void CDecalRData::RenderDecals(std::vector<CDecalRData*>& decals, const CShaderDefines& context, ShadowMap* shadow, bool isDummyShader, const CShaderProgramPtr& dummy) { CShaderDefines contextDecal = context; contextDecal.Add("DECAL", "1"); for (size_t i = 0; i < decals.size(); ++i) { CDecalRData *decal = decals[i]; CMaterial &material = decal->m_Decal->m_Decal.m_Material; if (material.GetShaderEffect().length() == 0) { LOGERROR(L"Terrain renderer failed to load shader effect.\n"); continue; } int numPasses = 1; CShaderTechniquePtr techBase; if (!isDummyShader) { techBase = g_Renderer.GetShaderManager().LoadEffect( material.GetShaderEffect(), contextDecal, material.GetShaderDefines()); if (!techBase) { LOGERROR(L"Terrain renderer failed to load shader effect (%hs)\n", material.GetShaderEffect().string().c_str()); continue; } numPasses = techBase->GetNumPasses(); } for (int pass = 0; pass < numPasses; ++pass) { if (!isDummyShader) { techBase->BeginPass(pass); TerrainRenderer::PrepareShader(techBase->GetShader(), shadow); glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); } const CShaderProgramPtr& shader = isDummyShader ? dummy : techBase->GetShader(pass); if (material.GetSamplers().size() != 0) { CMaterial::SamplersVector samplers = material.GetSamplers(); size_t samplersNum = samplers.size(); for (size_t s = 0; s < samplersNum; ++s) { CMaterial::TextureSampler &samp = samplers[s]; shader->BindTexture(samp.Name.c_str(), samp.Sampler); } material.GetStaticUniforms().BindUniforms(shader); // TODO: Need to handle floating decals correctly. In particular, we need // to render non-floating before water and floating after water (to get // the blending right), and we also need to apply the correct lighting in // each case, which doesn't really seem possible with the current // TerrainRenderer. // Also, need to mark the decals as dirty when water height changes. // glDisable(GL_TEXTURE_2D); // m_Decal->GetBounds().Render(); // glEnable(GL_TEXTURE_2D); u8* base = decal->m_Array.Bind(); GLsizei stride = (GLsizei)decal->m_Array.GetStride(); u8* indexBase = decal->m_IndexArray.Bind(); #if !CONFIG2_GLES if (isDummyShader) { glColor3fv(decal->m_Decal->GetShadingColor().FloatArray()); } else #endif { shader->Uniform("shadingColor", decal->m_Decal->GetShadingColor()); } shader->VertexPointer(3, GL_FLOAT, stride, base + decal->m_Position.offset); shader->ColorPointer(4, GL_UNSIGNED_BYTE, stride, base + decal->m_DiffuseColor.offset); shader->TexCoordPointer(GL_TEXTURE0, 2, GL_FLOAT, stride, base + decal->m_UV.offset); shader->AssertPointersBound(); if (!g_Renderer.m_SkipSubmit) { glDrawElements(GL_TRIANGLES, (GLsizei)decal->m_IndexArray.GetNumVertices(), GL_UNSIGNED_SHORT, indexBase); } // bump stats g_Renderer.m_Stats.m_DrawCalls++; g_Renderer.m_Stats.m_TerrainTris += decal->m_IndexArray.GetNumVertices() / 3; CVertexBuffer::Unbind(); } if (!isDummyShader) { glDisable(GL_BLEND); techBase->EndPass(); } } } }
void CPatchRData::RenderBlends(const std::vector<CPatchRData*>& patches, const CShaderDefines& context, ShadowMap* shadow, bool isDummyShader, const CShaderProgramPtr& dummy) { Allocators::Arena<> arena(ARENA_SIZE); typedef std::vector<SBlendBatch, ProxyAllocator<SBlendBatch, Allocators::Arena<> > > BatchesStack; BatchesStack batches((BatchesStack::allocator_type(arena))); CShaderDefines contextBlend = context; contextBlend.Add("BLEND", "1"); PROFILE_START("compute batches"); // Reserve an arbitrary size that's probably big enough in most cases, // to avoid heavy