void TransformAndDrawPrim(void *verts, void *inds, int prim, int vertexCount, LinkedShader *program, float *customUV, int forceIndexType) { // First, decode the verts and apply morphing VertexDecoder dec; dec.SetVertexType(gstate.vertType); dec.DecodeVerts(decoded, verts, inds, prim, vertexCount); bool useTexCoord = false; // Check if anything needs updating if (gstate.textureChanged) { if (gstate.textureMapEnable && !(gstate.clearmode & 1)) { PSPSetTexture(); useTexCoord = true; } } // Then, transform and draw in one big swoop (urgh!) // need to move this to the shader. // We're gonna have to keep software transforming RECTANGLES, unless we use a geom shader which we can't on OpenGL ES 2.0. // Usually, though, these primitives don't use lighting etc so it's no biggie performance wise, but it would be nice to get rid of // this code. // Actually, if we find the camera-relative right and down vectors, it might even be possible to add the extra points in pre-transformed // space and thus make decent use of hardware transform. // Actually again, single quads could be drawn more efficiently using GL_TRIANGLE_STRIP, no need to duplicate verts as for // GL_TRIANGLES. Still need to sw transform to compute the extra two corners though. // Temporary storage for RECTANGLES emulation float v2[3] = {0}; float uv2[2] = {0}; int numTrans = 0; TransformedVertex *trans = &transformed[0]; // TODO: Could use glDrawElements in some cases, see below. // TODO: Split up into multiple draw calls for Android where you can't guarantee support for more than 0x10000 verts. int i = 0; #ifdef ANDROID if (vertexCount > 0x10000/3) vertexCount = 0x10000/3; #endif for (int i = 0; i < vertexCount; i++) { int indexType = (gstate.vertType & GE_VTYPE_IDX_MASK); if (forceIndexType != -1) { indexType = forceIndexType; } int index; if (indexType == GE_VTYPE_IDX_8BIT) { index = ((u8*)inds)[i]; } else if (indexType == GE_VTYPE_IDX_16BIT) { index = ((u16*)inds)[i]; } else { index = i; } float v[3] = {0,0,0}; float c[4] = {1,1,1,1}; float uv[2] = {0,0}; if (gstate.vertType & GE_VTYPE_THROUGH_MASK) { // Do not touch the coordinates or the colors. No lighting. for (int j=0; j<3; j++) v[j] = decoded[index].pos[j]; // TODO : check if has color for (int j=0; j<4; j++) c[j] = decoded[index].color[j]; // TODO : check if has uv for (int j=0; j<2; j++) uv[j] = decoded[index].uv[j]; //Rescale UV? } else { //We do software T&L for now float out[3], norm[3]; if ((gstate.vertType & GE_VTYPE_WEIGHT_MASK) == GE_VTYPE_WEIGHT_NONE) { Vec3ByMatrix43(out, decoded[index].pos, gstate.worldMatrix); Norm3ByMatrix43(norm, decoded[index].normal, gstate.worldMatrix); } else { Vec3 psum(0,0,0); Vec3 nsum(0,0,0); int nweights = (gstate.vertType & GE_VTYPE_WEIGHT_MASK) >> GE_VTYPE_WEIGHT_SHIFT; for (int i = 0; i < nweights; i++) { Vec3ByMatrix43(out, decoded[index].pos, gstate.boneMatrix+i*12); Norm3ByMatrix43(norm, decoded[index].normal, gstate.boneMatrix+i*12); Vec3 tpos(out), tnorm(norm); psum += tpos*decoded[index].weights[i]; nsum += tnorm*decoded[index].weights[i]; } nsum.Normalize(); psum.Write(out); nsum.Write(norm); } // Perform lighting here if enabled. don't need to check through, it's checked above. float dots[4] = {0,0,0,0}; if (program->a_color0 != -1) { //c[1] = norm[1]; float