Пример #1
0
//==============================================================================
//                       CALC REVERSE MOBILIZER H_FM
//==============================================================================
// This is the default implementation for turning H_MF into H_FM. 
// A mobilizer can override this to do it faster.
// From the Simbody theory manual,
//      H_FM_w = - R_FM*H_MF_w
//      H_FM_v = -(R_FM*H_MF_v + p_FM x H_FM_w)
//             
template<int dof, bool noR_FM, bool noX_MB, bool noR_PF> void
RigidBodyNodeSpec<dof, noR_FM, noX_MB, noR_PF>::calcReverseMobilizerH_FM(
    const SBStateDigest& sbs,
    HType&               H_FM) const
{
    // Must use "upd" here rather than "get" because this is
    // called during realize(Position).
    const SBTreePositionCache& pc = sbs.updTreePositionCache();

    HType H_MF;
    calcAcrossJointVelocityJacobian(sbs, H_MF);

    const Rotation& R_FM = getX_FM(pc).R();
    const Vec3&     p_FM = getX_FM(pc).p();

    // Make cross product matrix (3 flops). Saves a few flops (3*dof) to
    // transpose this and get the negative of the cross product matrix.
    const Mat33     np_FM_x  = ~crossMat(p_FM);

    if (noR_FM) {
        H_FM[0] = -H_MF[0];
        H_FM[1] = np_FM_x * H_FM[0] - H_MF[1]; // 15*dof flops
    }
    else {
        H_FM[0] = -(R_FM * H_MF[0]);                // 18*dof flops
        H_FM[1] = np_FM_x * H_FM[0] - R_FM*H_MF[1]; // 33*dof flops
    }
}
Пример #2
0
    void realizePosition(const SBStateDigest& sbs) const {
        SBTreePositionCache& pc = sbs.updTreePositionCache();

        const Transform& X_MB = getX_MB();   // fixed
        const Transform& X_PF = getX_PF();   // fixed
        const Transform& X_GP = getX_GP(pc); // already calculated

        updX_FM(pc).setToZero();
        updX_PB(pc) = X_PF * X_MB;
        updX_GB(pc) = X_GP * getX_PB(pc);
        const Vec3 p_PB_G = getX_GP(pc).R() * getX_PB(pc).p();

        // The Phi matrix conveniently performs child-to-parent (inward) shifting
        // on spatial quantities (forces); its transpose does parent-to-child
        // (outward) shifting for velocities.
        updPhi(pc) = PhiMatrix(p_PB_G);

        // Calculate spatial mass properties. That means we need to transform
        // the local mass moments into the Ground frame and reconstruct the
        // spatial inertia matrix Mk.

        const Rotation& R_GB = getX_GB(pc).R();
        const Vec3&     p_GB = getX_GB(pc).p();

        // reexpress inertia in ground (57 flops)
        const UnitInertia G_Bo_G  = getUnitInertia_OB_B().reexpress(~R_GB);
        const Vec3        p_BBc_G = R_GB*getCOM_B(); // 15 flops

        updCOM_G(pc) = p_GB + p_BBc_G; // 3 flops

        // Calc Mk: the spatial inertia matrix about the body origin.
        // Note: we need to calculate this now so that we'll be able to calculate
        // kinetic energy without going past the Velocity stage.
        updMk_G(pc) = SpatialInertia(getMass(), p_BBc_G, G_Bo_G);
    }