reallocations batches.reserve(256); typedef std::vector<SBlendStackItem, ProxyAllocator<SBlendStackItem, Allocators::Arena<> > > BlendStacks; BlendStacks blendStacks((BlendStacks::allocator_type(arena))); blendStacks.reserve(patches.size()); // Extract all the blend splats from each patch for (size_t i = 0; i < patches.size(); ++i) { CPatchRData* patch = patches[i]; if (!patch->m_BlendSplats.empty()) { blendStacks.push_back(SBlendStackItem(patch->m_VBBlends, patch->m_VBBlendIndices, patch->m_BlendSplats, arena)); // Reverse the splats so the first to be rendered is at the back of the list std::reverse(blendStacks.back().splats.begin(), blendStacks.back().splats.end()); } } // Rearrange the collection of splats to be grouped by texture, preserving // order of splats within each patch: // (This is exactly the same algorithm used in CPatchRData::BuildBlends, // but applied to patch-sized splats rather than to tile-sized splats; // see that function for comments on the algorithm.) while (true) { if (!batches.empty()) { CTerrainTextureEntry* tex = batches.back().m_Texture; for (size_t k = 0; k < blendStacks.size(); ++k) { SBlendStackItem::SplatStack& splats = blendStacks[k].splats; if (!splats.empty() && splats.back().m_Texture == tex) { CVertexBuffer::VBChunk* vertices = blendStacks[k].vertices; CVertexBuffer::VBChunk* indices = blendStacks[k].indices; BatchElements& batch = PooledPairGet(PooledMapGet(batches.back().m_Batches, vertices->m_Owner, arena), indices->m_Owner, arena); batch.first.push_back(splats.back().m_IndexCount); u8* indexBase = indices->m_Owner->GetBindAddress(); batch.second.push_back(indexBase + sizeof(u16)*(indices->m_Index + splats.back().m_IndexStart)); splats.pop_back(); } } } CTerrainTextureEntry* bestTex = NULL; size_t bestStackSize = 0; for (size_t k = 0; k < blendStacks.size(); ++k) { SBlendStackItem::SplatStack& splats = blendStacks[k].splats; if (splats.size() > bestStackSize) { bestStackSize = splats.size(); bestTex = splats.back().m_Texture; } } if (bestStackSize == 0) break; SBlendBatch layer(arena); layer.m_Texture = bestTex; batches.push_back(layer); } PROFILE_END("compute batches"); CVertexBuffer* lastVB = NULL; for (BatchesStack::iterator itt = batches.begin(); itt != batches.end(); ++itt) { if (itt->m_Texture->GetMaterial().GetSamplers().size() == 0) continue; int numPasses = 1; CShaderTechniquePtr techBase; if (!isDummyShader) { techBase = g_Renderer.GetShaderManager().LoadEffect(itt->m_Texture->GetMaterial().GetShaderEffect(), contextBlend, itt->m_Texture->GetMaterial().GetShaderDefines()); numPasses = techBase->GetNumPasses(); } CShaderProgramPtr previousShader; for (int pass = 0; pass < numPasses; ++pass) { if (!isDummyShader) { techBase->BeginPass(pass); TerrainRenderer::PrepareShader(techBase->GetShader(), shadow); glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); } const CShaderProgramPtr& shader = isDummyShader ? dummy : techBase->GetShader(pass); if (itt->m_Texture) { CMaterial::SamplersVector samplers = itt->m_Texture->GetMaterial().GetSamplers(); size_t samplersNum = samplers.size(); for (size_t s = 0; s < samplersNum; ++s) { CMaterial::TextureSampler &samp = samplers[s]; shader->BindTexture(samp.Name.c_str(), samp.Sampler); } shader->BindTexture("blendTex", itt->m_Texture->m_TerrainAlpha->second.m_hCompositeAlphaMap); itt->m_Texture->GetMaterial().GetStaticUniforms().BindUniforms(shader); #if !CONFIG2_GLES if (isDummyShader) { pglClientActiveTextureARB(GL_TEXTURE0); glMatrixMode(GL_TEXTURE); glLoadMatrixf(itt->m_Texture->GetTextureMatrix()); glMatrixMode(GL_MODELVIEW); } else #endif { float c = itt->m_Texture->GetTextureMatrix()[0]; float ms = itt->m_Texture->GetTextureMatrix()[8]; shader->Uniform("textureTransform", c, ms, -ms, 0.f); } } else { shader->BindTexture("baseTex", g_Renderer.GetTextureManager().GetErrorTexture()); } for (VertexBufferBatches::iterator itv = itt->m_Batches.begin(); itv != itt->m_Batches.end(); ++itv) { // Rebind the VB only if it changed since the last batch if (itv->first != lastVB || shader != previousShader) { lastVB = itv->first; previousShader = shader; GLsizei stride = sizeof(SBlendVertex); SBlendVertex *base = (SBlendVertex *)itv->first->Bind(); shader->VertexPointer(3, GL_FLOAT, stride, &base->m_Position[0]); shader->ColorPointer(4, GL_UNSIGNED_BYTE, stride, &base->m_DiffuseColor); shader->NormalPointer(GL_FLOAT, stride, &base->m_Normal[0]); shader->TexCoordPointer(GL_TEXTURE0, 3, GL_FLOAT, stride, &base->m_Position[0]); shader->TexCoordPointer(GL_TEXTURE1, 2, GL_FLOAT, stride, &base->m_AlphaUVs[0]); } shader->AssertPointersBound(); for (IndexBufferBatches::iterator it = itv->second.begin(); it != itv->second.end(); ++it) { it->first->Bind(); BatchElements& batch = it->second; if (!g_Renderer.m_SkipSubmit) { for (size_t i = 0; i < batch.first.size(); ++i) glDrawElements(GL_TRIANGLES, batch.first[i], GL_UNSIGNED_SHORT, batch.second[i]); } g_Renderer.m_Stats.m_DrawCalls++; g_Renderer.m_Stats.m_BlendSplats++; g_Renderer.m_Stats.m_TerrainTris += std::accumulate(batch.first.begin(), batch.first.end(), 0) / 3; } } if (!isDummyShader) { glDisable(GL_BLEND); techBase->EndPass(); } } } #if !CONFIG2_GLES if (isDummyShader) { pglClientActiveTextureARB(GL_TEXTURE0); glMatrixMode(GL_TEXTURE); glLoadIdentity(); glMatrixMode(GL_MODELVIEW); } #endif CVertexBuffer::Unbind(); }
void ShaderModelRenderer::Render(const RenderModifierPtr& modifier, const CShaderDefines& context, int flags) { if (m->submissions.empty()) return; CMatrix3D worldToCam; g_Renderer.GetViewCamera().m_Orientation.GetInverse(worldToCam); /* * Rendering approach: * * m->submissions contains the list of CModels to render. * * The data we need to render a model is: * - CShaderTechnique * - CTexture * - CShaderUniforms * - CModelDef (mesh data) * - CModel (model instance data) * * For efficient rendering, we need to batch the draw calls to minimise state changes. * (Uniform and texture changes are assumed to be cheaper than binding new mesh data, * and shader changes are assumed to be most expensive.) * First, group all models that share a technique to render them together. * Within those groups, sub-group by CModelDef. * Within those sub-groups, sub-sub-group by CTexture. * Within those sub-sub-groups, sub-sub-sub-group by CShaderUniforms. * * Alpha-blended models have to be sorted by distance from camera, * then we can batch as long as the order is preserved. * Non-alpha-blended models can be arbitrarily reordered to maximise batching. * * For each model, the CShaderTechnique is derived from: * - The current global 'context' defines * - The CModel's material's defines * - The CModel's material's shader effect name * * There are a smallish number of materials, and a smaller number of techniques. * * To minimise technique lookups, we first group models by material, * in 'materialBuckets' (a hash table). * * For each material bucket we then look up the appropriate shader technique. * If the technique requires sort-by-distance, the model is added to the * 'sortByDistItems' list with