litColor[4] = {0,0,0,0}; Light(litColor, decoded[index].color, out, norm, dots); if (gstate.lightingEnable & 1) { memcpy(c, litColor, sizeof(litColor)); } else { // no lighting? copy the color. for (int j=0; j<4; j++) c[j] = decoded[index].color[j]; } } else { // no color in the fragment program??? for (int j=0; j<4; j++) c[j] = decoded[index].color[j]; } if (customUV) { uv[0] = customUV[index * 2 + 0]*gstate.uScale + gstate.uOff; uv[1] = customUV[index * 2 + 1]*gstate.vScale + gstate.vOff; } else { // Perform texture coordinate generation after the transform and lighting - one style of UV depends on lights. switch (gstate.texmapmode & 0x3) { case 0: // UV mapping // Texture scale/offset is only performed in this mode. uv[0] = decoded[index].uv[0]*gstate.uScale + gstate.uOff; uv[1] = decoded[index].uv[1]*gstate.vScale + gstate.vOff; break; case 1: { // Projection mapping Vec3 source; switch ((gstate.texmapmode >> 8) & 0x3) { case 0: // Use model space XYZ as source source = decoded[index].pos; break; case 1: // Use unscaled UV as source source = Vec3(decoded[index].uv[0], decoded[index].uv[1], 0.0f); break; case 2: // Use normalized normal as source source = Vec3(norm).Normalized(); break; case 3: // Use non-normalized normal as source! source = Vec3(norm); break; } float uvw[3]; Vec3ByMatrix43(uvw, &source.x, gstate.tgenMatrix); uv[0] = uvw[0]; uv[1] = uvw[1]; } break; case 2: // Shade mapping { int lightsource1 = gstate.texshade & 0x3; int lightsource2 = (gstate.texshade >> 8) & 0x3; uv[0] = dots[lightsource1]; uv[1] = dots[lightsource2]; } break; case 3: // Illegal break; } } // Transform the coord by the view matrix. Should this be done before or after texcoord generation? Vec3ByMatrix43(v, out, gstate.viewMatrix); } // We need to tesselate axis-aligned rectangles, as they're only specified by two coordinates. if (prim == GE_PRIM_RECTANGLES) { if ((i & 1) == 0) { // Save this vertex so we can generate when we get the next one. Color is taken from the last vertex. memcpy(v2, v, sizeof(float)*3); memcpy(uv2,uv,sizeof(float)*2); } else { // We have to turn the rectangle into two triangles, so 6 points. Sigh. // top left trans->x = v[0]; trans->y = v[1]; trans->z = v[2]; trans->uv[0] = uv[0]; trans->uv[1] = uv[1]; memcpy(trans->color, c, 4*sizeof(float)); trans++; // top right trans->x = v2[0]; trans->y = v[1]; trans->z = v[2]; trans->uv[0] = uv2[0]; trans->uv[1] = uv[1]; memcpy(trans->color, c, 4*sizeof(float)); trans++; // bottom right trans->x = v2[0]; trans->y = v2[1]; trans->z = v[2]; trans->uv[0] = uv2[0]; trans->uv[1] = uv2[1]; memcpy(trans->color, c, 4*sizeof(float)); trans++; // bottom left trans->x = v[0]; trans->y = v2[1]; trans->z = v[2]; trans->uv[0] = uv[0]; trans->uv[1] = uv2[1]; memcpy(trans->color, c, 4*sizeof(float)); trans++; // top left trans->x = v[0]; trans->y = v[1]; trans->z = v[2]; trans->uv[0] = uv[0]; trans->uv[1] = uv[1]; memcpy(trans->color, c, 4*sizeof(float)); trans++; // bottom right trans->x = v2[0]; trans->y = v2[1]; trans->z = v[2]; trans->uv[0] = uv2[0]; trans->uv[1] = uv2[1]; memcpy(trans->color, c, 4*sizeof(float)); trans++; numTrans += 6; } } else { memcpy(&trans->x, v, 3*sizeof(float)); memcpy(trans->color, c, 4*sizeof(float)); memcpy(trans->uv, uv, 2*sizeof(float)); trans++; numTrans++; } } glEnableVertexAttribArray(program->a_position); if (useTexCoord && program->a_texcoord != -1) glEnableVertexAttribArray(program->a_texcoord); if (program->a_color0 != -1) glEnableVertexAttribArray(program->a_color0); const int vertexSize = sizeof(*trans); glVertexAttribPointer(program->a_position, 3, GL_FLOAT, GL_FALSE, vertexSize, transformed); if (useTexCoord && program->a_texcoord != -1) glVertexAttribPointer(program->a_texcoord, 2, GL_FLOAT, GL_FALSE, vertexSize, ((uint8_t*)transformed) + 3 * 4); if (program->a_color0 != -1) glVertexAttribPointer(program->a_color0, 4, GL_FLOAT, GL_FALSE, vertexSize, ((uint8_t*)transformed) + 5 * 4); // NOTICE_LOG(G3D,"DrawPrimitive: %i", numTrans); glDrawArrays(glprim[prim], 0, numTrans); glDisableVertexAttribArray(program->a_position); if (useTexCoord && program->a_texcoord != -1) glDisableVertexAttribArray(program->a_texcoord); if (program->a_color0 != -1) glDisableVertexAttribArray(program->a_color0); /* if (((gstate.vertType ) & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_8BIT) { glDrawElements(glprim, vertexCount, GL_UNSIGNED_BYTE, inds); } else if (((gstate.vertType ) & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT) { glDrawElements(glprim, vertexCount, GL_UNSIGNED_SHORT, inds); } else {*/ }
void TransformUnit::SubmitPrimitive(void* vertices, void* indices, u32 prim_type, int vertex_count, u32 vertex_type) { // TODO: Cache VertexDecoder objects VertexDecoder vdecoder; vdecoder.SetVertexType(vertex_type); const DecVtxFormat& vtxfmt = vdecoder.GetDecVtxFmt(); static u8 buf[65536 * 48]; // yolo u16 index_lower_bound = 0; u16 index_upper_bound = vertex_count - 1; bool indices_16bit = (vertex_type & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT; u8* indices8 = (u8*)indices; u16* indices16 = (u16*)indices; if (indices) GetIndexBounds(indices, vertex_count, vertex_type, &index_lower_bound, &index_upper_bound); vdecoder.DecodeVerts(buf, vertices, index_lower_bound, index_upper_bound); VertexReader vreader(buf, vtxfmt, vertex_type); const int max_vtcs_per_prim = 3; int vtcs_per_prim = 0; if (prim_type == GE_PRIM_POINTS) vtcs_per_prim = 1; else if (prim_type == GE_PRIM_LINES) vtcs_per_prim = 2; else if (prim_type == GE_PRIM_TRIANGLES) vtcs_per_prim = 3; else if (prim_type == GE_PRIM_RECTANGLES) vtcs_per_prim = 2; else { // TODO: Unsupported } if (prim_type == GE_PRIM_POINTS || prim_type == GE_PRIM_LINES || prim_type == GE_PRIM_TRIANGLES || prim_type == GE_PRIM_RECTANGLES) { for (int vtx = 0; vtx < vertex_count; vtx += vtcs_per_prim) { VertexData data[max_vtcs_per_prim]; for (int i = 0; i < vtcs_per_prim; ++i) { if (indices) vreader.Goto(indices_16bit ? indices16[vtx+i] : indices8[vtx+i]); else vreader.Goto(vtx+i); data[i] = ReadVertex(vreader); if (outside_range_flag) break; } if (outside_range_flag) { outside_range_flag = false; continue; } switch (prim_type) { case GE_PRIM_TRIANGLES: { if (!gstate.isCullEnabled() || gstate.isModeClear()) { Clipper::ProcessTriangle(data[0], data[1], data[2]); Clipper::ProcessTriangle(data[2], data[1], data[0]); } else if (!gstate.getCullMode()) Clipper::ProcessTriangle(data[2], data[1], data[0]); else Clipper::ProcessTriangle(data[0], data[1], data[2]); break; } case GE_PRIM_RECTANGLES: Clipper::ProcessQuad(data[0], data[1]); break; } } } else