示例#1
0
static int zfLnxProbe(struct usb_interface *interface,
	const struct usb_device_id *id)
{
    struct usb_device *dev = interface_to_usbdev(interface);

    struct net_device *net = NULL;
    struct usbdrv_private *macp = NULL;
    int vendor_id, product_id;
    int result = 0;

    usb_get_dev(dev);

    vendor_id = dev->descriptor.idVendor;
    product_id = dev->descriptor.idProduct;

#ifdef HMAC_DEBUG
    printk(KERN_NOTICE "vendor_id = %04x\n", vendor_id);
    printk(KERN_NOTICE "product_id = %04x\n", product_id);

    if (dev->speed == USB_SPEED_HIGH)
        printk(KERN_NOTICE "USB 2.0 Host\n");
    else
        printk(KERN_NOTICE "USB 1.1 Host\n");
#endif

    if (!(macp = kmalloc(sizeof(struct usbdrv_private), GFP_KERNEL)))
    {
        printk(KERN_ERR "out of memory allocating device structure\n");
        result = -ENOMEM;
        goto fail;
    }

    /* Zero the memory */
    memset(macp, 0, sizeof(struct usbdrv_private));

    net = alloc_etherdev(0);

    if (net == NULL)
    {
        printk(KERN_ERR "zfLnxProbe: Not able to alloc etherdev struct\n");
        result = -ENOMEM;
        goto fail1;
    }

    strcpy(net->name, "ath%d");

    net->ml_priv = macp;   //kernel 2.6
    macp->udev = dev;
    macp->device = net;

    /* set up the endpoint information */
    /* check out the endpoints */
    macp->interface = interface;

    //init_waitqueue_head(&macp->regSet_wait);
    //init_waitqueue_head(&macp->iorwRsp_wait);
    //init_waitqueue_head(&macp->term_wait);

    if (!zfLnxAllocAllUrbs(macp))
    {
        result = -ENOMEM;
        goto fail2;
    }

    if (!zfLnxInitSetup(net, macp))
    {
        result = -EIO;
        goto fail3;
    }
    else
    {
        usb_set_intfdata(interface, macp);
        SET_NETDEV_DEV(net, &interface->dev);

        if (register_netdev(net) != 0)
        {
            usb_set_intfdata(interface, NULL);
            goto fail3;
        }
    }

    netif_carrier_off(net);
    goto done;

fail3:
    zfLnxFreeAllUrbs(macp);
fail2:
    free_netdev(net);  //kernel 2.6
fail1:
    kfree(macp);

fail:
    usb_put_dev(dev);
    macp = NULL;

done:
    return result;
}
示例#2
0
static int __devinit mace_probe(struct platform_device *pdev)
{
	int j;
	struct mace_data *mp;
	unsigned char *addr;
	struct net_device *dev;
	unsigned char checksum = 0;
	static int found = 0;
	int err;

	if (found || macintosh_config->ether_type != MAC_ETHER_MACE)
		return -ENODEV;

	found = 1;	/* prevent 'finding' one on every device probe */

	dev = alloc_etherdev(PRIV_BYTES);
	if (!dev)
		return -ENOMEM;

	mp = netdev_priv(dev);

	mp->device = &pdev->dev;
	SET_NETDEV_DEV(dev, &pdev->dev);

	dev->base_addr = (u32)MACE_BASE;
	mp->mace = (volatile struct mace *) MACE_BASE;

	dev->irq = IRQ_MAC_MACE;
	mp->dma_intr = IRQ_MAC_MACE_DMA;

	mp->chipid = mp->mace->chipid_hi << 8 | mp->mace->chipid_lo;

	/*
	 * The PROM contains 8 bytes which total 0xFF when XOR'd
	 * together. Due to the usual peculiar apple brain damage
	 * the bytes are spaced out in a strange boundary and the
	 * bits are reversed.
	 */

	addr = (void *)MACE_PROM;

	for (j = 0; j < 6; ++j) {
		u8 v = bitrev8(addr[j<<4]);
		checksum ^= v;
		dev->dev_addr[j] = v;
	}
	for (; j < 8; ++j) {
		checksum ^= bitrev8(addr[j<<4]);
	}

	if (checksum != 0xFF) {
		free_netdev(dev);
		return -ENODEV;
	}

	dev->netdev_ops		= &mace_netdev_ops;
	dev->watchdog_timeo	= TX_TIMEOUT;

	printk(KERN_INFO "%s: 68K MACE, hardware address %pM\n",
	       dev->name, dev->dev_addr);

	err = register_netdev(dev);
	if (!err)
		return 0;

	free_netdev(dev);
	return err;
}
示例#3
0
/*
 *  create a new virtual interface with the given name
 */
struct net_device *mwifiex_add_virtual_intf(struct wiphy *wiphy,
						char *name,
						enum nl80211_iftype type,
						u32 *flags,
						struct vif_params *params)
{
	struct mwifiex_private *priv = mwifiex_cfg80211_get_priv(wiphy);
	struct mwifiex_adapter *adapter;
	struct net_device *dev;
	void *mdev_priv;

	if (!priv)
		return NULL;

	adapter = priv->adapter;
	if (!adapter)
		return NULL;

	switch (type) {
	case NL80211_IFTYPE_UNSPECIFIED:
	case NL80211_IFTYPE_STATION:
	case NL80211_IFTYPE_ADHOC:
		if (priv->bss_mode) {
			wiphy_err(wiphy, "cannot create multiple"
					" station/adhoc interfaces\n");
			return NULL;
		}

		if (type == NL80211_IFTYPE_UNSPECIFIED)
			priv->bss_mode = NL80211_IFTYPE_STATION;
		else
			priv->bss_mode = type;

		priv->bss_type = MWIFIEX_BSS_TYPE_STA;
		priv->frame_type = MWIFIEX_DATA_FRAME_TYPE_ETH_II;
		priv->bss_priority = 0;
		priv->bss_role = MWIFIEX_BSS_ROLE_STA;
		priv->bss_index = 0;
		priv->bss_num = 0;

		break;
	default:
		wiphy_err(wiphy, "type not supported\n");
		return NULL;
	}

	dev = alloc_netdev_mq(sizeof(struct mwifiex_private *), name,
			      ether_setup, 1);
	if (!dev) {
		wiphy_err(wiphy, "no memory available for netdevice\n");
		goto error;
	}

	dev_net_set(dev, wiphy_net(wiphy));
	dev->ieee80211_ptr = priv->wdev;
	dev->ieee80211_ptr->iftype = priv->bss_mode;
	memcpy(dev->dev_addr, wiphy->perm_addr, ETH_ALEN);
	memcpy(dev->perm_addr, wiphy->perm_addr, ETH_ALEN);
	SET_NETDEV_DEV(dev, wiphy_dev(wiphy));

	dev->flags |= IFF_BROADCAST | IFF_MULTICAST;
	dev->watchdog_timeo = MWIFIEX_DEFAULT_WATCHDOG_TIMEOUT;
	dev->hard_header_len += MWIFIEX_MIN_DATA_HEADER_LEN;

	mdev_priv = netdev_priv(dev);
	*((unsigned long *) mdev_priv) = (unsigned long) priv;

	priv->netdev = dev;
	mwifiex_init_priv_params(priv, dev);

	SET_NETDEV_DEV(dev, adapter->dev);

	/* Register network device */
	if (register_netdevice(dev)) {
		wiphy_err(wiphy, "cannot register virtual network device\n");
		goto error;
	}

	sema_init(&priv->async_sem, 1);
	priv->scan_pending_on_block = false;

	dev_dbg(adapter->dev, "info: %s: Marvell 802.11 Adapter\n", dev->name);

#ifdef CONFIG_DEBUG_FS
	mwifiex_dev_debugfs_init(priv);
#endif
	return dev;
error:
	if (dev && (dev->reg_state == NETREG_UNREGISTERED))
		free_netdev(dev);
	priv->bss_mode = NL80211_IFTYPE_UNSPECIFIED;

	return NULL;
}
示例#4
0
/*----------------------------------------------------------------
* prism2sta_probe_plx
*
* Probe routine called when a PCI device w/ matching ID is found.
* This PLX implementation uses the following map:
*   BAR0: Unused
*   BAR1: ????
*   BAR2: PCMCIA attribute memory
*   BAR3: PCMCIA i/o space
* Here's the sequence:
*   - Allocate the PCI resources.
*   - Read the PCMCIA attribute memory to make sure we have a WLAN card
*   - Reset the MAC using the PCMCIA COR
*   - Initialize the netdev and wlan data
*   - Initialize the MAC
*
* Arguments:
*	pdev		ptr to pci device structure containing info about
*			pci configuration.
*	id		ptr to the device id entry that matched this device.
*
* Returns:
*	zero		- success
*	negative	- failed
*
* Side effects:
*
*
* Call context:
*	process thread
*
----------------------------------------------------------------*/
static int __devinit
prism2sta_probe_plx(
	struct pci_dev			*pdev,
	const struct pci_device_id	*id)
{
	int		result;
        phys_t	pccard_ioaddr;
	phys_t  pccard_attr_mem;
        unsigned int    pccard_attr_len;
	void __iomem *attr_mem = NULL;
	UINT32		plx_addr;
        wlandevice_t    *wlandev = NULL;
	hfa384x_t	*hw = NULL;
	int		reg;
        u32		regic;

	if (pci_enable_device(pdev))
		return -EIO;

	/* TMC7160 boards are special */
	if ((pdev->vendor == PCIVENDOR_NDC) &&
	    (pdev->device == PCIDEVICE_NCP130_ASIC)) {
		unsigned long delay;

		pccard_attr_mem = 0;
		pccard_ioaddr = pci_resource_start(pdev, 1);

		outb(0x45, pccard_ioaddr);
		delay = jiffies + 1*HZ;
		while (time_before(jiffies, delay));

		if (inb(pccard_ioaddr) != 0x45) {
			WLAN_LOG_ERROR("Initialize the TMC7160 failed. (0x%x)\n", inb(pccard_ioaddr));
			return -EIO;
		}

		pccard_ioaddr = pci_resource_start(pdev, 2);
		prism2_doreset = 0;

		WLAN_LOG_INFO("NDC NCP130 with TMC716(ASIC) PCI interface device found at io:0x%x, irq:%d\n", pccard_ioaddr, pdev->irq);
		goto init;
	}

	/* Collect the resource requirements */
	pccard_attr_mem = pci_resource_start(pdev, 2);
	pccard_attr_len = pci_resource_len(pdev, 2);
        if (pccard_attr_len < PLX_MIN_ATTR_LEN)
		return -EIO;

	pccard_ioaddr = pci_resource_start(pdev, 3);

	/* bjoern: We need to tell the card to enable interrupts, in
	 * case the serial eprom didn't do this already. See the
	 * PLX9052 data book, p8-1 and 8-24 for reference.
	 * [MSM]: This bit of code came from the orinoco_cs driver.
	 */
	plx_addr = pci_resource_start(pdev, 1);

	regic = 0;
	regic = inl(plx_addr+PLX_INTCSR);
	if(regic & PLX_INTCSR_INTEN) {
		WLAN_LOG_DEBUG(1,
			"%s: Local Interrupt already enabled\n", dev_info);
	} else {
		regic |= PLX_INTCSR_INTEN;
		outl(regic, plx_addr+PLX_INTCSR);
		regic = inl(plx_addr+PLX_INTCSR);
		if(!(regic & PLX_INTCSR_INTEN)) {
			WLAN_LOG_ERROR(
				"%s: Couldn't enable Local Interrupts\n",
				dev_info);
			return -EIO;
		}
	}

	/* These assignments are here in case of future mappings for
	 * io space and irq that might be similar to ioremap
	 */
        if (!request_mem_region(pccard_attr_mem, pci_resource_len(pdev, 2), "Prism2")) {
		WLAN_LOG_ERROR("%s: Couldn't reserve PCI memory region\n", dev_info);
		return -EIO;
        }

	attr_mem = ioremap(pccard_attr_mem, pccard_attr_len);

	WLAN_LOG_INFO("A PLX PCI/PCMCIA interface device found, "
		"phymem:0x%llx, phyio=0x%x, irq:%d, "
		"mem: 0x%lx\n",
		(unsigned long long)pccard_attr_mem, pccard_ioaddr, pdev->irq,
		(unsigned long)attr_mem);

	/* Verify whether PC card is present.
	 * [MSM] This needs improvement, the right thing to do is
	 * probably to walk the CIS looking for the vendor and product
	 * IDs.  It would be nice if this could be tied in with the
	 * etc/pcmcia/wlan-ng.conf file.  Any volunteers?  ;-)
	 */
	if (
	readb(attr_mem + 0) != 0x01 || readb(attr_mem + 2) != 0x03 ||
	readb(attr_mem + 4) != 0x00 || readb(attr_mem + 6) != 0x00 ||
	readb(attr_mem + 8) != 0xFF || readb(attr_mem + 10) != 0x17 ||
	readb(attr_mem + 12) != 0x04 || readb(attr_mem + 14) != 0x67) {
		WLAN_LOG_ERROR("Prism2 PC card CIS is invalid.\n");
		return -EIO;
        }
        WLAN_LOG_INFO("A PCMCIA WLAN adapter was found.\n");

        /* Write COR to enable PC card */
	writeb(COR_VALUE, attr_mem + COR_OFFSET);
	reg = readb(attr_mem + COR_OFFSET);

 init:

	/*
	 * Now do everything the same as a PCI device
	 * [MSM] TODO: We could probably factor this out of pcmcia/pci/plx
	 * and perhaps usb.  Perhaps a task for another day.......
	 */

	if ((wlandev = create_wlan()) == NULL) {
		WLAN_LOG_ERROR("%s: Memory allocation failure.\n", dev_info);
		result = -EIO;
		goto failed;
	}

	hw = wlandev->priv;

	if ( wlan_setup(wlandev) != 0 ) {
		WLAN_LOG_ERROR("%s: wlan_setup() failed.\n", dev_info);
		result = -EIO;
		goto failed;
	}