its computed distance. * Otherwise, the bucket's list of models is sorted by modeldef+texture+uniforms, * then the technique and model list is added to 'techBuckets'. * * 'techBuckets' is then sorted by technique, to improve batching when multiple * materials map onto the same technique. * * (Note that this isn't perfect batching: we don't sort across models in * multiple buckets that share a technique. In practice that shouldn't reduce * batching much (we rarely have one mesh used with multiple materials), * and it saves on copying and lets us sort smaller lists.) * * Extra tech buckets are added for the sorted-by-distance models without reordering. * Finally we render by looping over each tech bucket, then looping over the model * list in each, rebinding the GL state whenever it changes. */ typedef boost::unordered_map<SMRMaterialBucketKey, std::vector<CModel*>, SMRMaterialBucketKeyHash> MaterialBuckets_t; MaterialBuckets_t materialBuckets; { PROFILE3("bucketing by material"); for (size_t i = 0; i < m->submissions.size(); ++i) { CModel* model = m->submissions[i]; CShaderDefines defs = model->GetMaterial().GetShaderDefines(); CShaderConditionalDefines condefs = model->GetMaterial().GetConditionalDefines(); for (size_t j = 0; j < condefs.GetSize(); ++j) { CShaderConditionalDefines::CondDefine &item = condefs.GetItem(j); int type = item.m_CondType; switch (type) { case DCOND_DISTANCE: { CVector3D modelpos = model->GetTransform().GetTranslation(); float dist = worldToCam.Transform(modelpos).Z; float dmin = item.m_CondArgs[0]; float dmax = item.m_CondArgs[1]; if ((dmin < 0 || dist >= dmin) && (dmax < 0 || dist < dmax)) defs.Add(item.m_DefName.c_str(), item.m_DefValue.c_str()); break; } } } SMRMaterialBucketKey key(model->GetMaterial().GetShaderEffect(), defs); std::vector<CModel*>& bucketItems = materialBuckets[key]; bucketItems.push_back(model); } } std::vector<SMRSortByDistItem> sortByDistItems; std::vector<CShaderTechniquePtr> sortByDistTechs; // indexed by sortByDistItems[i].techIdx // (which stores indexes instead of CShaderTechniquePtr directly // to avoid the shared_ptr copy cost when sorting; maybe it'd be better // if we just stored raw CShaderTechnique* and assumed the shader manager // will keep it alive long enough) std::vector<SMRTechBucket> techBuckets; { PROFILE3("processing material buckets"); for (MaterialBuckets_t::iterator it = materialBuckets.begin(); it != materialBuckets.end(); ++it) { CShaderTechniquePtr tech = g_Renderer.GetShaderManager().LoadEffect(it->first.effect, context, it->first.defines); // Skip invalid techniques (e.g. from data file errors) if (!tech) continue; if (tech->GetSortByDistance()) { // Add the tech into a vector so we can index it // (There might be duplicates in this list, but that doesn't really matter) if (sortByDistTechs.empty() || sortByDistTechs.back() != tech) sortByDistTechs.push_back(tech); size_t techIdx = sortByDistTechs.size()-1; // Add each model into sortByDistItems for (size_t i = 0; i < it->second.size(); ++i) { SMRSortByDistItem itemWithDist; itemWithDist.techIdx = techIdx; CModel* model = it->second[i]; itemWithDist.model = model; CVector3D modelpos = model->GetTransform().GetTranslation(); itemWithDist.dist = worldToCam.Transform(modelpos).Z; sortByDistItems.push_back(itemWithDist); } } else { // Sort model list by modeldef+texture, for batching // TODO: This only sorts by base texture. While this is an OK approximation // for most cases (as related samplers are usually used together), it would