if (prim_type == GE_PRIM_TRIANGLE_STRIP) { VertexData data[3]; unsigned int skip_count = 2; // Don't draw a triangle when loading the first two vertices for (int vtx = 0; vtx < vertex_count; ++vtx) { if (indices) vreader.Goto(indices_16bit ? indices16[vtx] : indices8[vtx]); else vreader.Goto(vtx); data[vtx % 3] = ReadVertex(vreader); if (outside_range_flag) { // Drop all primitives containing the current vertex skip_count = 2; outside_range_flag = false; continue; } if (skip_count) { --skip_count; continue; } if (!gstate.isCullEnabled() || gstate.isModeClear()) { Clipper::ProcessTriangle(data[0], data[1], data[2]); Clipper::ProcessTriangle(data[2], data[1], data[0]); } else if ((!gstate.getCullMode()) ^ (vtx % 2)) { // We need to reverse the vertex order for each second primitive, // but we additionally need to do that for every primitive if CCW cullmode is used. Clipper::ProcessTriangle(data[2], data[1], data[0]); } else { Clipper::ProcessTriangle(data[0], data[1], data[2]); } } } else if (prim_type == GE_PRIM_TRIANGLE_FAN) { VertexData data[3]; unsigned int skip_count = 1; // Don't draw a triangle when loading the first two vertices if (indices) vreader.Goto(indices_16bit ? indices16[0] : indices8[0]); else vreader.Goto(0); data[0] = ReadVertex(vreader); for (int vtx = 1; vtx < vertex_count; ++vtx) { if (indices) vreader.Goto(indices_16bit ? indices16[vtx] : indices8[vtx]); else vreader.Goto(vtx); data[2 - (vtx % 2)] = ReadVertex(vreader); if (outside_range_flag) { // Drop all primitives containing the current vertex skip_count = 2; outside_range_flag = false; continue; } if (skip_count) { --skip_count; continue; } if (!gstate.isCullEnabled() || gstate.isModeClear()) { Clipper::ProcessTriangle(data[0], data[1], data[2]); Clipper::ProcessTriangle(data[2], data[1], data[0]); } else if ((!gstate.getCullMode()) ^ (vtx % 2)) { // We need to reverse the vertex order for each second primitive, // but we additionally need to do that for every primitive if CCW cullmode is used. Clipper::ProcessTriangle(data[2], data[1], data[0]); } else { Clipper::ProcessTriangle(data[0], data[1], data[2]); } } } }
void TransformUnit::SubmitSpline(void* control_points, void* indices, int count_u, int count_v, int type_u, int type_v, GEPatchPrimType prim_type, u32 vertex_type) { VertexDecoder vdecoder; vdecoder.SetVertexType(vertex_type); const DecVtxFormat& vtxfmt = vdecoder.GetDecVtxFmt(); static u8 buf[65536 * 48]; // yolo u16 index_lower_bound = 0; u16 index_upper_bound = count_u * count_v - 1; bool indices_16bit = (vertex_type & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT; u8* indices8 = (u8*)indices; u16* indices16 = (u16*)indices; if (indices) GetIndexBounds(indices, count_u*count_v, vertex_type, &index_lower_bound, &index_upper_bound); vdecoder.DecodeVerts(buf, control_points, index_lower_bound, index_upper_bound); VertexReader vreader(buf, vtxfmt, vertex_type); int num_patches_u = count_u - 3; int num_patches_v = count_v - 3; // TODO: Do something less idiotic to manage this buffer SplinePatch* patches = new SplinePatch[num_patches_u * num_patches_v]; for (int patch_u = 0; patch_u < num_patches_u; ++patch_u) { for (int patch_v = 0; patch_v < num_patches_v; ++patch_v) { SplinePatch& patch = patches[patch_u + patch_v * num_patches_u]; for (int point = 0; point < 16; ++point) { int idx = (patch_u + point%4) + (patch_v + point/4) * count_u; if (indices) vreader.Goto(indices_16bit ? indices16[idx] : indices8[idx]); else vreader.Goto(idx); patch.points[point] = ReadVertex(vreader); } patch.type = (type_u | (type_v<<2)); if (patch_u != 0) patch.type &= ~START_OPEN_U; if (patch_v != 0) patch.type &= ~START_OPEN_V; if (patch_u != num_patches_u-1) patch.type &= ~END_OPEN_U; if (patch_v != num_patches_v-1) patch.type &= ~END_OPEN_V; } } for (int patch_idx = 0; patch_idx < num_patches_u*num_patches_v; ++patch_idx) { SplinePatch& patch = patches[patch_idx]; // TODO: Should do actual patch subdivision instead of just drawing the control points! const int tile_min_u = (patch.type & START_OPEN_U) ? 0 : 1; const int tile_min_v = (patch.type & START_OPEN_V) ? 0 : 1; const int tile_max_u = (patch.type & END_OPEN_U) ? 3 : 2; const int tile_max_v = (patch.type & END_OPEN_V) ? 3 : 2; for (int tile_u = tile_min_u; tile_u < tile_max_u; ++tile_u) { for (int tile_v = tile_min_v; tile_v < tile_max_v; ++tile_v) { int point_index = tile_u + tile_v*4; VertexData v0 = patch.points[point_index]; VertexData v1 = patch.points[point_index+1]; VertexData v2 = patch.points[point_index+4]; VertexData v3 = patch.points[point_index+5]; // TODO: Backface culling etc Clipper::ProcessTriangle(v0, v1, v2); Clipper::ProcessTriangle(v2, v1, v0); Clipper::ProcessTriangle(v2, v1, v3); Clipper::ProcessTriangle(v3, v1, v2); } } } delete[] patches; }
void TransformUnit::SubmitPrimitive(void* vertices, void* indices, u32 prim_type, int vertex_count, u32 vertex_type, int *bytesRead) { // TODO: Cache VertexDecoder objects VertexDecoder vdecoder; VertexDecoderOptions options; memset(&options, 0, sizeof(options)); options.expandAllUVtoFloat = false; vdecoder.SetVertexType(vertex_type, options); const DecVtxFormat& vtxfmt = vdecoder.GetDecVtxFmt(); if (bytesRead) *bytesRead = vertex_count * vdecoder.VertexSize(); // Frame skipping. if (gstate_c.skipDrawReason & SKIPDRAW_SKIPFRAME) { return; } u16 index_lower_bound = 0; u16 index_upper_bound = vertex_count - 1; bool indices_16bit = (vertex_type & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT; bool indices_32bit = (vertex_type & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_32BIT; u8 *indices8 = (u8 *)indices; u16 *indices16 = (u16 *)indices; u32 *indices32 = (u32 *)indices; if (indices) GetIndexBounds(indices, vertex_count, vertex_type, &index_lower_bound, &index_upper_bound); vdecoder.DecodeVerts(buf, vertices, index_lower_bound, index_upper_bound); VertexReader vreader(buf, vtxfmt, vertex_type); const int max_vtcs_per_prim = 3; int vtcs_per_prim = 0; switch (prim_type) { case GE_PRIM_POINTS: vtcs_per_prim = 1; break; case GE_PRIM_LINES: vtcs_per_prim = 2; break; case GE_PRIM_TRIANGLES: vtcs_per_prim = 3; break; case GE_PRIM_RECTANGLES: vtcs_per_prim = 2; break; } VertexData data[max_vtcs_per_prim]; // TODO: Do this in two passes - first process the vertices (before indexing/stripping), // then resolve the indices. This lets us avoid transforming shared vertices twice. switch (prim_type) { case GE_PRIM_POINTS: case GE_PRIM_LINES: case GE_PRIM_TRIANGLES: case GE_PRIM_RECTANGLES: { for (int vtx = 0; vtx < vertex_count; vtx += vtcs_per_prim) { for (int