	/* Setup netdevice's ability to report resources
	 * Note: the netdevice was allocated by wlan_setup()
	 */
        wlandev->netdev->irq = pdev->irq;
        wlandev->netdev->base_addr = pccard_ioaddr;
        wlandev->netdev->mem_start = (unsigned long)attr_mem;
        wlandev->netdev->mem_end = (unsigned long)attr_mem + pci_resource_len(pdev, 0);

	/* Initialize the hw data */
        hfa384x_create(hw, wlandev->netdev->irq, pccard_ioaddr, attr_mem);
	hw->wlandev = wlandev;

	/* Register the wlandev, this gets us a name and registers the
	 * linux netdevice.
	 */
	SET_MODULE_OWNER(wlandev->netdev);
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0))
       SET_NETDEV_DEV(wlandev->netdev, &(pdev->dev));
#endif
        if ( register_wlandev(wlandev) != 0 ) {
		WLAN_LOG_ERROR("%s: register_wlandev() failed.\n", dev_info);
		result = -EIO;
		goto failed;
        }

#if 0
	/* TODO: Move this and an irq test into an hfa384x_testif() routine.
	 */
	outw(PRISM2STA_MAGIC, HFA384x_SWSUPPORT(wlandev->netdev->base_addr));
	reg=inw( HFA384x_SWSUPPORT(wlandev->netdev->base_addr));
	if ( reg != PRISM2STA_MAGIC ) {
		WLAN_LOG_ERROR("MAC register access test failed!\n");
 		result = -EIO;
		goto failed;
	}
#endif

	/* Do a chip-level reset on the MAC */
	if (prism2_doreset) {
		result = hfa384x_corereset(hw,
				prism2_reset_holdtime,
				prism2_reset_settletime, 0);
		if (result != 0) {
			unregister_wlandev(wlandev);
			hfa384x_destroy(hw);
			WLAN_LOG_ERROR(
				"%s: hfa384x_corereset() failed.\n",
				dev_info);
			result = -EIO;
			goto failed;
		}
	}

	pci_set_drvdata(pdev, wlandev);

	/* Shouldn't actually hook up the IRQ until we
	 * _know_ things are alright.  A test routine would help.
	 */
       	request_irq(wlandev->netdev->irq, hfa384x_interrupt,
		SA_SHIRQ, wlandev->name, wlandev);

	wlandev->msdstate = WLAN_MSD_HWPRESENT;

	result = 0;

	goto done;

 failed:

	pci_set_drvdata(pdev, NULL);
	if (wlandev)	kfree(wlandev);
	if (hw)		kfree(hw);
        if (attr_mem)        iounmap(attr_mem);
	pci_release_regions(pdev);
        pci_disable_device(pdev);

 done:
	DBFEXIT;
        return result;
}
示例#5
0
/*
 * This function registers the device with CFG802.11 subsystem.
 *
 * The function creates the wireless device/wiphy, populates it with
 * default parameters and handler function pointers, and finally
 * registers the device.
 */
int mwifiex_register_cfg80211(struct net_device *dev, u8 *mac,
			      struct mwifiex_private *priv)
{
	int ret;
	void *wdev_priv;
	struct wireless_dev *wdev;

	wdev = kzalloc(sizeof(struct wireless_dev), GFP_KERNEL);
	if (!wdev) {
		dev_err(priv->adapter->dev, "%s: allocating wireless device\n",
						__func__);
		return -ENOMEM;
	}
	wdev->wiphy =
		wiphy_new(&mwifiex_cfg80211_ops,
			  sizeof(struct mwifiex_private *));
	if (!wdev->wiphy) {
		kfree(wdev);
		return -ENOMEM;
	}
	wdev->iftype = NL80211_IFTYPE_STATION;
	wdev->wiphy->max_scan_ssids = 10;
	wdev->wiphy->interface_modes =
		BIT(NL80211_IFTYPE_STATION) | BIT(NL80211_IFTYPE_ADHOC);

	wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = &mwifiex_band_2ghz;
	mwifiex_setup_ht_caps(
		&wdev->wiphy->bands[IEEE80211_BAND_2GHZ]->ht_cap, priv);

	if (priv->adapter->config_bands & BAND_A) {
		wdev->wiphy->bands[IEEE80211_BAND_5GHZ] = &mwifiex_band_5ghz;
		mwifiex_setup_ht_caps(
			&wdev->wiphy->bands[IEEE80211_BAND_5GHZ]->ht_cap, priv);
	} else {
		wdev->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
	}

	/* Initialize cipher suits */
	wdev->wiphy->cipher_suites = mwifiex_cipher_suites;
	wdev->wiphy->n_cipher_suites = ARRAY_SIZE(mwifiex_cipher_suites);

	memcpy(wdev->wiphy->perm_addr, mac, 6);
	wdev->wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM;

	/* We are using custom domains */
	wdev->wiphy->flags |= WIPHY_FLAG_CUSTOM_REGULATORY;

	wdev->wiphy->reg_notifier = mwifiex_reg_notifier;

	/* Set struct mwifiex_private pointer in wiphy_priv */
	wdev_priv = wiphy_priv(wdev->wiphy);

	*(unsigned long *) wdev_priv = (unsigned long) priv;

	set_wiphy_dev(wdev->wiphy, (struct device *) priv->adapter->dev);

	ret = wiphy_register(wdev->wiphy);
	if (ret < 0) {
		dev_err(priv->adapter->dev, "%s: registering cfg80211 device\n",
						__func__);
		wiphy_free(wdev->wiphy);
		kfree(wdev);
		return ret;
	} else {
		dev_dbg(priv->adapter->dev,
				"info: successfully registered wiphy device\n");
	}

	dev_net_set(dev, wiphy_net(wdev->wiphy));
	dev->ieee80211_ptr = wdev;
	memcpy(dev->dev_addr, wdev->wiphy->perm_addr, 6);
	memcpy(dev->perm_addr, wdev->wiphy->perm_addr, 6);
	SET_NETDEV_DEV(dev, wiphy_dev(wdev->wiphy));
	priv->wdev = wdev;

	dev->flags |= IFF_BROADCAST | IFF_MULTICAST;
	dev->watchdog_timeo = MWIFIEX_DEFAULT_WATCHDOG_TIMEOUT;
	dev->hard_header_len += MWIFIEX_MIN_DATA_HEADER_LEN;

	return ret;
}
示例#6
0
文件: ems_usb.c 项目: 513855417/linux
/*
 * probe function for new CPC-USB devices
 */
static int ems_usb_probe(struct usb_interface *intf,
			 const struct usb_device_id *id)
{
	struct net_device *netdev;
	struct ems_usb *dev;
	int i, err = -ENOMEM;

	netdev = alloc_candev(sizeof(struct ems_usb), MAX_TX_URBS);
	if (!netdev) {
		dev_err(&intf->dev, "ems_usb: Couldn't alloc candev\n");
		return -ENOMEM;
	}

	dev = netdev_priv(netdev);

	dev->udev = interface_to_usbdev(intf);
	dev->netdev = netdev;

	dev->can.state = CAN_STATE_STOPPED;
	dev->can.clock.freq = EMS_USB_ARM7_CLOCK;
	dev->can.bittiming_const = &ems_usb_bittiming_const;
	dev->can.do_set_bittiming = ems_usb_set_bittiming;
	dev->can.do_set_mode = ems_usb_set_mode;
	dev->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES;

	netdev->netdev_ops = &ems_usb_netdev_ops;

	netdev->flags |= IFF_ECHO; /* we support local echo */

	init_usb_anchor(&dev->rx_submitted);

	init_usb_anchor(&dev->tx_submitted);
	atomic_set(&dev->active_tx_urbs, 0);

	for (i = 0; i < MAX_TX_URBS; i++)
		dev->tx_contexts[i].echo_index = MAX_TX_URBS;

	dev->intr_urb = usb_alloc_urb(0, GFP_KERNEL);
	if (!dev->intr_urb) {
		dev_err(&intf->dev, "Couldn't alloc intr URB\n");
		goto cleanup_candev;
	}

	dev->intr_in_buffer = kzalloc(INTR_IN_BUFFER_SIZE, GFP_KERNEL);
	if (!dev->intr_in_buffer)
		goto cleanup_intr_urb;

	dev->tx_msg_buffer = kzalloc(CPC_HEADER_SIZE +
				     sizeof(struct ems_cpc_msg), GFP_KERNEL);
	if (!dev->tx_msg_buffer)
		goto cleanup_intr_in_buffer;

	usb_set_intfdata(intf, dev);

	SET_NETDEV_DEV(netdev, &intf->dev);

	init_params_sja1000(&dev->active_params);

	err = ems_usb_command_msg(dev, &dev->active_params);
	if (err) {
		netdev_err(netdev, "couldn't initialize controller: %d\n", err);
		goto cleanup_tx_msg_buffer;
	}

	err = register_candev(netdev);
	if (err) {
		netdev_err(netdev, "couldn't register CAN device: %d\n", err);
		goto cleanup_tx_msg_buffer;
	}

	return 0;

cleanup_tx_msg_buffer:
	kfree(dev->tx_msg_buffer);

cleanup_intr_in_buffer:
	kfree(dev->intr_in_buffer);

cleanup_intr_urb:
	usb_free_urb(dev->intr_urb);

cleanup_candev:
	free_candev(netdev);

	return err;
}
示例#7
0
static int hieth_platdev_probe_port(struct platform_device *pdev, int port)
{
	int ret = -1;
	struct net_device *netdev = NULL;
	struct hieth_netdev_local *ld;

	if ((UP_PORT != port) && (DOWN_PORT != port)) {
		hieth_error("port error!");
		ret = -ENODEV;
		goto _error_exit;
	}

	netdev = alloc_etherdev(sizeof(*ld));
	if (netdev == NULL) {
		hieth_error("alloc_etherdev fail!");
		ret = -ENOMEM;
		goto _error_alloc_etherdev;
	}
	SET_NETDEV_DEV(netdev, &pdev->dev);
	netdev->irq = CONFIG_HIETH_IRQNUM;
	netdev->watchdog_timeo	= 3*HZ;
	netdev->netdev_ops	= &hieth_netdev_ops;
	netdev->ethtool_ops	= &hieth_ethtools_ops;

	/* init hieth_global somethings... */
	hieth_devs_save[port] = netdev;

	/* init hieth_local_driver */
	ld = netdev_priv(netdev);
	memset(ld, 0, sizeof(*ld));

	local_lock_init(ld);

	ld->iobase = (unsigned long)ioremap_nocache(CONFIG_HIETH_IOBASE, \
					CONFIG_HIETH_IOSIZE);
	if (!ld->iobase) {
		hieth_error("ioremap_nocache err, base=0x%.8x, size=0x%.8x\n",
				CONFIG_HIETH_IOBASE, CONFIG_HIETH_IOSIZE);
		ret = -EFAULT;
		goto _error_ioremap_nocache;
	}
	ld->iobase_phys = CONFIG_HIETH_IOBASE;

	ld->port = port;

	ld->dev = &(pdev->dev);

	/* reset and init port */
	hieth_port_reset(ld, ld->port);
	hieth_port_init(ld, ld->port);

	ld->depth.hw_xmitq = CONFIG_HIETH_HWQ_XMIT_DEPTH;

	memset(ld->phy_name, 0, sizeof(ld->phy_name));
	snprintf(ld->phy_name, MII_BUS_ID_SIZE, PHY_ID_FMT, \
		HIETH_MIIBUS_NAME, UD_PHY_NAME(CONFIG_HIETH_PHYID));

	ld->phy = phy_connect(netdev, ld->phy_name, hieth_adjust_link, 0, \
			UD_BIT_NAME(CONFIG_HIETH_MII_RMII_MODE) ? \
			PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII);
	if (IS_ERR(ld->phy)) {
		hieth_error("connect to phy_device %s failed!", ld->phy_name);
		ld->phy = NULL;
		goto _error_phy_connect;
	}

	set_phy_valtage();

	skb_queue_head_init(&ld->rx_head);
	skb_queue_head_init(&ld->rx_hw);
	skb_queue_head_init(&ld->tx_hw);
	ld->tx_hw_cnt = 0;

	ret = hieth_init_skb_buffers(ld);
	if (ret) {
		hieth_error("hieth_init_skb_buffers failed!");
		goto _error_init_skb_buffers;
	}

	ret = register_netdev(netdev);
	if (ret) {
		hieth_error("register_netdev %s failed!", netdev->name);
		goto _error_register_netdev;
	}

	return ret;

_error_register_netdev:
	hieth_destroy_skb_buffers(ld);

_error_init_skb_buffers:
	phy_disconnect(ld->phy);
	ld->phy = NULL;

_error_phy_connect:
	iounmap((void *)ld->iobase);

_error_ioremap_nocache:
	local_lock_exit();
	hieth_devs_save[port] = NULL;
	free_netdev(netdev);

_error_alloc_etherdev:

_error_exit:
	return ret;
}
示例#8
0
static int com20020_config(struct pcmcia_device *link)
{
    struct arcnet_local *lp;
    com20020_dev_t *info;
    struct net_device *dev;
    int i, ret;
    int ioaddr;

    info = link->priv;
    dev = info->dev;

    dev_dbg(&link->dev, "config...\n");

    dev_dbg(&link->dev, "com20020_config\n");

    dev_dbg(&link->dev, "baseport1 is %Xh\n",
	    (unsigned int) link->resource[0]->start);

    i = -ENODEV;
    link->io_lines = 16;

    if (!link->resource[0]->start)
    {
	for (ioaddr = 0x100; ioaddr < 0x400; ioaddr += 0x10)
	{
	    link->resource[0]->start = ioaddr;
	    i = pcmcia_request_io(link);
	    if (i == 0)
		break;
	}
    }
    else
	i = pcmcia_request_io(link);
    
    if (i != 0)
    {
	dev_dbg(&link->dev, "requestIO failed totally!\n");
	goto failed;
    }
	
    ioaddr = dev->base_addr = link->resource[0]->start;
    dev_dbg(&link->dev, "got ioaddr %Xh\n", ioaddr);

    dev_dbg(&link->dev, "request IRQ %d\n",
	    link->irq);
    if (!link->irq)
    {
	dev_dbg(&link->dev, "requestIRQ failed totally!\n");
	goto failed;
    }

    dev->irq = link->irq;

    ret = pcmcia_enable_device(link);
    if (ret)
	    goto failed;

    if (com20020_check(dev))
    {
	regdump(dev);
	goto failed;
    }
    
    lp = netdev_priv(dev);
    lp->card_name = "PCMCIA COM20020";
    lp->card_flags = ARC_CAN_10MBIT; /* pretend all of them can 10Mbit */

    SET_NETDEV_DEV(dev, &link->dev);

    i = com20020_found(dev, 0);	/* calls register_netdev */
    
    if (i != 0) {
	dev_notice(&link->dev,
		   "com20020_found() failed\n");
	goto failed;
    }

    netdev_dbg(dev, "port %#3lx, irq %d\n",
	       dev->base_addr, dev->irq);
    return 0;

failed:
    dev_dbg(&link->dev, "com20020_config failed...\n");
    com20020_release(link);
    return -ENODEV;
} /* com20020_config */
示例#9
0
/*
 * ---------------------------------------------------------------------------
 *  register_unifi_sdio
 *
 *      This function is called from the Probe (or equivalent) method of
 *      the SDIO driver when a UniFi card is detected.
 *      We allocate the Linux net_device struct, initialise the HIP core
 *      lib, create the char device nodes and start the userspace helper
 *      to initialise the device.
 *
 *  Arguments:
 *      sdio_dev        Pointer to SDIO context handle to use for all
 *                      SDIO ops.
 *      bus_id          A small number indicating the SDIO card position on the
 *                      bus. Typically this is the slot number, e.g. 0, 1 etc.
 *                      Valid values are 0 to MAX_UNIFI_DEVS-1.
 *      dev             Pointer to kernel device manager struct.
 *
 *  Returns:
 *      Pointer to the unifi instance, or NULL on error.
 * ---------------------------------------------------------------------------
 */
static unifi_priv_t *
register_unifi_sdio(CsrSdioFunction *sdio_dev, int bus_id, struct device *dev)
{
    unifi_priv_t *priv = NULL;
    int r = -1;
    CsrResult csrResult;

    func_enter();

    if ((bus_id < 0) || (bus_id >= MAX_UNIFI_DEVS)) {
        unifi_error(priv, "register_unifi_sdio: invalid device %d\n",
                bus_id);
        return NULL;
    }

    down(&Unifi_instance_mutex);

    if (In_use[bus_id] != UNIFI_DEV_NOT_IN_USE) {
        unifi_error(priv, "register_unifi_sdio: device %d is already in use\n",
                bus_id);
        goto failed0;
    }


    /* Allocate device private and net_device structs */
    priv = uf_alloc_netdevice(sdio_dev, bus_id);
    if (priv == NULL) {
        unifi_error(priv, "Failed to allocate driver private\n");
        goto failed0;
    }

    priv->unifi_device = dev;

    SET_NETDEV_DEV(priv->netdev[0], dev);

    /* We are not ready to send data yet. */
    netif_carrier_off(priv->netdev[0]);

    /* Allocate driver context. */
    priv->card = unifi_alloc_card(priv->sdio, priv);
    if (priv->card == NULL) {
        unifi_error(priv, "Failed to allocate UniFi driver card struct.\n");
        goto failed1;
    }

    if (Unifi_instances[bus_id]) {
        unifi_error(priv, "Internal error: instance for slot %d is already taken\n",
                bus_id);
    }
    Unifi_instances[bus_id] = priv;
    In_use[bus_id] = UNIFI_DEV_IN_USE;

    /* Save the netdev_priv for use by the netdev event callback mechanism */
    Unifi_netdev_instances[bus_id * CSR_WIFI_NUM_INTERFACES] = netdev_priv(priv->netdev[0]);

    /* Initialise the mini-coredump capture buffers */
    csrResult = unifi_coredump_init(priv->card, (CsrUint16)coredump_max);
    if (csrResult != CSR_RESULT_SUCCESS) {
        unifi_error(priv, "Couldn't allocate mini-coredump buffers\n");
    }

    /* Create the character device nodes */
    r = uf_create_device_nodes(priv, bus_id);
    if (r) {
        goto failed1;
    }

    /*
     * We use the slot number as unifi device index.
     */
    snprintf(priv->proc_entry_name, 64, "driver/unifi%d", priv->instance);
    /*
     * The following complex casting is in place in order to eliminate 64-bit compilation warning 
     * "cast to/from pointer from/to integer of different size"
     */
    if (!proc_create_data(priv->proc_entry_name, 0, NULL,
                &uf_proc_fops, (void *)(long)priv->instance))
    {
        unifi_error(priv, "unifi: can't create /proc/driver/unifi\n");
    }

    /* Allocate the net_device for interfaces other than 0. */
    {
        int i;
        priv->totalInterfaceCount =0;

        for(i=1;i<CSR_WIFI_NUM_INTERFACES;i++)
        {
            if( !uf_alloc_netdevice_for_other_interfaces(priv,i) )
            {
                /* error occured while allocating the net_device for interface[i]. The net_device are
                 * allocated for the interfaces with id<i. Dont worry, all the allocated net_device will
                 * be releasing chen the control goes to the label failed0.
                 */
                unifi_error(priv, "Failed to allocate driver private for interface[%d]\n",i);
                goto failed0;
            }
            else
            {
                SET_NETDEV_DEV(priv->netdev[i], dev);

                /* We are not ready to send data yet. */
                netif_carrier_off(priv->netdev[i]);

                /* Save the netdev_priv for use by the netdev event callback mechanism */
                Unifi_netdev_instances[bus_id * CSR_WIFI_NUM_INTERFACES + i] = netdev_priv(priv->netdev[i]);
            }
        }

        for(i=0;i<CSR_WIFI_NUM_INTERFACES;i++)
        {
            netInterface_priv_t *interfacePriv = priv->interfacePriv[i];
            interfacePriv->netdev_registered=0;
        }
    }

#ifdef CSR_WIFI_RX_PATH_SPLIT
    if (signal_buffer_init(priv, CSR_WIFI_RX_SIGNAL_BUFFER_SIZE))
    {
        unifi_error(priv,"Failed to allocate shared memory for T-H signals\n");
        goto failed2;
    }
    priv->rx_workqueue = create_singlethread_workqueue("rx_workq");
    if (priv->rx_workqueue == NULL) {
        unifi_error(priv,"create_singlethread_workqueue failed \n");
        goto failed3;
    }
    INIT_WORK(&priv->rx_work_struct, rx_wq_handler);
#endif

#ifdef CSR_WIFI_HIP_DEBUG_OFFLINE
    if (log_hip_signals)
    {
        uf_register_hip_offline_debug(priv);
    }
#endif

    /* Initialise the SME related threads and parameters */
    r = uf_sme_init(priv);
    if (r) {
        unifi_error(priv, "SME initialisation failed.\n");
        goto failed4;
    }

    /*
     * Run the userspace helper program (unififw) to perform
     * the device initialisation.
     */
    unifi_trace(priv, UDBG1, "run UniFi helper app...\n");
    r = uf_run_unifihelper(priv);
    if (r) {
        unifi_notice(priv, "unable to run UniFi helper app\n");
        /* Not a fatal error. */
    }

#ifdef CSR_WIFI_NAPI_ENABLE
    {
        int i;

        for (i = 0; i < CSR_WIFI_NUM_INTERFACES; i++)
        {
            napi_init(priv->netdev[i], &priv->interfacePriv[i]->napi, &priv->interfacePriv[i]->napi_skb_list);
        }
    }
#endif

    up(&Unifi_instance_mutex);

    func_exit();
    return priv;

failed4:
#ifdef CSR_WIFI_HIP_DEBUG_OFFLINE
if (log_hip_signals)
{
    uf_unregister_hip_offline_debug(priv);
}
#endif
#ifdef CSR_WIFI_RX_PATH_SPLIT
    flush_workqueue(priv->rx_workqueue);
    destroy_workqueue(priv->rx_workqueue);
failed3:
    signal_buffer_free(priv,CSR_WIFI_RX_SIGNAL_BUFFER_SIZE);
failed2:
#endif
    /* Remove the device nodes */
    uf_destroy_device_nodes(priv);
failed1:
    /* Deregister priv->netdev_client */
    ul_deregister_client(priv->netdev_client);

failed0:
    if (priv && priv->card) {
        unifi_coredump_free(priv->card);
        unifi_free_card(priv->card);
    }
    if (priv) {
        uf_free_netdevice(priv);
    }

    up(&Unifi_instance_mutex);

    func_exit();
    return NULL;
} /* register_unifi_sdio() */
示例#10
0
/*
 * allocate netdevice, request register memory and register device.
 */
static int __devinit bcm_enet_probe(struct platform_device *pdev)
{
	struct bcm_enet_priv *priv;
	struct net_device *dev;
	struct bcm63xx_enet_platform_data *pd;
	struct resource *res_mem, *res_irq, *res_irq_rx, *res_irq_tx;
	struct mii_bus *bus;
	const char *clk_name;
	unsigned int iomem_size;
	int i, ret, mdio_registered, mem_requested;

	/* stop if shared driver failed, assume driver->probe will be
	 * called in the same order we register devices (correct ?) */
	if (!bcm_enet_shared_base)
		return -ENODEV;

	mdio_registered = mem_requested = 0;

	res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
	res_irq_rx = platform_get_resource(pdev, IORESOURCE_IRQ, 1);
	res_irq_tx = platform_get_resource(pdev, IORESOURCE_IRQ, 2);
	if (!res_mem || !res_irq || !res_irq_rx || !res_irq_tx)
		return -ENODEV;

	ret = 0;
	dev = alloc_etherdev(sizeof(*priv));
	if (!dev)
		return -ENOMEM;
	priv = netdev_priv(dev);
	memset(priv, 0, sizeof(*priv));

	iomem_size = res_mem->end - res_mem->start + 1;
	if (!request_mem_region(res_mem->start, iomem_size, "bcm63xx_enet")) {
		ret = -EBUSY;
		goto err;
	}
	mem_requested = 1;

	priv->base = ioremap(res_mem->start, iomem_size);
	if (priv->base == NULL) {
		ret = -ENOMEM;
		goto err;
	}
	dev->irq = priv->irq = res_irq->start;
	priv->irq_rx = res_irq_rx->start;
	priv->irq_tx = res_irq_tx->start;
	priv->mac_id = pdev->id;

	/* get rx & tx dma channel id for this mac */
	if (priv->mac_id == 0) {
		priv->rx_chan = 0;
		priv->tx_chan = 1;
		clk_name = "enet0";
	} else {
		priv->rx_chan = 2;
		priv->tx_chan = 3;
		clk_name = "enet1";
	}

	priv->mac_clk = clk_get(&pdev->dev, clk_name);
	if (IS_ERR(priv->mac_clk)) {
		ret = PTR_ERR(priv->mac_clk);
		priv->mac_clk = NULL;
		goto err;
	}
	clk_enable(priv->mac_clk);

	/* initialize default and fetch platform data */
	priv->rx_ring_size = BCMENET_DEF_RX_DESC;
	priv->tx_ring_size = BCMENET_DEF_TX_DESC;

	pd = pdev->dev.platform_data;
	if (pd) {
		memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN);
		priv->has_phy = pd->has_phy;
		priv->phy_id = pd->phy_id;
		priv->has_phy_interrupt = pd->has_phy_interrupt;
		priv->phy_interrupt = pd->phy_interrupt;
		priv->use_external_mii = !pd->use_internal_phy;
		priv->pause_auto = pd->pause_auto;
		priv->pause_rx = pd->pause_rx;
		priv->pause_tx = pd->pause_tx;
		priv->force_duplex_full = pd->force_duplex_full;
		priv->force_speed_100 = pd->force_speed_100;
	}

	if (priv->mac_id == 0 && priv->has_phy && !priv->use_external_mii) {
		/* using internal PHY, enable clock */
		priv->phy_clk = clk_get(&pdev->dev, "ephy");
		if (IS_ERR(priv->phy_clk)) {
			ret = PTR_ERR(priv->phy_clk);
			priv->phy_clk = NULL;
			goto err;
		}
		clk_enable(priv->phy_clk);
	}

	/* do minimal hardware init to be able to probe mii bus */
	bcm_enet_hw_preinit(priv);

	/* MII bus registration */
	if (priv->has_phy) {
		bus = &priv->mii_bus;
		bus->name = "bcm63xx_enet MII bus";
		bus->dev = &pdev->dev;
		bus->priv = priv;
		bus->read = bcm_enet_mdio_read_phylib;
		bus->write = bcm_enet_mdio_write_phylib;
		sprintf(bus->id, "%d", priv->mac_id);

		/* only probe bus where we think the PHY is, because
		 * the mdio read operation return 0 instead of 0xffff
		 * if a slave is not present on hw */
		bus->phy_mask = ~(1 << priv->phy_id);

		bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
		if (!bus->irq) {
			ret = -ENOMEM;
			goto err;
		}

		if (priv->has_phy_interrupt)
			bus->irq[priv->phy_id] = priv->phy_interrupt;
		else
			bus->irq[priv->phy_id] = PHY_POLL;

		ret = mdiobus_register(bus);
		if (ret) {
			dev_err(&pdev->dev, "unable to register mdio bus\n");
			goto err;
		}
		mdio_registered = 1;
	} else {