be better // to take all the samplers into account when sorting here. std::sort(it->second.begin(), it->second.end(), SMRBatchModel()); // Add a tech bucket pointing at this model list SMRTechBucket techBucket = { tech, &it->second[0], it->second.size() }; techBuckets.push_back(techBucket); } } } { PROFILE3("sorting tech buckets"); // Sort by technique, for better batching std::sort(techBuckets.begin(), techBuckets.end(), SMRCompareTechBucket()); } // List of models corresponding to sortByDistItems[i].model // (This exists primarily because techBuckets wants a CModel**; // we could avoid the cost of copying into this list by adding // a stride length into techBuckets and not requiring contiguous CModel*s) std::vector<CModel*> sortByDistModels; if (!sortByDistItems.empty()) { { PROFILE3("sorting items by dist"); std::sort(sortByDistItems.begin(), sortByDistItems.end(), SMRCompareSortByDistItem()); } { PROFILE3("batching dist-sorted items"); sortByDistModels.reserve(sortByDistItems.size()); // Find runs of distance-sorted models that share a technique, // and create a new tech bucket for each run size_t start = 0; // start of current run size_t currentTechIdx = sortByDistItems[start].techIdx; for (size_t end = 0; end < sortByDistItems.size(); ++end) { sortByDistModels.push_back(sortByDistItems[end].model); size_t techIdx = sortByDistItems[end].techIdx; if (techIdx != currentTechIdx) { // Start of a new run - push the old run into a new tech bucket SMRTechBucket techBucket = { sortByDistTechs[currentTechIdx], &sortByDistModels[start], end-start }; techBuckets.push_back(techBucket); start = end; currentTechIdx = techIdx; } } // Add the tech bucket for the final run SMRTechBucket techBucket = { sortByDistTechs[currentTechIdx], &sortByDistModels[start], sortByDistItems.size()-start }; techBuckets.push_back(techBucket); } } { PROFILE3("rendering bucketed submissions"); size_t idxTechStart = 0; // This vector keeps track of texture changes during rendering. It is kept outside the // loops to avoid excessive reallocations. The token allocation of 64 elements // should be plenty, though it is reallocated below (at a cost) if necessary. std::vector<CTexture*> currentTexs; currentTexs.reserve(64); // texBindings holds the identifier bindings in the shader, which can no longer be defined // statically in the ShaderRenderModifier class. texBindingNames uses interned strings to // keep track of when bindings need to be reevaluated. std::vector<CShaderProgram::Binding> texBindings; texBindings.reserve(64); std::vector<CStrIntern> texBindingNames; texBindingNames.reserve(64); while (idxTechStart < techBuckets.size()) { CShaderTechniquePtr currentTech = techBuckets[idxTechStart].tech; // Find runs [idxTechStart, idxTechEnd) in techBuckets of the same technique size_t idxTechEnd; for (idxTechEnd = idxTechStart + 1; idxTechEnd < techBuckets.size(); ++idxTechEnd) { if (techBuckets[idxTechEnd].tech != currentTech) break; } // For each of the technique's passes, render all the models in this run for (int pass = 0; pass < currentTech->GetNumPasses(); ++pass) { currentTech->BeginPass(pass); const CShaderProgramPtr& shader = currentTech->GetShader(pass); int streamflags = shader->GetStreamFlags(); modifier->BeginPass(shader); m->vertexRenderer->BeginPass(streamflags); // When the shader technique changes, textures need to be // rebound, so ensure there are no remnants from the last pass. // (the vector size is set to 0, but memory is not freed) currentTexs.clear(); texBindings.clear(); texBindingNames.clear(); CModelDef* currentModeldef = NULL; CShaderUniforms currentStaticUniforms; for (size_t idx = idxTechStart; idx < idxTechEnd; ++idx) { CModel** models = techBuckets[idx].models; size_t numModels = techBuckets[idx].numModels; for (size_t i = 0; i < numModels; ++i) { CModel* model = models[i]; if (flags && !