i = 0; i < vtcs_per_prim; ++i) { if (indices) { if (indices_32bit) { vreader.Goto(indices32[vtx + i]); } else if (indices_16bit) { vreader.Goto(indices16[vtx + i]); } else { vreader.Goto(indices8[vtx + i]); } } else { vreader.Goto(vtx+i); } data[i] = ReadVertex(vreader); if (outside_range_flag) break; } if (outside_range_flag) { outside_range_flag = false; continue; } switch (prim_type) { case GE_PRIM_TRIANGLES: { if (!gstate.isCullEnabled() || gstate.isModeClear()) { Clipper::ProcessTriangle(data[0], data[1], data[2]); Clipper::ProcessTriangle(data[2], data[1], data[0]); } else if (!gstate.getCullMode()) Clipper::ProcessTriangle(data[2], data[1], data[0]); else Clipper::ProcessTriangle(data[0], data[1], data[2]); break; } case GE_PRIM_RECTANGLES: Clipper::ProcessRect(data[0], data[1]); break; case GE_PRIM_LINES: Clipper::ProcessLine(data[0], data[1]); break; case GE_PRIM_POINTS: Clipper::ProcessPoint(data[0]); break; } } break; } case GE_PRIM_LINE_STRIP: { int skip_count = 1; // Don't draw a line when loading the first vertex for (int vtx = 0; vtx < vertex_count; ++vtx) { if (indices) vreader.Goto(indices_16bit ? indices16[vtx] : indices8[vtx]); else vreader.Goto(vtx); data[vtx & 1] = ReadVertex(vreader); if (outside_range_flag) { // Drop all primitives containing the current vertex skip_count = 2; outside_range_flag = false; continue; } if (skip_count) { --skip_count; } else { Clipper::ProcessLine(data[(vtx & 1) ^ 1], data[vtx & 1]); } } break; } case GE_PRIM_TRIANGLE_STRIP: { int skip_count = 2; // Don't draw a triangle when loading the first two vertices for (int vtx = 0; vtx < vertex_count; ++vtx) { if (indices) vreader.Goto(indices_16bit ? indices16[vtx] : indices8[vtx]); else vreader.Goto(vtx); data[vtx % 3] = ReadVertex(vreader); if (outside_range_flag) { // Drop all primitives containing the current vertex skip_count = 2; outside_range_flag = false; continue; } if (skip_count) { --skip_count; continue; } if (!gstate.isCullEnabled() || gstate.isModeClear()) { Clipper::ProcessTriangle(data[0], data[1], data[2]); Clipper::ProcessTriangle(data[2], data[1], data[0]); } else if ((!gstate.getCullMode()) ^ (vtx % 2)) { // We need to reverse the vertex order for each second primitive, // but we additionally need to do that for every primitive if CCW cullmode is used. Clipper::ProcessTriangle(data[2], data[1], data[0]); } else { Clipper::ProcessTriangle(data[0], data[1], data[2]); } } break; } case GE_PRIM_TRIANGLE_FAN: { unsigned int skip_count = 1; // Don't draw a triangle when loading the first two vertices if (indices) vreader.Goto(indices_16bit ? indices16[0] : indices8[0]); else vreader.Goto(0); data[0] = ReadVertex(vreader); for (int vtx = 1; vtx < vertex_count; ++vtx) { if (indices) vreader.Goto(indices_16bit ? indices16[vtx] : indices8[vtx]); else vreader.Goto(vtx); data[2 - (vtx % 2)] = ReadVertex(vreader); if (outside_range_flag) { // Drop all primitives containing the current vertex skip_count = 2; outside_range_flag = false; continue; } if (skip_count) { --skip_count; continue; } if (!gstate.isCullEnabled() || gstate.isModeClear()) { Clipper::ProcessTriangle(data[0], data[1], data[2]); Clipper::ProcessTriangle(data[2], data[1], data[0]); } else if ((!gstate.getCullMode()) ^ (vtx % 2)) { // We need to reverse the vertex order for each second primitive, // but we additionally need to do that for every primitive if CCW cullmode is used. Clipper::ProcessTriangle(data[2], data[1], data[0]); } else { Clipper::ProcessTriangle(data[0], data[1], data[2]); } } break; } } host->GPUNotifyDraw(); }