		/* run platform code to initialize PHY device */
		if (pd->mii_config &&
		    pd->mii_config(dev, 1, bcm_enet_mdio_read_mii,
				   bcm_enet_mdio_write_mii)) {
			dev_err(&pdev->dev, "unable to configure mdio bus\n");
			goto err;
		}
	}

	spin_lock_init(&priv->rx_lock);

	/* init rx timeout (used for oom) */
	init_timer(&priv->rx_timeout);
	priv->rx_timeout.function = bcm_enet_refill_rx_timer;
	priv->rx_timeout.data = (unsigned long)dev;

	/* init the mib update lock&work */
	mutex_init(&priv->mib_update_lock);
	INIT_WORK(&priv->mib_update_task, bcm_enet_update_mib_counters_defer);

	/* zero mib counters */
	for (i = 0; i < ENET_MIB_REG_COUNT; i++)
		enet_writel(priv, 0, ENET_MIB_REG(i));

	/* register netdevice */
	dev->open = bcm_enet_open;
	dev->stop = bcm_enet_stop;
	dev->hard_start_xmit = bcm_enet_start_xmit;
	dev->get_stats = bcm_enet_get_stats;
	dev->set_mac_address = bcm_enet_set_mac_address;
	dev->set_multicast_list = bcm_enet_set_multicast_list;
	netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16);
	dev->do_ioctl = bcm_enet_ioctl;
#ifdef CONFIG_NET_POLL_CONTROLLER
	dev->poll_controller = bcm_enet_netpoll;
#endif

	SET_ETHTOOL_OPS(dev, &bcm_enet_ethtool_ops);

	ret = register_netdev(dev);
	if (ret)
		goto err;

	platform_set_drvdata(pdev, dev);
	priv->pdev = pdev;
	priv->net_dev = dev;
	SET_NETDEV_DEV(dev, &pdev->dev);

	return 0;

err:
	if (mem_requested)
		release_mem_region(res_mem->start, iomem_size);
	if (mdio_registered)
		mdiobus_unregister(&priv->mii_bus);
	kfree(priv->mii_bus.irq);
	if (priv->mac_clk) {
		clk_disable(priv->mac_clk);
		clk_put(priv->mac_clk);
	}
	if (priv->phy_clk) {
		clk_disable(priv->phy_clk);
		clk_put(priv->phy_clk);
	}
	if (priv->base) {
		/* turn off mdc clock */
		enet_writel(priv, 0, ENET_MIISC_REG);
		iounmap(priv->base);
	}
	free_netdev(dev);
	return ret;
}
int
usbnet_probe (struct usb_interface *udev, const struct usb_device_id *prod)
{
	struct usbnet			*dev;
	struct net_device		*net;
	struct usb_host_interface	*interface;
	struct driver_info		*info;
	struct usb_device		*xdev;
	int				status;
	const char			*name;
	struct usb_driver 	*driver = to_usb_driver(udev->dev.driver);

	/* usbnet already took usb runtime pm, so have to enable the feature
	 * for usb interface, otherwise usb_autopm_get_interface may return
	 * failure if USB_SUSPEND(RUNTIME_PM) is enabled.
	 */
	if (!driver->supports_autosuspend) {
		driver->supports_autosuspend = 1;
		pm_runtime_enable(&udev->dev);
	}

	name = udev->dev.driver->name;
	info = (struct driver_info *) prod->driver_info;
	if (!info) {
		dev_dbg (&udev->dev, "blacklisted by %s\n", name);
		return -ENODEV;
	}
	xdev = interface_to_usbdev (udev);
	interface = udev->cur_altsetting;

	usb_get_dev (xdev);

	status = -ENOMEM;

	// set up our own records
	net = alloc_etherdev(sizeof(*dev));
	if (!net) {
		dbg ("can't kmalloc dev");
		goto out;
	}

	/* netdev_printk() needs this so do it as early as possible */
	SET_NETDEV_DEV(net, &udev->dev);

	dev = netdev_priv(net);
	dev->udev = xdev;
	dev->intf = udev;
	dev->driver_info = info;
	dev->driver_name = name;
	dev->msg_enable = netif_msg_init (msg_level, NETIF_MSG_DRV
				| NETIF_MSG_PROBE | NETIF_MSG_LINK);
	skb_queue_head_init (&dev->rxq);
	skb_queue_head_init (&dev->txq);
	skb_queue_head_init (&dev->done);
	skb_queue_head_init(&dev->rxq_pause);
	INIT_WORK(&dev->bh_w, usbnet_bh_w);
	INIT_WORK (&dev->kevent, kevent);
	init_usb_anchor(&dev->deferred);
	dev->delay.function = usbnet_bh;
	dev->delay.data = (unsigned long) dev;
	init_timer (&dev->delay);
	mutex_init (&dev->phy_mutex);

	dev->net = net;
	strcpy (net->name, "usb%d");
	memcpy (net->dev_addr, node_id, sizeof node_id);

	/* rx and tx sides can use different message sizes;
	 * bind() should set rx_urb_size in that case.
	 */
	dev->hard_mtu = net->mtu + net->hard_header_len;
#if 0
// dma_supported() is deeply broken on almost all architectures
	// possible with some EHCI controllers
	if (dma_supported (&udev->dev, DMA_BIT_MASK(64)))
		net->features |= NETIF_F_HIGHDMA;
#endif

	net->netdev_ops = &usbnet_netdev_ops;
	net->watchdog_timeo = TX_TIMEOUT_JIFFIES;
	net->ethtool_ops = &usbnet_ethtool_ops;

	// allow device-specific bind/init procedures
	// NOTE net->name still not usable ...
	if (info->bind) {
		status = info->bind (dev, udev);
		if (status < 0)
			goto out1;

		// heuristic:  "usb%d" for links we know are two-host,
		// else "eth%d" when there's reasonable doubt.  userspace
		// can rename the link if it knows better.
		if ((dev->driver_info->flags & FLAG_ETHER) != 0 &&
		    ((dev->driver_info->flags & FLAG_POINTTOPOINT) == 0 ||
		     (net->dev_addr [0] & 0x02) == 0))
			strcpy (net->name, "eth%d");
		/* WLAN devices should always be named "wlan%d" */
		if ((dev->driver_info->flags & FLAG_WLAN) != 0)
			strcpy(net->name, "wlan%d");
		/* WWAN devices should always be named "wwan%d" */
		if ((dev->driver_info->flags & FLAG_WWAN) != 0)
			strcpy(net->name, "wwan%d");

		/* maybe the remote can't receive an Ethernet MTU */
		if (net->mtu > (dev->hard_mtu - net->hard_header_len))
			net->mtu = dev->hard_mtu - net->hard_header_len;
	} else if (!info->in || !info->out)
		status = usbnet_get_endpoints (dev, udev);
	else {
		dev->in = usb_rcvbulkpipe (xdev, info->in);
		dev->out = usb_sndbulkpipe (xdev, info->out);
		if (!(info->flags & FLAG_NO_SETINT))
			status = usb_set_interface (xdev,
				interface->desc.bInterfaceNumber,
				interface->desc.bAlternateSetting);
		else
			status = 0;

	}
	if (status >= 0 && dev->status)
		status = init_status (dev, udev);
	if (status < 0)
		goto out3;

	if (!dev->rx_urb_size)
		dev->rx_urb_size = dev->hard_mtu;
	dev->maxpacket = usb_maxpacket (dev->udev, dev->out, 1);

	if ((dev->driver_info->flags & FLAG_WLAN) != 0)
		SET_NETDEV_DEVTYPE(net, &wlan_type);
	if ((dev->driver_info->flags & FLAG_WWAN) != 0)
		SET_NETDEV_DEVTYPE(net, &wwan_type);

	status = register_netdev (net);
	if (status)
		goto out3;
	netif_info(dev, probe, dev->net,
		   "register '%s' at usb-%s-%s, %s, %pM\n",
		   udev->dev.driver->name,
		   xdev->bus->bus_name, xdev->devpath,
		   dev->driver_info->description,
		   net->dev_addr);

	// ok, it's ready to go.
	usb_set_intfdata (udev, dev);

	netif_device_attach (net);

	if (dev->driver_info->flags & FLAG_LINK_INTR)
		netif_carrier_off(net);

	return 0;

out3:
	if (info->unbind)
		info->unbind (dev, udev);
out1:
	free_netdev(net);
out:
	usb_put_dev(xdev);
	return status;
}
示例#12
0
文件: dl2k.c 项目: Lyude/linux
static int
rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent)
{
	struct net_device *dev;
	struct netdev_private *np;
	static int card_idx;
	int chip_idx = ent->driver_data;
	int err, irq;
	void __iomem *ioaddr;
	static int version_printed;
	void *ring_space;
	dma_addr_t ring_dma;

	if (!version_printed++)
		printk ("%s", version);

	err = pci_enable_device (pdev);
	if (err)
		return err;

	irq = pdev->irq;
	err = pci_request_regions (pdev, "dl2k");
	if (err)
		goto err_out_disable;

	pci_set_master (pdev);

	err = -ENOMEM;

	dev = alloc_etherdev (sizeof (*np));
	if (!dev)
		goto err_out_res;
	SET_NETDEV_DEV(dev, &pdev->dev);

	np = netdev_priv(dev);

	/* IO registers range. */
	ioaddr = pci_iomap(pdev, 0, 0);
	if (!ioaddr)
		goto err_out_dev;
	np->eeprom_addr = ioaddr;

#ifdef MEM_MAPPING
	/* MM registers range. */
	ioaddr = pci_iomap(pdev, 1, 0);
	if (!ioaddr)
		goto err_out_iounmap;
#endif
	np->ioaddr = ioaddr;
	np->chip_id = chip_idx;
	np->pdev = pdev;
	spin_lock_init (&np->tx_lock);
	spin_lock_init (&np->rx_lock);

	/* Parse manual configuration */
	np->an_enable = 1;
	np->tx_coalesce = 1;
	if (card_idx < MAX_UNITS) {
		if (media[card_idx] != NULL) {
			np->an_enable = 0;
			if (strcmp (media[card_idx], "auto") == 0 ||
			    strcmp (media[card_idx], "autosense") == 0 ||
			    strcmp (media[card_idx], "0") == 0 ) {
				np->an_enable = 2;
			} else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
			    strcmp (media[card_idx], "4") == 0) {
				np->speed = 100;
				np->full_duplex = 1;
			} else if (strcmp (media[card_idx], "100mbps_hd") == 0 ||
				   strcmp (media[card_idx], "3") == 0) {
				np->speed = 100;
				np->full_duplex = 0;
			} else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
				   strcmp (media[card_idx], "2") == 0) {
				np->speed = 10;
				np->full_duplex = 1;
			} else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
				   strcmp (media[card_idx], "1") == 0) {
				np->speed = 10;
				np->full_duplex = 0;
			} else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||
				 strcmp (media[card_idx], "6") == 0) {
				np->speed=1000;
				np->full_duplex=1;
			} else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||
				 strcmp (media[card_idx], "5") == 0) {
				np->speed = 1000;
				np->full_duplex = 0;
			} else {
				np->an_enable = 1;
			}
		}
		if (jumbo[card_idx] != 0) {
			np->jumbo = 1;
			dev->mtu = MAX_JUMBO;
		} else {
			np->jumbo = 0;
			if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)
				dev->mtu = mtu[card_idx];
		}
		np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?
		    vlan[card_idx] : 0;
		if (rx_coalesce > 0 && rx_timeout > 0) {
			np->rx_coalesce = rx_coalesce;
			np->rx_timeout = rx_timeout;
			np->coalesce = 1;
		}
		np->tx_flow = (tx_flow == 0) ? 0 : 1;
		np->rx_flow = (rx_flow == 0) ? 0 : 1;

		if (tx_coalesce < 1)
			tx_coalesce = 1;
		else if (tx_coalesce > TX_RING_SIZE-1)
			tx_coalesce = TX_RING_SIZE - 1;
	}
	dev->netdev_ops = &netdev_ops;
	dev->watchdog_timeo = TX_TIMEOUT;
	dev->ethtool_ops = &ethtool_ops;
#if 0
	dev->features = NETIF_F_IP_CSUM;
#endif
	/* MTU range: 68 - 1536 or 8000 */
	dev->min_mtu = ETH_MIN_MTU;
	dev->max_mtu = np->jumbo ? MAX_JUMBO : PACKET_SIZE;

	pci_set_drvdata (pdev, dev);

	ring_space = pci_alloc_consistent (pdev, TX_TOTAL_SIZE, &ring_dma);
	if (!ring_space)
		goto err_out_iounmap;
	np->tx_ring = ring_space;
	np->tx_ring_dma = ring_dma;

	ring_space = pci_alloc_consistent (pdev, RX_TOTAL_SIZE, &ring_dma);
	if (!ring_space)
		goto err_out_unmap_tx;
	np->rx_ring = ring_space;
	np->rx_ring_dma = ring_dma;

	/* Parse eeprom data */
	parse_eeprom (dev);

	/* Find PHY address */
	err = find_miiphy (dev);
	if (err)
		goto err_out_unmap_rx;