(model->GetFlags() & flags)) continue; CMaterial::SamplersVector samplers = model->GetMaterial().GetSamplers(); size_t samplersNum = samplers.size(); // make sure the vectors are the right virtual sizes, and also // reallocate if there are more samplers than expected. if (currentTexs.size() != samplersNum) { currentTexs.resize(samplersNum, NULL); texBindings.resize(samplersNum, CShaderProgram::Binding()); texBindingNames.resize(samplersNum, CStrIntern()); // ensure they are definitely empty std::fill(texBindings.begin(), texBindings.end(), CShaderProgram::Binding()); std::fill(currentTexs.begin(), currentTexs.end(), (CTexture*)NULL); std::fill(texBindingNames.begin(), texBindingNames.end(), CStrIntern()); } // bind the samplers to the shader for (size_t s = 0; s < samplersNum; ++s) { CMaterial::TextureSampler &samp = samplers[s]; CShaderProgram::Binding bind = texBindings[s]; // check that the handles are current // and reevaluate them if necessary if (texBindingNames[s] == samp.Name && bind.Active()) { bind = texBindings[s]; } else { bind = shader->GetTextureBinding(samp.Name.c_str()); texBindings[s] = bind; texBindingNames[s] = samp.Name; } // same with the actual sampler bindings CTexture* newTex = samp.Sampler.get(); if (bind.Active() && newTex != currentTexs[s]) { shader->BindTexture(bind, samp.Sampler->GetHandle()); currentTexs[s] = newTex; } } // Bind modeldef when it changes CModelDef* newModeldef = model->GetModelDef().get(); if (newModeldef != currentModeldef) { currentModeldef = newModeldef; m->vertexRenderer->PrepareModelDef(shader, streamflags, *currentModeldef); } // Bind all uniforms when any change CShaderUniforms newStaticUniforms = model->GetMaterial().GetStaticUniforms(); if (newStaticUniforms != currentStaticUniforms) { currentStaticUniforms = newStaticUniforms; currentStaticUniforms.BindUniforms(shader); } CShaderRenderQueries renderQueries = model->GetMaterial().GetRenderQueries(); for (size_t q = 0; q < renderQueries.GetSize(); q++) { CShaderRenderQueries::RenderQuery rq = renderQueries.GetItem(q); //if (str == g_Renderer.GetShaderManager().QueryTime) if (rq.first == RQUERY_TIME) { //renderQueries.Set(str, (float)time, 0.0f, 0.0f, 0.0f); //shader->Uniform(rq.second, CVector3D(time,0,0)); CShaderProgram::Binding binding = shader->GetUniformBinding(rq.second); if (binding.Active()) { double time = g_Renderer.GetTimeManager().GetGlobalTime(); shader->Uniform(binding, time, 0,0,0); } } } //renderQueries.BindUniforms(shader); modifier->PrepareModel(shader, model); CModelRData* rdata = static_cast<CModelRData*>(model->GetRenderData()); ENSURE(rdata->GetKey() == m->vertexRenderer.get()); m->vertexRenderer->RenderModel(shader, streamflags, model, rdata); } } m->vertexRenderer->EndPass(streamflags); currentTech->EndPass(pass); } idxTechStart = idxTechEnd; } } }