void TransformUnit::SubmitSpline(void* control_points, void* indices, int count_u, int count_v, int type_u, int type_v, GEPatchPrimType prim_type, u32 vertex_type) { VertexDecoder vdecoder; VertexDecoderOptions options; memset(&options, 0, sizeof(options)); options.expandAllUVtoFloat = false; vdecoder.SetVertexType(vertex_type, options); const DecVtxFormat& vtxfmt = vdecoder.GetDecVtxFmt(); static u8 buf[65536 * 48]; // yolo u16 index_lower_bound = 0; u16 index_upper_bound = count_u * count_v - 1; bool indices_16bit = (vertex_type & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT; bool indices_32bit = (vertex_type & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_32BIT; u8 *indices8 = (u8 *)indices; u16 *indices16 = (u16 *)indices; u32 *indices32 = (u32 *)indices; if (indices) GetIndexBounds(indices, count_u*count_v, vertex_type, &index_lower_bound, &index_upper_bound); vdecoder.DecodeVerts(buf, control_points, index_lower_bound, index_upper_bound); VertexReader vreader(buf, vtxfmt, vertex_type); int num_patches_u = count_u - 3; int num_patches_v = count_v - 3; if (patchBufferSize_ < num_patches_u * num_patches_v) { if (patchBuffer_) { FreeAlignedMemory(patchBuffer_); } patchBuffer_ = (SplinePatch *)AllocateAlignedMemory(num_patches_u * num_patches_v, 16); patchBufferSize_ = num_patches_u * num_patches_v; } SplinePatch *patches = patchBuffer_; for (int patch_u = 0; patch_u < num_patches_u; ++patch_u) { for (int patch_v = 0; patch_v < num_patches_v; ++patch_v) { SplinePatch& patch = patches[patch_u + patch_v * num_patches_u]; for (int point = 0; point < 16; ++point) { int idx = (patch_u + point%4) + (patch_v + point/4) * count_u; if (indices) { if (indices_32bit) { vreader.Goto(indices32[idx]); } else if (indices_16bit) { vreader.Goto(indices16[idx]); } else { vreader.Goto(indices8[idx]); } } else { vreader.Goto(idx); } patch.points[point] = ReadVertex(vreader); } patch.type = (type_u | (type_v<<2)); if (patch_u != 0) patch.type &= ~START_OPEN_U; if (patch_v != 0) patch.type &= ~START_OPEN_V; if (patch_u != num_patches_u-1) patch.type &= ~END_OPEN_U; if (patch_v != num_patches_v-1) patch.type &= ~END_OPEN_V; } } for (int patch_idx = 0; patch_idx < num_patches_u*num_patches_v; ++patch_idx) { SplinePatch& patch = patches[patch_idx]; // TODO: Should do actual patch subdivision instead of just drawing the control points! const int tile_min_u = (patch.type & START_OPEN_U) ? 0 : 1; const int tile_min_v = (patch.type & START_OPEN_V) ? 0 : 1; const int tile_max_u = (patch.type & END_OPEN_U) ? 3 : 2; const int tile_max_v = (patch.type & END_OPEN_V) ? 3 : 2; for (int tile_u = tile_min_u; tile_u < tile_max_u; ++tile_u) { for (int tile_v = tile_min_v; tile_v < tile_max_v; ++tile_v) { int point_index = tile_u + tile_v*4; VertexData v0 = patch.points[point_index]; VertexData v1 = patch.points[point_index+1]; VertexData v2 = patch.points[point_index+4]; VertexData v3 = patch.points[point_index+5]; // TODO: Backface culling etc Clipper::ProcessTriangle(v0, v1, v2); Clipper::ProcessTriangle(v2, v1, v0); Clipper::ProcessTriangle(v2, v1, v3); Clipper::ProcessTriangle(v3, v1, v2); } } } host->GPUNotifyDraw(); }