	/* Fiber device? */
	np->phy_media = (dr16(ASICCtrl) & PhyMedia) ? 1 : 0;
	np->link_status = 0;
	/* Set media and reset PHY */
	if (np->phy_media) {
		/* default Auto-Negotiation for fiber deivices */
	 	if (np->an_enable == 2) {
			np->an_enable = 1;
		}
	} else {
		/* Auto-Negotiation is mandatory for 1000BASE-T,
		   IEEE 802.3ab Annex 28D page 14 */
		if (np->speed == 1000)
			np->an_enable = 1;
	}

	err = register_netdev (dev);
	if (err)
		goto err_out_unmap_rx;

	card_idx++;

	printk (KERN_INFO "%s: %s, %pM, IRQ %d\n",
		dev->name, np->name, dev->dev_addr, irq);
	if (tx_coalesce > 1)
		printk(KERN_INFO "tx_coalesce:\t%d packets\n",
				tx_coalesce);
	if (np->coalesce)
		printk(KERN_INFO
		       "rx_coalesce:\t%d packets\n"
		       "rx_timeout: \t%d ns\n",
				np->rx_coalesce, np->rx_timeout*640);
	if (np->vlan)
		printk(KERN_INFO "vlan(id):\t%d\n", np->vlan);
	return 0;

err_out_unmap_rx:
	pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
err_out_unmap_tx:
	pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
err_out_iounmap:
#ifdef MEM_MAPPING
	pci_iounmap(pdev, np->ioaddr);
#endif
	pci_iounmap(pdev, np->eeprom_addr);
err_out_dev:
	free_netdev (dev);
err_out_res:
	pci_release_regions (pdev);
err_out_disable:
	pci_disable_device (pdev);
	return err;
}
示例#13
0
static int tc589_config(struct pcmcia_device *link)
{
    struct net_device *dev = link->priv;
    __be16 *phys_addr;
    int ret, i, j, multi = 0, fifo;
    unsigned int ioaddr;
    static const char * const ram_split[] = {"5:3", "3:1", "1:1", "3:5"};
    u8 *buf;
    size_t len;

    dev_dbg(&link->dev, "3c589_config\n");

    phys_addr = (__be16 *)dev->dev_addr;
    /* Is this a 3c562? */
    if (link->manf_id != MANFID_3COM)
	    dev_info(&link->dev, "hmmm, is this really a 3Com card??\n");
    multi = (link->card_id == PRODID_3COM_3C562);

    link->io_lines = 16;

    /* For the 3c562, the base address must be xx00-xx7f */
    for (i = j = 0; j < 0x400; j += 0x10) {
	if (multi && (j & 0x80)) continue;
	link->resource[0]->start = j ^ 0x300;
	i = pcmcia_request_io(link);
	if (i == 0)
		break;
    }
    if (i != 0)
	goto failed;

    ret = pcmcia_request_irq(link, el3_interrupt);
    if (ret)
	    goto failed;

    ret = pcmcia_enable_device(link);
    if (ret)
	    goto failed;

    dev->irq = link->irq;
    dev->base_addr = link->resource[0]->start;
    ioaddr = dev->base_addr;
    EL3WINDOW(0);

    /* The 3c589 has an extra EEPROM for configuration info, including
       the hardware address.  The 3c562 puts the address in the CIS. */
    len = pcmcia_get_tuple(link, 0x88, &buf);
    if (buf && len >= 6) {
	    for (i = 0; i < 3; i++)
		    phys_addr[i] = htons(le16_to_cpu(buf[i*2]));
	    kfree(buf);
    } else {
	kfree(buf); /* 0 < len < 6 */
	for (i = 0; i < 3; i++)
	    phys_addr[i] = htons(read_eeprom(ioaddr, i));
	if (phys_addr[0] == htons(0x6060)) {
	    dev_err(&link->dev, "IO port conflict at 0x%03lx-0x%03lx\n",
		    dev->base_addr, dev->base_addr+15);
	    goto failed;
	}
    }

    /* The address and resource configuration register aren't loaded from
       the EEPROM and *must* be set to 0 and IRQ3 for the PCMCIA version. */
    outw(0x3f00, ioaddr + 8);
    fifo = inl(ioaddr);

    /* The if_port symbol can be set when the module is loaded */
    if ((if_port >= 0) && (if_port <= 3))
	dev->if_port = if_port;
    else
	dev_err(&link->dev, "invalid if_port requested\n");

    SET_NETDEV_DEV(dev, &link->dev);

    if (register_netdev(dev) != 0) {
	    dev_err(&link->dev, "register_netdev() failed\n");
	goto failed;
    }

    netdev_info(dev, "3Com 3c%s, io %#3lx, irq %d, hw_addr %pM\n",
		(multi ? "562" : "589"), dev->base_addr, dev->irq,
		dev->dev_addr);
    netdev_info(dev, "  %dK FIFO split %s Rx:Tx, %s xcvr\n",
		(fifo & 7) ? 32 : 8, ram_split[(fifo >> 16) & 3],
		if_names[dev->if_port]);
    return 0;

failed:
    tc589_release(link);
    return -ENODEV;
} /* tc589_config */
示例#14
0
static int __devinit rt2870_probe(
	IN struct usb_interface *intf,
	IN struct usb_device *usb_dev,
	IN const struct usb_device_id *dev_id,
	IN RTMP_ADAPTER **ppAd)
{
	struct  net_device		*net_dev = NULL;
	RTMP_ADAPTER       	*pAd = (RTMP_ADAPTER *) NULL;
	INT                 		status, rv;
	PVOID				handle;
	RTMP_OS_NETDEV_OP_HOOK	netDevHook;
	

	DBGPRINT(RT_DEBUG_TRACE, ("===>rt2870_probe()!\n"));
	
	// Check chipset vendor/product ID
	//if (RT28XXChipsetCheck(_dev_p) == FALSE)
	//	goto err_out;

//RtmpDevInit=============================================
	// Allocate RTMP_ADAPTER adapter structure
	handle = kmalloc(sizeof(struct os_cookie), GFP_KERNEL);
	if (handle == NULL)
	{
		printk("rt2870_probe(): Allocate memory for os handle failed!\n");
		return -ENOMEM;
	}
	((POS_COOKIE)handle)->pUsb_Dev = usb_dev;
	
	rv = RTMPAllocAdapterBlock(handle, &pAd);
	if (rv != NDIS_STATUS_SUCCESS) 
	{
		kfree(handle);
		goto err_out;
	}

//USBDevInit==============================================
	if (USBDevConfigInit(usb_dev, intf, pAd) == FALSE)
		goto err_out_free_radev;
	
	RtmpRaDevCtrlInit(pAd, RTMP_DEV_INF_USB);
	
//NetDevInit==============================================
	net_dev = RtmpPhyNetDevInit(pAd, &netDevHook);
	if (net_dev == NULL)
		goto err_out_free_radev;
	
	// Here are the net_device structure with usb specific parameters.
#ifdef NATIVE_WPA_SUPPLICANT_SUPPORT
	/* for supporting Network Manager.
	  * Set the sysfs physical device reference for the network logical device if set prior to registration will 
	  * cause a symlink during initialization.
	 */
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0))
	SET_NETDEV_DEV(net_dev, &(usb_dev->dev));
#endif
#endif // NATIVE_WPA_SUPPLICANT_SUPPORT //

#ifdef CONFIG_STA_SUPPORT
    pAd->StaCfg.OriDevType = net_dev->type;
#endif // CONFIG_STA_SUPPORT //

//All done, it's time to register the net device to linux kernel.
	// Register this device
	status = RtmpOSNetDevAttach(net_dev, &netDevHook);
	if (status != 0)
		goto err_out_free_netdev;

#ifdef KTHREAD_SUPPORT
	init_waitqueue_head(&pAd->mlmeTask.kthread_q);
	init_waitqueue_head(&pAd->timerTask.kthread_q);
	init_waitqueue_head(&pAd->cmdQTask.kthread_q);
#endif	

	*ppAd = pAd;

	DBGPRINT(RT_DEBUG_TRACE, ("<===rt2870_probe()!\n"));

	return 0;

	/* --------------------------- ERROR HANDLE --------------------------- */	
err_out_free_netdev:
	RtmpOSNetDevFree(net_dev);
	
err_out_free_radev:
	RTMPFreeAdapter(pAd);
	
err_out:
	*ppAd = NULL;

	return -1;
	
}
示例#15
0
static PADAPTER rtw_gspi_if1_init(struct dvobj_priv *dvobj)
{
	int status = _FAIL;
	struct net_device *pnetdev;
	PADAPTER padapter = NULL;


	padapter = (PADAPTER)rtw_zvmalloc(sizeof(*padapter));
	if (NULL == padapter) {
		goto exit;
	}

	padapter->dvobj = dvobj;
	dvobj->if1 = padapter;

	padapter->bDriverStopped = _TRUE;

	dvobj->padapters[dvobj->iface_nums++] = padapter;
	padapter->iface_id = IFACE_ID0;

#if defined(CONFIG_CONCURRENT_MODE) || defined(CONFIG_DUALMAC_CONCURRENT)
	//set adapter_type/iface type for primary padapter
	padapter->isprimary = _TRUE;
	padapter->adapter_type = PRIMARY_ADAPTER;
	#ifndef CONFIG_HWPORT_SWAP
	padapter->iface_type = IFACE_PORT0;
	#else
	padapter->iface_type = IFACE_PORT1;
	#endif
#endif

	padapter->interface_type = RTW_GSPI;
	decide_chip_type_by_device_id(padapter);

	//3 1. init network device data
	pnetdev = rtw_init_netdev(padapter);
	if (!pnetdev)
		goto free_adapter;

	SET_NETDEV_DEV(pnetdev, dvobj_to_dev(dvobj));

#ifdef CONFIG_IOCTL_CFG80211
	rtw_wdev_alloc(padapter, dvobj_to_dev(dvobj));
#endif


	//3 3. init driver special setting, interface, OS and hardware relative
	//4 3.1 set hardware operation functions
	hal_set_hal_ops(padapter);


	//3 5. initialize Chip version
	padapter->intf_start = &gspi_intf_start;
	padapter->intf_stop = &gspi_intf_stop;

	if (rtw_init_io_priv(padapter, spi_set_intf_ops) == _FAIL)
	{
		RT_TRACE(_module_hci_intfs_c_, _drv_err_,
			("rtw_drv_init: Can't init io_priv\n"));
		goto free_hal_data;
	}

	{
		u32 ret = 0;
		DBG_8192C("read start:\n");
		//spi_write8_endian(padapter, SPI_LOCAL_OFFSET | 0xF0, 0x01, 1);
		rtw_write8(padapter, SPI_LOCAL_OFFSET | 0xF0, 0x03);
		ret = rtw_read32(padapter, SPI_LOCAL_OFFSET | 0xF0);
		DBG_8192C("read end 0xF0 read32:%x:\n", ret);
		DBG_8192C("read end 0xF0 read8:%x:\n", rtw_read8(padapter, SPI_LOCAL_OFFSET | 0xF0));

	}

	rtw_hal_read_chip_version(padapter);

	rtw_hal_chip_configure(padapter);


	//3 6. read efuse/eeprom data
	rtw_hal_read_chip_info(padapter);


	//3 7. init driver common data
	if (rtw_init_drv_sw(padapter) == _FAIL) {
		RT_TRACE(_module_hci_intfs_c_, _drv_err_,
			 ("rtw_drv_init: Initialize driver software resource Failed!\n"));
		goto free_hal_data;
	}


	//3 8. get WLan MAC address
	// set mac addr
	rtw_macaddr_cfg(padapter->eeprompriv.mac_addr);
	rtw_init_wifidirect_addrs(padapter, padapter->eeprompriv.mac_addr, padapter->eeprompriv.mac_addr);

	rtw_hal_disable_interrupt(padapter);

	DBG_871X("bDriverStopped:%d, bSurpriseRemoved:%d, bup:%d, hw_init_completed:%d\n"
		,padapter->bDriverStopped
		,padapter->bSurpriseRemoved
		,padapter->bup
		,padapter->hw_init_completed
	);

	status = _SUCCESS;

free_hal_data:
	if (status != _SUCCESS && padapter->HalData)
		rtw_mfree(padapter->HalData, sizeof(*(padapter->HalData)));

free_wdev:
	if (status != _SUCCESS) {
		#ifdef CONFIG_IOCTL_CFG80211
		rtw_wdev_unregister(padapter->rtw_wdev);
		rtw_wdev_free(padapter->rtw_wdev);
		#endif
	}

free_adapter:
	if (status != _SUCCESS) {
	if (pnetdev)
		rtw_free_netdev(pnetdev);
		else if (padapter)
			rtw_vmfree((u8*)padapter, sizeof(*padapter));
		padapter = NULL;
	}

exit:
	return padapter;
}
示例#16
0
static int ipheth_probe(struct usb_interface *intf,
			const struct usb_device_id *id)
{
	struct usb_device *udev = interface_to_usbdev(intf);
	struct usb_host_interface *hintf;
	struct usb_endpoint_descriptor *endp;
	struct ipheth_device *dev;
	struct net_device *netdev;
	int i;
	int retval;

	netdev = alloc_etherdev(sizeof(struct ipheth_device));
	if (!netdev)
		return -ENOMEM;

	netdev->netdev_ops = &ipheth_netdev_ops;
	netdev->watchdog_timeo = IPHETH_TX_TIMEOUT;
	strcpy(netdev->name, "eth%d");

	dev = netdev_priv(netdev);
	dev->udev = udev;
	dev->net = netdev;
	dev->intf = intf;

	/* Set up endpoints */
	hintf = usb_altnum_to_altsetting(intf, IPHETH_ALT_INTFNUM);
	if (hintf == NULL) {
		retval = -ENODEV;
		dev_err(&intf->dev, "Unable to find alternate settings interface\n");
		goto err_endpoints;
	}

	for (i = 0; i < hintf->desc.bNumEndpoints; i++) {
		endp = &hintf->endpoint[i].desc;
		if (usb_endpoint_is_bulk_in(endp))
			dev->bulk_in = endp->bEndpointAddress;
		else if (usb_endpoint_is_bulk_out(endp))
			dev->bulk_out = endp->bEndpointAddress;
	}
	if (!(dev->bulk_in && dev->bulk_out)) {
		retval = -ENODEV;
		dev_err(&intf->dev, "Unable to find endpoints\n");
		goto err_endpoints;
	}

	dev->ctrl_buf = kmalloc(IPHETH_CTRL_BUF_SIZE, GFP_KERNEL);
	if (dev->ctrl_buf == NULL) {
		retval = -ENOMEM;
		goto err_alloc_ctrl_buf;
	}

	retval = ipheth_get_macaddr(dev);
	if (retval)
		goto err_get_macaddr;

