGroups, nFeatures, ret_value, parent);
        if(new_cps.size()>0)
            AddControlPointsWithCheck(cps,new_cps,&optPano);
        if(ret_value!=0)
        {
            Cleanup(setting, pano, imgs, keyFiles, parent);
            return cps;
        };
        createCPGraph(optPano,graph);
        n=findCPComponents(graph, comps);
    };
    if(n==1 && setting.GetOption())
    {
        //next steps happens only when all images are connected;
        //now optimize panorama
        PanoramaOptions opts = pano.getOptions();
        opts.setProjection(PanoramaOptions::EQUIRECTANGULAR);
        // calculate proper scaling, 1:1 resolution.
        // Otherwise optimizer distances are meaningless.
        opts.setWidth(30000, false);
        opts.setHeight(15000);

        optPano.setOptions(opts);
        int w = optPano.calcOptimalWidth();
        opts.setWidth(w);
        opts.setHeight(w/2);
        optPano.setOptions(opts);

        //generate optimize vector, optimize only yaw and pitch
        OptimizeVector optvars;
        const SrcPanoImage & anchorImage = optPano.getImage(opts.optimizeReferenceImage);
        for (unsigned i=0; i < optPano.getNrOfImages(); i++) 
        {
            std::set<std::string> imgopt;
            if(i==opts.optimizeReferenceImage)
            {
                //optimize only anchors pitch, not yaw
                imgopt.insert("p");
            }
            else
            {
                // do not optimize anchor image's stack for position.
                if(!optPano.getImage(i).YawisLinkedWith(anchorImage))
                {
                    imgopt.insert("p");
                    imgopt.insert("y");
                };
            };
            optvars.push_back(imgopt);
        }
        optPano.setOptimizeVector(optvars);

        // remove vertical and horizontal control points
        CPVector backupOldCPS = optPano.getCtrlPoints();
        CPVector backupNewCPS;
        for (CPVector::const_iterator it = backupOldCPS.begin(); it != backupOldCPS.end(); it++) {
            if (it->mode == ControlPoint::X_Y)
            {
                backupNewCPS.push_back(*it);
            }
        }
        optPano.setCtrlPoints(backupNewCPS);
        // do a first pairwise optimisation step
        HuginBase::AutoOptimise::autoOptimise(optPano,false);
        HuginBase::PTools::optimize(optPano);
        optPano.setCtrlPoints(backupOldCPS);
        //and find cp on overlapping images
        //work only on image pairs, which are not yet connected
        AutoPanoSiftPreAlign matcher;
        CPDetectorSetting newSetting;
        newSetting.SetProg(setting.GetProg());
        newSetting.SetArgs(setting.GetArgs());
        if(setting.IsTwoStepDetector())
        {
            newSetting.SetProgMatcher(setting.GetProgMatcher());
            newSetting.SetArgsMatcher(setting.GetArgsMatcher());
        };
        newSetting.SetOption(true);
        CPVector new_cps;
        if(setting.IsTwoStepDetector())
            new_cps=matcher.automatch(newSetting, optPano, imgs, nFeatures, keyFiles, ret_value, parent);
        else
            new_cps=matcher.automatch(newSetting, optPano, imgs, nFeatures, ret_value, parent);
        if(new_cps.size()>0)
            AddControlPointsWithCheck(cps,new_cps);
    };
    Cleanup(setting, pano, imgs, keyFiles, parent);
    return cps;
};