// This normalizes a set of vertices in any format to SimpleVertex format, by processing away morphing AND skinning. // The rest of the transform pipeline like lighting will go as normal, either hardware or software. // The implementation is initially a bit inefficient but shouldn't be a big deal. // An intermediate buffer of not-easy-to-predict size is stored at bufPtr. u32 TransformDrawEngine::NormalizeVertices(u8 *outPtr, u8 *bufPtr, const u8 *inPtr, int lowerBound, int upperBound, u32 vertType) { // First, decode the vertices into a GPU compatible format. This step can be eliminated but will need a separate // implementation of the vertex decoder. VertexDecoder *dec = GetVertexDecoder(vertType); dec->DecodeVerts(bufPtr, inPtr, lowerBound, upperBound); // OK, morphing eliminated but bones still remain to be taken care of. // Let's do a partial software transform where we only do skinning. VertexReader reader(bufPtr, dec->GetDecVtxFmt(), vertType); SimpleVertex *sverts = (SimpleVertex *)outPtr; const u8 defaultColor[4] = { (u8)gstate.getMaterialAmbientR(), (u8)gstate.getMaterialAmbientG(), (u8)gstate.getMaterialAmbientB(), (u8)gstate.getMaterialAmbientA(), }; // Let's have two separate loops, one for non skinning and one for skinning. if ((vertType & GE_VTYPE_WEIGHT_MASK) != GE_VTYPE_WEIGHT_NONE) { int numBoneWeights = vertTypeGetNumBoneWeights(vertType); for (int i = lowerBound; i <= upperBound; i++) { reader.Goto(i); SimpleVertex &sv = sverts[i]; if (vertType & GE_VTYPE_TC_MASK) { reader.ReadUV(sv.uv); } if (vertType & GE_VTYPE_COL_MASK) { reader.ReadColor0_8888(sv.color); } else { memcpy(sv.color, defaultColor, 4); } float nrm[3], pos[3]; float bnrm[3], bpos[3]; if (vertType & GE_VTYPE_NRM_MASK) { // Normals are generated during tesselation anyway, not sure if any need to supply reader.ReadNrm(nrm); } else { nrm[0] = 0; nrm[1] = 0; nrm[2] = 1.0f; } reader.ReadPos(pos); // Apply skinning transform directly float weights[8]; reader.ReadWeights(weights); // Skinning Vec3f psum(0,0,0); Vec3f nsum(0,0,0); for (int i = 0; i < numBoneWeights; i++) { if (weights[i] != 0.0f) { Vec3ByMatrix43(bpos, pos, gstate.boneMatrix+i*12); Vec3f tpos(bpos); psum += tpos * weights[i]; Norm3ByMatrix43(bnrm, nrm, gstate.boneMatrix+i*12); Vec3f tnorm(bnrm); nsum += tnorm * weights[i]; } } sv.pos = psum; sv.nrm = nsum; } } else { for (int i = lowerBound; i <= upperBound; i++) { reader.Goto(i); SimpleVertex &sv = sverts[i]; if (vertType & GE_VTYPE_TC_MASK) { reader.ReadUV(sv.uv); } else { sv.uv[0] = 0; // This will get filled in during tesselation sv.uv[1] = 0; } if (vertType & GE_VTYPE_COL_MASK) { reader.ReadColor0_8888(sv.color); } else { memcpy(sv.color, defaultColor, 4); } if (vertType & GE_VTYPE_NRM_MASK) { // Normals are generated during tesselation anyway, not sure if any need to supply reader.ReadNrm((float *)&sv.nrm); } else { sv.nrm.x = 0; sv.nrm.y = 0; sv.nrm.z = 1.0f; } reader.ReadPos((float *)&sv.pos); } } // Okay, there we are! Return the new type (but keep the index bits) return GE_VTYPE_TC_FLOAT | GE_VTYPE_COL_8888 | GE_VTYPE_NRM_FLOAT | GE_VTYPE_POS_FLOAT | (vertType & GE_VTYPE_IDX_MASK); }