	INIT_DELAYED_WORK(&dev->carrier_work, ipheth_carrier_check_work);

	retval = ipheth_alloc_urbs(dev);
	if (retval) {
		dev_err(&intf->dev, "error allocating urbs: %d\n", retval);
		goto err_alloc_urbs;
	}

	usb_set_intfdata(intf, dev);

	SET_NETDEV_DEV(netdev, &intf->dev);
	SET_ETHTOOL_OPS(netdev, &ops);

	retval = register_netdev(netdev);
	if (retval) {
		dev_err(&intf->dev, "error registering netdev: %d\n", retval);
		retval = -EIO;
		goto err_register_netdev;
	}

	dev_info(&intf->dev, "Apple iPhone USB Ethernet device attached\n");
	return 0;

err_register_netdev:
	ipheth_free_urbs(dev);
err_alloc_urbs:
err_get_macaddr:
err_alloc_ctrl_buf:
	kfree(dev->ctrl_buf);
err_endpoints:
	free_netdev(netdev);
	return retval;
}
示例#17
0
/* Detect MAC & PHY and perform ethernet interface initialization */
static int __init at91ether_probe(struct platform_device *pdev)
{
	struct macb_platform_data *board_data = dev_get_platdata(&pdev->dev);
	struct resource *regs;
	struct net_device *dev;
	struct phy_device *phydev;
	struct macb *lp;
	int res;
	u32 reg;
	const char *mac;

	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!regs)
		return -ENOENT;

	dev = alloc_etherdev(sizeof(struct macb));
	if (!dev)
		return -ENOMEM;

	lp = netdev_priv(dev);
	lp->pdev = pdev;
	lp->dev = dev;
	spin_lock_init(&lp->lock);

	/* physical base address */
	dev->base_addr = regs->start;
	lp->regs = devm_ioremap(&pdev->dev, regs->start, resource_size(regs));
	if (!lp->regs) {
		res = -ENOMEM;
		goto err_free_dev;
	}

	/* Clock */
	lp->pclk = devm_clk_get(&pdev->dev, "ether_clk");
	if (IS_ERR(lp->pclk)) {
		res = PTR_ERR(lp->pclk);
		goto err_free_dev;
	}
	clk_enable(lp->pclk);

	lp->hclk = ERR_PTR(-ENOENT);
	lp->tx_clk = ERR_PTR(-ENOENT);

	/* Install the interrupt handler */
	dev->irq = platform_get_irq(pdev, 0);
	res = devm_request_irq(&pdev->dev, dev->irq, at91ether_interrupt, 0, dev->name, dev);
	if (res)
		goto err_disable_clock;

	ether_setup(dev);
	dev->netdev_ops = &at91ether_netdev_ops;
	dev->ethtool_ops = &macb_ethtool_ops;
	platform_set_drvdata(pdev, dev);
	SET_NETDEV_DEV(dev, &pdev->dev);

	mac = of_get_mac_address(pdev->dev.of_node);
	if (mac)
		memcpy(lp->dev->dev_addr, mac, ETH_ALEN);
	else
		macb_get_hwaddr(lp);

	res = of_get_phy_mode(pdev->dev.of_node);
	if (res < 0) {
		if (board_data && board_data->is_rmii)
			lp->phy_interface = PHY_INTERFACE_MODE_RMII;
		else
			lp->phy_interface = PHY_INTERFACE_MODE_MII;
	} else {
		lp->phy_interface = res;
	}

	macb_writel(lp, NCR, 0);

	reg = MACB_BF(CLK, MACB_CLK_DIV32) | MACB_BIT(BIG);
	if (lp->phy_interface == PHY_INTERFACE_MODE_RMII)
		reg |= MACB_BIT(RM9200_RMII);

	macb_writel(lp, NCFGR, reg);

	/* Register the network interface */
	res = register_netdev(dev);
	if (res)
		goto err_disable_clock;

	res = macb_mii_init(lp);
	if (res)
		goto err_out_unregister_netdev;

	/* will be enabled in open() */
	netif_carrier_off(dev);

	phydev = lp->phy_dev;
	netdev_info(dev, "attached PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
				phydev->drv->name, dev_name(&phydev->dev),
				phydev->irq);

	/* Display ethernet banner */
	netdev_info(dev, "AT91 ethernet at 0x%08lx int=%d (%pM)\n",
				dev->base_addr, dev->irq, dev->dev_addr);

	return 0;

err_out_unregister_netdev:
	unregister_netdev(dev);
err_disable_clock:
	clk_disable(lp->pclk);
err_free_dev:
	free_netdev(dev);
	return res;
}
示例#18
0
文件: plx_pci.c 项目: 7799/linux
/*
 * Probe PLX90xx based device for the SJA1000 chips and register each
 * available CAN channel to SJA1000 Socket-CAN subsystem.
 */
static int plx_pci_add_card(struct pci_dev *pdev,
			    const struct pci_device_id *ent)
{
	struct sja1000_priv *priv;
	struct net_device *dev;
	struct plx_pci_card *card;
	struct plx_pci_card_info *ci;
	int err, i;
	u32 val;
	void __iomem *addr;

	ci = (struct plx_pci_card_info *)ent->driver_data;

	if (pci_enable_device(pdev) < 0) {
		dev_err(&pdev->dev, "Failed to enable PCI device\n");
		return -ENODEV;
	}

	dev_info(&pdev->dev, "Detected \"%s\" card at slot #%i\n",
		 ci->name, PCI_SLOT(pdev->devfn));

	/* Allocate card structures to hold addresses, ... */
	card = kzalloc(sizeof(*card), GFP_KERNEL);
	if (!card) {
		pci_disable_device(pdev);
		return -ENOMEM;
	}

	pci_set_drvdata(pdev, card);

	card->channels = 0;

	/* Remap PLX90xx configuration space */
	addr = pci_iomap(pdev, ci->conf_map.bar, ci->conf_map.size);
	if (!addr) {
		err = -ENOMEM;
		dev_err(&pdev->dev, "Failed to remap configuration space "
			"(BAR%d)\n", ci->conf_map.bar);
		goto failure_cleanup;
	}
	card->conf_addr = addr + ci->conf_map.offset;

	ci->reset_func(pdev);
	card->reset_func = ci->reset_func;

	/* Detect available channels */
	for (i = 0; i < ci->channel_count; i++) {
		struct plx_pci_channel_map *cm = &ci->chan_map_tbl[i];

		dev = alloc_sja1000dev(0);
		if (!dev) {
			err = -ENOMEM;
			goto failure_cleanup;
		}

		card->net_dev[i] = dev;
		priv = netdev_priv(dev);
		priv->priv = card;
		priv->irq_flags = IRQF_SHARED;

		dev->irq = pdev->irq;

		/*
		 * Remap IO space of the SJA1000 chips
		 * This is device-dependent mapping
		 */
		addr = pci_iomap(pdev, cm->bar, cm->size);
		if (!addr) {
			err = -ENOMEM;
			dev_err(&pdev->dev, "Failed to remap BAR%d\n", cm->bar);
			goto failure_cleanup;
		}

		priv->reg_base = addr + cm->offset;
		priv->read_reg = plx_pci_read_reg;
		priv->write_reg = plx_pci_write_reg;

		/* Check if channel is present */
		if (plx_pci_check_sja1000(priv)) {
			priv->can.clock.freq = ci->can_clock;
			priv->ocr = ci->ocr;
			priv->cdr = ci->cdr;

			SET_NETDEV_DEV(dev, &pdev->dev);
			dev->dev_id = i;

			/* Register SJA1000 device */
			err = register_sja1000dev(dev);
			if (err) {
				dev_err(&pdev->dev, "Registering device failed "
					"(err=%d)\n", err);
				goto failure_cleanup;
			}

			card->channels++;

			dev_info(&pdev->dev, "Channel #%d at 0x%p, irq %d "
				 "registered as %s\n", i + 1, priv->reg_base,
				 dev->irq, dev->name);
		} else {
			dev_err(&pdev->dev, "Channel #%d not detected\n",
				i + 1);
			free_sja1000dev(dev);
			card->net_dev[i] = NULL;
		}
	}

	if (!card->channels) {
		err = -ENODEV;
		goto failure_cleanup;
	}

	/*
	 * Enable interrupts from PCI-card (PLX90xx) and enable Local_1,
	 * Local_2 interrupts from the SJA1000 chips
	 */
	if (pdev->device != PCI_DEVICE_ID_PLX_9056) {
		val = ioread32(card->conf_addr + PLX_INTCSR);
		if (pdev->subsystem_vendor == PCI_VENDOR_ID_ESDGMBH)
			val |= PLX_LINT1_EN | PLX_PCI_INT_EN;
		else
			val |= PLX_LINT1_EN | PLX_LINT2_EN | PLX_PCI_INT_EN;
		iowrite32(val, card->conf_addr + PLX_INTCSR);
	} else {
		iowrite32(PLX9056_LINTI | PLX9056_PCI_INT_EN,
			  card->conf_addr + PLX9056_INTCSR);
	}
	return 0;

failure_cleanup:
	dev_err(&pdev->dev, "Error: %d. Cleaning Up.\n", err);

	plx_pci_del_card(pdev);

	return err;
}
示例#19
0
static int sp_probe(struct platform_device *pdev)
{
    int err;
    void __iomem *addr;
    struct net_device *dev;
    struct sja1000_priv *priv;
    struct resource *res_mem, *res_irq;
    struct sja1000_platform_data *pdata;

    pdata = pdev->dev.platform_data;
    if (!pdata) {
        dev_err(&pdev->dev, "No platform data provided!\n");
        err = -ENODEV;
        goto exit;
    }

    res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
    res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
    if (!res_mem || !res_irq) {
        err = -ENODEV;
        goto exit;
    }

    if (!request_mem_region(res_mem->start, resource_size(res_mem),
                            DRV_NAME)) {
        err = -EBUSY;
        goto exit;
    }

    addr = ioremap_nocache(res_mem->start, resource_size(res_mem));
    if (!addr) {
        err = -ENOMEM;
        goto exit_release;
    }

    dev = alloc_sja1000dev(0);
    if (!dev) {
        err = -ENOMEM;
        goto exit_iounmap;
    }
    priv = netdev_priv(dev);

    dev->irq = res_irq->start;
    priv->irq_flags = res_irq->flags & (IRQF_TRIGGER_MASK | IRQF_SHARED);
    priv->reg_base = addr;
    /* The CAN clock frequency is half the oscillator clock frequency */
    priv->can.clock.freq = pdata->osc_freq / 2;
    priv->ocr = pdata->ocr;
    priv->cdr = pdata->cdr;

    switch (res_mem->flags & IORESOURCE_MEM_TYPE_MASK) {
    case IORESOURCE_MEM_32BIT:
        priv->read_reg = sp_read_reg32;
        priv->write_reg = sp_write_reg32;
        break;
    case IORESOURCE_MEM_16BIT:
        priv->read_reg = sp_read_reg16;
        priv->write_reg = sp_write_reg16;
        break;
    case IORESOURCE_MEM_8BIT:
    default:
        priv->read_reg = sp_read_reg8;
        priv->write_reg = sp_write_reg8;
        break;
    }

    dev_set_drvdata(&pdev->dev, dev);
    SET_NETDEV_DEV(dev, &pdev->dev);

    err = register_sja1000dev(dev);
    if (err) {
        dev_err(&pdev->dev, "registering %s failed (err=%d)\n",
                DRV_NAME, err);
        goto exit_free;
    }

    dev_info(&pdev->dev, "%s device registered (reg_base=%p, irq=%d)\n",
             DRV_NAME, priv->reg_base, dev->irq);
    return 0;

exit_free:
    free_sja1000dev(dev);
exit_iounmap:
    iounmap(addr);
exit_release:
    release_mem_region(res_mem->start, resource_size(res_mem));
exit:
    return err;
}
示例#20
0
static int __devinit tms_pci_attach(struct pci_dev *pdev, const struct pci_device_id *ent)
{	
	static int versionprinted;
	struct net_device *dev;
	struct net_local *tp;
	int ret;
	unsigned int pci_irq_line;
	unsigned long pci_ioaddr;
	struct card_info *cardinfo = &card_info_table[ent->driver_data];

	if (versionprinted++ == 0)
		printk("%s", version);

	if (pci_enable_device(pdev))
		return -EIO;

	/* Remove I/O space marker in bit 0. */
	pci_irq_line = pdev->irq;
	pci_ioaddr = pci_resource_start (pdev, 0);