void CPatchRData::RenderBases(const std::vector<CPatchRData*>& patches, const CShaderDefines& context, ShadowMap* shadow, bool isDummyShader, const CShaderProgramPtr& dummy) { Allocators::Arena<> arena(ARENA_SIZE); TextureBatches batches (TextureBatches::key_compare(), (TextureBatches::allocator_type(arena))); PROFILE_START("compute batches"); // Collect all the patches' base splats into their appropriate batches for (size_t i = 0; i < patches.size(); ++i) { CPatchRData* patch = patches[i]; for (size_t j = 0; j < patch->m_Splats.size(); ++j) { SSplat& splat = patch->m_Splats[j]; BatchElements& batch = PooledPairGet( PooledMapGet( PooledMapGet(batches, splat.m_Texture, arena), patch->m_VBBase->m_Owner, arena ), patch->m_VBBaseIndices->m_Owner, arena ); batch.first.push_back(splat.m_IndexCount); u8* indexBase = patch->m_VBBaseIndices->m_Owner->GetBindAddress(); batch.second.push_back(indexBase + sizeof(u16)*(patch->m_VBBaseIndices->m_Index + splat.m_IndexStart)); } } PROFILE_END("compute batches"); // Render each batch for (TextureBatches::iterator itt = batches.begin(); itt != batches.end(); ++itt) { int numPasses = 1; CShaderTechniquePtr techBase; if (!isDummyShader) { if (itt->first->GetMaterial().GetShaderEffect().length() == 0) { LOGERROR(L"Terrain renderer failed to load shader effect.\n"); continue; } techBase = g_Renderer.GetShaderManager().LoadEffect(itt->first->GetMaterial().GetShaderEffect(), context, itt->first->GetMaterial().GetShaderDefines()); numPasses = techBase->GetNumPasses(); } for (int pass = 0; pass < numPasses; ++pass) { if (!isDummyShader) { techBase->BeginPass(pass); TerrainRenderer::PrepareShader(techBase->GetShader(), shadow); } const CShaderProgramPtr& shader = isDummyShader ? dummy : techBase->GetShader(pass); if (itt->first->GetMaterial().GetSamplers().size() != 0) { CMaterial::SamplersVector samplers = itt->first->GetMaterial().GetSamplers(); size_t samplersNum = samplers.size(); for (size_t s = 0; s < samplersNum; ++s) { CMaterial::TextureSampler &samp = samplers[s]; shader->BindTexture(samp.Name.c_str(), samp.Sampler); } itt->first->GetMaterial().GetStaticUniforms().BindUniforms(shader); #if !CONFIG2_GLES if (isDummyShader) { glMatrixMode(GL_TEXTURE); glLoadMatrixf(itt->first->GetTextureMatrix()); glMatrixMode(GL_MODELVIEW); } else #endif { float c = itt->first->GetTextureMatrix()[0]; float ms = itt->first->GetTextureMatrix()[8]; shader->Uniform("textureTransform", c, ms, -ms, 0.f); } } else { shader->BindTexture("baseTex", g_Renderer.GetTextureManager().GetErrorTexture()); } for (VertexBufferBatches::iterator itv = itt->second.begin(); itv != itt->second.end(); ++itv) { GLsizei stride = sizeof(SBaseVertex); SBaseVertex *base = (SBaseVertex *)itv->first->Bind(); shader->VertexPointer(3, GL_FLOAT, stride, &base->m_Position[0]); shader->ColorPointer(4, GL_UNSIGNED_BYTE, stride, &base->m_DiffuseColor); shader->NormalPointer(GL_FLOAT, stride, &base->m_Normal[0]); shader->TexCoordPointer(GL_TEXTURE0, 3, GL_FLOAT, stride, &base->m_Position[0]); shader->AssertPointersBound(); for (IndexBufferBatches::iterator it = itv->second.begin(); it != itv->second.end(); ++it) { it->first->Bind(); BatchElements& batch = it->second; if (!g_Renderer.m_SkipSubmit) { // Don't use glMultiDrawElements here since it doesn't have a significant // performance impact and it suffers from various driver bugs (e.g. it breaks // in Mesa 7.10 swrast with index VBOs) for (size_t i = 0; i < batch.first.size(); ++i) glDrawElements(GL_TRIANGLES, batch.first[i], GL_UNSIGNED_SHORT, batch.second[i]); } g_Renderer.m_Stats.m_DrawCalls++; g_Renderer.m_Stats.m_TerrainTris += std::accumulate(batch.first.begin(), batch.first.end(), 0) / 3; } } if (!isDummyShader) techBase->EndPass(); } } #if !CONFIG2_GLES if (isDummyShader) { glMatrixMode(GL_TEXTURE); glLoadIdentity(); glMatrixMode(GL_MODELVIEW); } #endif CVertexBuffer::Unbind(); }