	/* At this point we have found a valid card. */
	dev = alloc_trdev(sizeof(struct net_local));
	if (!dev)
		return -ENOMEM;

	if (!request_region(pci_ioaddr, TMS_PCI_IO_EXTENT, dev->name)) {
		ret = -EBUSY;
		goto err_out_trdev;
	}

	dev->base_addr	= pci_ioaddr;
	dev->irq 	= pci_irq_line;
	dev->dma	= 0;

	printk("%s: %s\n", dev->name, cardinfo->name);
	printk("%s:    IO: %#4lx  IRQ: %d\n",
	       dev->name, dev->base_addr, dev->irq);
		
	tms_pci_read_eeprom(dev);

	printk("%s:    Ring Station Address: %pM\n",
	       dev->name, dev->dev_addr);
		
	ret = tmsdev_init(dev, &pdev->dev);
	if (ret) {
		printk("%s: unable to get memory for dev->priv.\n", dev->name);
		goto err_out_region;
	}

	tp = netdev_priv(dev);
	tp->setnselout = tms_pci_setnselout_pins;
		
	tp->sifreadb = tms_pci_sifreadb;
	tp->sifreadw = tms_pci_sifreadw;
	tp->sifwriteb = tms_pci_sifwriteb;
	tp->sifwritew = tms_pci_sifwritew;
		
	memcpy(tp->ProductID, cardinfo->name, PROD_ID_SIZE + 1);

	tp->tmspriv = cardinfo;

	dev->netdev_ops = &tms380tr_netdev_ops;

	ret = request_irq(pdev->irq, tms380tr_interrupt, IRQF_SHARED,
			  dev->name, dev);
	if (ret)
		goto err_out_tmsdev;

	pci_set_drvdata(pdev, dev);
	SET_NETDEV_DEV(dev, &pdev->dev);

	ret = register_netdev(dev);
	if (ret)
		goto err_out_irq;
	
	return 0;

err_out_irq:
	free_irq(pdev->irq, dev);
err_out_tmsdev:
	pci_set_drvdata(pdev, NULL);
	tmsdev_term(dev);
err_out_region:
	release_region(pci_ioaddr, TMS_PCI_IO_EXTENT);
err_out_trdev:
	free_netdev(dev);
	return ret;
}
示例#21
0
/**
 * gether_setup_name - initialize one ethernet-over-usb link
 * @g: gadget to associated with these links
 * @ethaddr: NULL, or a buffer in which the ethernet address of the
 *	host side of the link is recorded
 * @netname: name for network device (for example, "usb")
 * Context: may sleep
 *
 * This sets up the single network link that may be exported by a
 * gadget driver using this framework.  The link layer addresses are
 * set up using module parameters.
 *
 * Returns negative errno, or zero on success
 */
int gether_setup_name(struct usb_gadget *g, u8 ethaddr[ETH_ALEN],
		const char *netname)
{
	struct eth_dev		*dev;
	struct net_device	*net;
	int			status;

	if (the_dev)
		return -EBUSY;

	net = alloc_etherdev(sizeof *dev);
	if (!net)
		return -ENOMEM;

	dev = netdev_priv(net);
	spin_lock_init(&dev->lock);
	spin_lock_init(&dev->req_lock);
	INIT_WORK(&dev->work, eth_work);
	INIT_LIST_HEAD(&dev->tx_reqs);
	INIT_LIST_HEAD(&dev->rx_reqs);

	skb_queue_head_init(&dev->rx_frames);

	/* network device setup */
	dev->net = net;
	snprintf(net->name, sizeof(net->name), "%s%%d", netname);

	if (get_ether_addr(dev_addr, net->dev_addr))
		dev_warn(&g->dev,
			"using random %s ethernet address\n", "self");

	if (ethaddr && is_valid_ether_addr(ethaddr)) {
		memcpy(dev->host_mac, ethaddr, ETH_ALEN);
	} else {
		if (get_ether_addr(host_addr, dev->host_mac))
			dev_warn(&g->dev,
				"using random %s ethernet address\n", "host");
	}

	net->netdev_ops = &eth_netdev_ops;

	SET_ETHTOOL_OPS(net, &ops);

	/* two kinds of host-initiated state changes:
	 *  - iff DATA transfer is active, carrier is "on"
	 *  - tx queueing enabled if open *and* carrier is "on"
	 */
	netif_carrier_off(net);

	dev->gadget = g;
	SET_NETDEV_DEV(net, &g->dev);
	SET_NETDEV_DEVTYPE(net, &gadget_type);

	status = register_netdev(net);
	if (status < 0) {
		dev_dbg(&g->dev, "register_netdev failed, %d\n", status);
		free_netdev(net);
	} else {
		INFO(dev, "MAC %pM\n", net->dev_addr);
		INFO(dev, "HOST MAC %pM\n", dev->host_mac);

		the_dev = dev;
	}

	return status;
}
示例#22
0
static int nmclan_config(struct pcmcia_device *link)
{
  struct net_device *dev = link->priv;
  mace_private *lp = netdev_priv(dev);
  u8 *buf;
  size_t len;
  int i, ret;
  unsigned int ioaddr;

  dev_dbg(&link->dev, "nmclan_config\n");

  link->io_lines = 5;
  ret = pcmcia_request_io(link);
  if (ret)
	  goto failed;
  ret = pcmcia_request_irq(link, mace_interrupt);
  if (ret)
	  goto failed;
  ret = pcmcia_enable_device(link);
  if (ret)
	  goto failed;

  dev->irq = link->irq;
  dev->base_addr = link->resource[0]->start;

  ioaddr = dev->base_addr;

  /* Read the ethernet address from the CIS. */
  len = pcmcia_get_tuple(link, 0x80, &buf);
  if (!buf || len < ETH_ALEN) {
	  kfree(buf);
	  goto failed;
  }
  memcpy(dev->dev_addr, buf, ETH_ALEN);
  kfree(buf);

  /* Verify configuration by reading the MACE ID. */
  {
    char sig[2];

    sig[0] = mace_read(lp, ioaddr, MACE_CHIPIDL);
    sig[1] = mace_read(lp, ioaddr, MACE_CHIPIDH);
    if ((sig[0] == 0x40) && ((sig[1] & 0x0F) == 0x09)) {
      dev_dbg(&link->dev, "nmclan_cs configured: mace id=%x %x\n",
	    sig[0], sig[1]);
    } else {
      pr_notice("mace id not found: %x %x should be 0x40 0x?9\n",
		sig[0], sig[1]);
      return -ENODEV;
    }
  }

  if(mace_init(lp, ioaddr, dev->dev_addr) == -1)
  	goto failed;

  /* The if_port symbol can be set when the module is loaded */
  if (if_port <= 2)
    dev->if_port = if_port;
  else
    pr_notice("invalid if_port requested\n");

  SET_NETDEV_DEV(dev, &link->dev);

  i = register_netdev(dev);
  if (i != 0) {
    pr_notice("register_netdev() failed\n");
    goto failed;
  }

  netdev_info(dev, "nmclan: port %#3lx, irq %d, %s port, hw_addr %pM\n",
	      dev->base_addr, dev->irq, if_names[dev->if_port], dev->dev_addr);
  return 0;

failed:
	nmclan_release(link);
	return -ENODEV;
} /* nmclan_config */
示例#23
0
void *wil_if_alloc(struct device *dev)
{
	struct net_device *ndev;
	struct wireless_dev *wdev;
	struct wil6210_priv *wil;
	struct ieee80211_channel *ch;
	int rc = 0;

	wdev = wil_cfg80211_init(dev);
	if (IS_ERR(wdev)) {
		dev_err(dev, "wil_cfg80211_init failed\n");
		return wdev;
	}

	wil = wdev_to_wil(wdev);
	wil->wdev = wdev;

	wil_dbg_misc(wil, "%s()\n", __func__);

	rc = wil_priv_init(wil);
	if (rc) {
		dev_err(dev, "wil_priv_init failed\n");
		goto out_wdev;
	}

	wdev->iftype = NL80211_IFTYPE_STATION; /* TODO */
	/* default monitor channel */
	ch = wdev->wiphy->bands[IEEE80211_BAND_60GHZ]->channels;
	cfg80211_chandef_create(&wdev->preset_chandef, ch, NL80211_CHAN_NO_HT);

	ndev = alloc_netdev(0, "wlan%d", NET_NAME_UNKNOWN, wil_dev_setup);
	if (!ndev) {
		dev_err(dev, "alloc_netdev_mqs failed\n");
		rc = -ENOMEM;
		goto out_priv;
	}

	ndev->netdev_ops = &wil_netdev_ops;
	wil_set_ethtoolops(ndev);
	ndev->ieee80211_ptr = wdev;
	ndev->hw_features = NETIF_F_HW_CSUM | NETIF_F_RXCSUM |
			    NETIF_F_SG | NETIF_F_GRO |
			    NETIF_F_TSO | NETIF_F_TSO6 |
			    NETIF_F_RXHASH;

	ndev->features |= ndev->hw_features;
	SET_NETDEV_DEV(ndev, wiphy_dev(wdev->wiphy));
	wdev->netdev = ndev;

	netif_napi_add(ndev, &wil->napi_rx, wil6210_netdev_poll_rx,
		       WIL6210_NAPI_BUDGET);
	netif_tx_napi_add(ndev, &wil->napi_tx, wil6210_netdev_poll_tx,
		       WIL6210_NAPI_BUDGET);

	netif_tx_stop_all_queues(ndev);

	return wil;

 out_priv:
	wil_priv_deinit(wil);

 out_wdev:
	wil_wdev_free(wil);

	return ERR_PTR(rc);
}
示例#24
0
/*
 * Probe a i2400m interface and register it
 *
 * @iface:   USB interface to link to
 * @id:      USB class/subclass/protocol id
 * @returns: 0 if ok, < 0 errno code on error.
 *
 * Alloc a net device, initialize the bus-specific details and then
 * calls the bus-generic initialization routine. That will register
 * the wimax and netdev devices, upload the firmware [using
 * _bus_bm_*()], call _bus_dev_start() to finalize the setup of the
 * communication with the device and then will start to talk to it to
 * finnish setting it up.
 */
static
int i2400mu_probe(struct usb_interface *iface,
		  const struct usb_device_id *id)
{
	int result;
	struct net_device *net_dev;
	struct device *dev = &iface->dev;
	struct i2400m *i2400m;
	struct i2400mu *i2400mu;
	struct usb_device *usb_dev = interface_to_usbdev(iface);

	if (usb_dev->speed != USB_SPEED_HIGH)
		dev_err(dev, "device not connected as high speed\n");

	/* Allocate instance [calls i2400m_netdev_setup() on it]. */
	result = -ENOMEM;
	net_dev = alloc_netdev(sizeof(*i2400mu), "wmx%d",
			       i2400mu_netdev_setup);
	if (net_dev == NULL) {
		dev_err(dev, "no memory for network device instance\n");
		goto error_alloc_netdev;
	}
	SET_NETDEV_DEV(net_dev, dev);
	SET_NETDEV_DEVTYPE(net_dev, &i2400mu_type);
	i2400m = net_dev_to_i2400m(net_dev);
	i2400mu = container_of(i2400m, struct i2400mu, i2400m);
	i2400m->wimax_dev.net_dev = net_dev;
	i2400mu->usb_dev = usb_get_dev(usb_dev);
	i2400mu->usb_iface = iface;
	usb_set_intfdata(iface, i2400mu);

	i2400m->bus_tx_block_size = I2400MU_BLK_SIZE;
	/*
	 * Room required in the Tx queue for USB message to accommodate
	 * a smallest payload while allocating header space is 16 bytes.
	 * Adding this room  for the new tx message increases the
	 * possibilities of including any payload with size <= 16 bytes.
	 */
	i2400m->bus_tx_room_min = I2400MU_BLK_SIZE;
	i2400m->bus_pl_size_max = I2400MU_PL_SIZE_MAX;
	i2400m->bus_setup = NULL;
	i2400m->bus_dev_start = i2400mu_bus_dev_start;
	i2400m->bus_dev_stop = i2400mu_bus_dev_stop;
	i2400m->bus_release = NULL;
	i2400m->bus_tx_kick = i2400mu_bus_tx_kick;
	i2400m->bus_reset = i2400mu_bus_reset;
	i2400m->bus_bm_retries = I2400M_USB_BOOT_RETRIES;
	i2400m->bus_bm_cmd_send = i2400mu_bus_bm_cmd_send;
	i2400m->bus_bm_wait_for_ack = i2400mu_bus_bm_wait_for_ack;
	i2400m->bus_bm_mac_addr_impaired = 0;

	switch (id->idProduct) {
	case USB_DEVICE_ID_I6050:
	case USB_DEVICE_ID_I6050_2:
	case USB_DEVICE_ID_I6150:
	case USB_DEVICE_ID_I6150_2:
	case USB_DEVICE_ID_I6150_3:
	case USB_DEVICE_ID_I6250:
		i2400mu->i6050 = 1;
		break;
	default:
		break;
	}

	if (i2400mu->i6050) {
		i2400m->bus_fw_names = i2400mu_bus_fw_names_6050;
		i2400mu->endpoint_cfg.bulk_out = 0;
		i2400mu->endpoint_cfg.notification = 3;
		i2400mu->endpoint_cfg.reset_cold = 2;
		i2400mu->endpoint_cfg.bulk_in = 1;
	} else {
		i2400m->bus_fw_names = i2400mu_bus_fw_names_5x50;
		i2400mu->endpoint_cfg.bulk_out = 0;
		i2400mu->endpoint_cfg.notification = 1;
		i2400mu->endpoint_cfg.reset_cold = 2;
		i2400mu->endpoint_cfg.bulk_in = 3;
	}
#ifdef CONFIG_PM
	iface->needs_remote_wakeup = 1;		/* autosuspend (15s delay) */
	device_init_wakeup(dev, 1);
	pm_runtime_set_autosuspend_delay(&usb_dev->dev, 15000);
	usb_enable_autosuspend(usb_dev);
#endif

	result = i2400m_setup(i2400m, I2400M_BRI_MAC_REINIT);
	if (result < 0) {
		dev_err(dev, "cannot setup device: %d\n", result);
		goto error_setup;
	}
	result = i2400mu_debugfs_add(i2400mu);
	if (result < 0) {
		dev_err(dev, "Can't register i2400mu's debugfs: %d\n", result);
		goto error_debugfs_add;
	}
	return 0;

error_debugfs_add:
	i2400m_release(i2400m);
error_setup:
	usb_set_intfdata(iface, NULL);
	usb_put_dev(i2400mu->usb_dev);
	free_netdev(net_dev);
error_alloc_netdev:
	return result;
}
示例#25
0
/* Search EMAC board, allocate space and register it
 */
static int emac_probe(struct platform_device *pdev)
{
	struct device_node *np = pdev->dev.of_node;
	struct emac_board_info *db;
	struct net_device *ndev;
	int ret = 0;
	const char *mac_addr;

	ndev = alloc_etherdev(sizeof(struct emac_board_info));
	if (!ndev) {
		dev_err(&pdev->dev, "could not allocate device.\n");
		return -ENOMEM;
	}

	SET_NETDEV_DEV(ndev, &pdev->dev);

	db = netdev_priv(ndev);
	memset(db, 0, sizeof(*db));

	db->dev = &pdev->dev;
	db->ndev = ndev;
	db->pdev = pdev;

	spin_lock_init(&db->lock);

	db->membase = of_iomap(np, 0);
	if (!db->membase) {
		dev_err(&pdev->dev, "failed to remap registers\n");
		ret = -ENOMEM;
		goto out;
	}

	/* fill in parameters for net-dev structure */
	ndev->base_addr = (unsigned long)db->membase;
	ndev->irq = irq_of_parse_and_map(np, 0);
	if (ndev->irq == -ENXIO) {
		netdev_err(ndev, "No irq resource\n");
		ret = ndev->irq;
		goto out_iounmap;
	}

	db->clk = devm_clk_get(&pdev->dev, NULL);
	if (IS_ERR(db->clk)) {
		ret = PTR_ERR(db->clk);
		goto out_iounmap;
	}

	ret = clk_prepare_enable(db->clk);
	if (ret) {
		dev_err(&pdev->dev, "Error couldn't enable clock (%d)\n", ret);
		goto out_iounmap;
	}

	ret = sunxi_sram_claim(&pdev->dev);
	if (ret) {
		dev_err(&pdev->dev, "Error couldn't map SRAM to device\n");
		goto out_clk_disable_unprepare;
	}

	db->phy_node = of_parse_phandle(np, "phy", 0);
	if (!db->phy_node) {
		dev_err(&pdev->dev, "no associated PHY\n");
		ret = -ENODEV;
		goto out_release_sram;
	}

	/* Read MAC-address from DT */
	mac_addr = of_get_mac_address(np);
	if (mac_addr)
		memcpy(ndev->dev_addr, mac_addr, ETH_ALEN);

	/* Check if the MAC address is valid, if not get a random one */
	if (!is_valid_ether_addr(ndev->dev_addr)) {
		eth_hw_addr_random(ndev);
		dev_warn(&pdev->dev, "using random MAC address %pM\n",
			 ndev->dev_addr);
	}

	db->emacrx_completed_flag = 1;
	emac_powerup(ndev);
	emac_reset(db);

	ndev->netdev_ops = &emac_netdev_ops;
	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
	ndev->ethtool_ops = &emac_ethtool_ops;

	platform_set_drvdata(pdev, ndev);

	/* Carrier starts down, phylib will bring it up */
	netif_carrier_off(ndev);

	ret = register_netdev(ndev);
	if (ret) {
		dev_err(&pdev->dev, "Registering netdev failed!\n");
		ret = -ENODEV;
		goto out_release_sram;
	}

	dev_info(&pdev->dev, "%s: at %p, IRQ %d MAC: %pM\n",
		 ndev->name, db->membase, ndev->irq, ndev->dev_addr);

	return 0;

out_release_sram:
	sunxi_sram_release(&pdev->dev);
out_clk_disable_unprepare:
	clk_disable_unprepare(db->clk);
out_iounmap:
	iounmap(db->membase);
out:
	dev_err(db->dev, "not found (%d).\n", ret);

	free_netdev(ndev);

	return ret;
}
/**
 * @brief Register the device with cfg80211
 *
 * @param dev       A pointer to net_device structure
 * @param bss_type  BSS type
 *
 * @return          MLAN_STATUS_SUCCESS or MLAN_STATUS_FAILURE
 */
mlan_status
woal_register_uap_cfg80211(struct net_device * dev, t_u8 bss_type)
{
    mlan_status ret = MLAN_STATUS_SUCCESS;
    moal_private *priv = (moal_private *) netdev_priv(dev);
    void *wdev_priv = NULL;
    struct wireless_dev *wdev = NULL;
    mlan_fw_info fw_info;

    ENTER();

    /* Allocate wireless device */
    wdev = kzalloc(sizeof(struct wireless_dev), GFP_KERNEL);
    if (!wdev) {
        PRINTM(MERROR, "Could not allocate wireless device\n");
        ret = MLAN_STATUS_FAILURE;
        goto err_wdev;
    }

    /* Allocate wiphy */
    wdev->wiphy = wiphy_new(&woal_cfg80211_uap_ops, sizeof(moal_private *));
    if (!wdev->wiphy) {
        PRINTM(MERROR, "Could not allocate wiphy device\n");
        ret = MLAN_STATUS_FAILURE;
        goto err_wdev;
    }
    if (bss_type == MLAN_BSS_TYPE_UAP) {
        dev_set_name(&wdev->wiphy->dev, dev->name);
        wdev->iftype = NL80211_IFTYPE_AP;
        wdev->wiphy->interface_modes =
            MBIT(NL80211_IFTYPE_AP) | MBIT(NL80211_IFTYPE_STATION) | 0;
        wdev->wiphy->max_scan_ssids = 10;
    }

    /* Make this wiphy known to this driver only */
    wdev->wiphy->privid = mrvl_wiphy_privid;

    /* Supported bands */
    wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = &cfg80211_band_2ghz;
    if (MLAN_STATUS_SUCCESS ==
        woal_request_get_fw_info(priv, MOAL_CMD_WAIT, &fw_info)) {
        if (fw_info.fw_bands & BAND_A)
            wdev->wiphy->bands[IEEE80211_BAND_5GHZ] = &cfg80211_band_5ghz;
    }

    /* Initialize cipher suits */
    wdev->wiphy->cipher_suites = cfg80211_cipher_suites;
    wdev->wiphy->n_cipher_suites = ARRAY_SIZE(cfg80211_cipher_suites);

    wdev->wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM;

    /* We are using custom domains */
    wdev->wiphy->flags |= WIPHY_FLAG_CUSTOM_REGULATORY;

    wdev->wiphy->reg_notifier = NULL;   // TODO: woal_cfg80211_reg_notifier;

    /* Set moal_private pointer in wiphy_priv */
    wdev_priv = wiphy_priv(wdev->wiphy);

    *(unsigned long *) wdev_priv = (unsigned long) priv;

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,39) || defined(COMPAT_WIRELESS)
    set_wiphy_dev(wdev->wiphy, (struct device *) priv->phandle->hotplug_device);
#endif

    if (wiphy_register(wdev->wiphy) < 0) {
        PRINTM(MERROR, "Wiphy device registration failed!\n");
        ret = MLAN_STATUS_FAILURE;
        goto err_wdev;
    }

    dev_net_set(dev, wiphy_net(wdev->wiphy));
    dev->ieee80211_ptr = wdev;
    SET_NETDEV_DEV(dev, wiphy_dev(wdev->wiphy));
    priv->wdev = wdev;

    if (ret != MLAN_STATUS_SUCCESS) {
        PRINTM(MERROR, "Wiphy device registration failed!\n");
    } else {
        PRINTM(MINFO, "Successfully registered wiphy device\n");
        LEAVE();
        return ret;
    }

    wiphy_unregister(wdev->wiphy);
  err_wdev:
    dev->ieee80211_ptr = NULL;
    if (wdev && wdev->wiphy)
        wiphy_free(wdev->wiphy);
    kfree(wdev);
    LEAVE();
    return ret;
}
示例#27
0
static int peak_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
	struct sja1000_priv *priv;
	struct peak_pci_chan *chan;
	struct net_device *dev, *prev_dev;
	void __iomem *cfg_base, *reg_base;
	u16 sub_sys_id, icr;
	int i, err, channels;

	err = pci_enable_device(pdev);
	if (err)
		return err;

	err = pci_request_regions(pdev, DRV_NAME);
	if (err)
		goto failure_disable_pci;

	err = pci_read_config_word(pdev, 0x2e, &sub_sys_id);
	if (err)
		goto failure_release_regions;

	dev_dbg(&pdev->dev, "probing device %04x:%04x:%04x\n",
		pdev->vendor, pdev->device, sub_sys_id);

	err = pci_write_config_word(pdev, 0x44, 0);
	if (err)
		goto failure_release_regions;

	if (sub_sys_id >= 12)
		channels = 4;
	else if (sub_sys_id >= 10)
		channels = 3;
	else if (sub_sys_id >= 4)
		channels = 2;
	else
		channels = 1;

	cfg_base = pci_iomap(pdev, 0, PEAK_PCI_CFG_SIZE);
	if (!cfg_base) {
		dev_err(&pdev->dev, "failed to map PCI resource #0\n");
		err = -ENOMEM;
		goto failure_release_regions;
	}

	reg_base = pci_iomap(pdev, 1, PEAK_PCI_CHAN_SIZE * channels);
	if (!reg_base) {
		dev_err(&pdev->dev, "failed to map PCI resource #1\n");
		err = -ENOMEM;
		goto failure_unmap_cfg_base;
	}

	/* Set GPIO control register */
	writew(0x0005, cfg_base + PITA_GPIOICR + 2);
	/* Enable all channels of this card */
	writeb(0x00, cfg_base + PITA_GPIOICR);
	/* Toggle reset */
	writeb(0x05, cfg_base + PITA_MISC + 3);
	mdelay(5);
	/* Leave parport mux mode */
	writeb(0x04, cfg_base + PITA_MISC + 3);

	icr = readw(cfg_base + PITA_ICR + 2);

	for (i = 0; i < channels; i++) {
		dev = alloc_sja1000dev(sizeof(struct peak_pci_chan));
		if (!dev) {
			err = -ENOMEM;
			goto failure_remove_channels;
		}

		priv = netdev_priv(dev);
		chan = priv->priv;

		chan->cfg_base = cfg_base;
		priv->reg_base = reg_base + i * PEAK_PCI_CHAN_SIZE;

		priv->read_reg = peak_pci_read_reg;
		priv->write_reg = peak_pci_write_reg;
		priv->post_irq = peak_pci_post_irq;

		priv->can.clock.freq = PEAK_PCI_CAN_CLOCK;
		priv->ocr = PEAK_PCI_OCR;
		priv->cdr = PEAK_PCI_CDR;
		/* Neither a slave nor a single device distributes the clock */
		if (channels == 1 || i > 0)
			priv->cdr |= CDR_CLK_OFF;

		/* Setup interrupt handling */
		priv->irq_flags = IRQF_SHARED;
		dev->irq = pdev->irq;

		chan->icr_mask = peak_pci_icr_masks[i];
		icr |= chan->icr_mask;

		SET_NETDEV_DEV(dev, &pdev->dev);
		dev->dev_id = i;

		/* Create chain of SJA1000 devices */
		chan->prev_dev = pci_get_drvdata(pdev);
		pci_set_drvdata(pdev, dev);

		/*
		 * PCAN-ExpressCard needs some additional i2c init.
		 * This must be done *before* register_sja1000dev() but
		 * *after* devices linkage
		 */
		if (pdev->device == PEAK_PCIEC_DEVICE_ID) {
			err = peak_pciec_probe(pdev, dev);
			if (err) {
				dev_err(&pdev->dev,
					"failed to probe device (err %d)\n",
					err);
				goto failure_free_dev;
			}
		}

		err = register_sja1000dev(dev);
		if (err) {
			dev_err(&pdev->dev, "failed to register device\n");
			goto failure_free_dev;
		}

		dev_info(&pdev->dev,
			 "%s at reg_base=0x%p cfg_base=0x%p irq=%d\n",
			 dev->name, priv->reg_base, chan->cfg_base, dev->irq);
	}

	/* Enable interrupts */
	writew(icr, cfg_base + PITA_ICR + 2);

	return 0;

failure_free_dev:
	pci_set_drvdata(pdev, chan->prev_dev);
	free_sja1000dev(dev);

failure_remove_channels:
	/* Disable interrupts */
	writew(0x0, cfg_base + PITA_ICR + 2);

	chan = NULL;
	for (dev = pci_get_drvdata(pdev); dev; dev = prev_dev) {
		priv = netdev_priv(dev);
		chan = priv->priv;
		prev_dev = chan->prev_dev;

		unregister_sja1000dev(dev);
		free_sja1000dev(dev);
	}

	/* free any PCIeC resources too */
	if (chan && chan->pciec_card)
		peak_pciec_remove(chan->pciec_card);

	pci_iounmap(pdev, reg_base);

failure_unmap_cfg_base:
	pci_iounmap(pdev, cfg_base);

failure_release_regions:
	pci_release_regions(pdev);

failure_disable_pci:
	pci_disable_device(pdev);

	return err;
}
示例#28
0
static INT __devinit   rt2860_probe(
    IN  struct pci_dev              *pci_dev, 
    IN  const struct pci_device_id  *pci_id)
{
	VOID 				*pAd = NULL;
	struct  net_device	*net_dev;
	PVOID				handle;
	PSTRING				print_name;
	ULONG				csr_addr;
	INT rv = 0;
	RTMP_OS_NETDEV_OP_HOOK	netDevHook;
	ULONG					OpMode;

	DBGPRINT(RT_DEBUG_TRACE, ("===> rt2860_probe\n"));

/*PCIDevInit============================================== */
	/* wake up and enable device */
	if ((rv = pci_enable_device(pci_dev))!= 0)
	{
		DBGPRINT(RT_DEBUG_ERROR, ("Enable PCI device failed, errno=%d!\n", rv));
		return rv;
	}

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
	print_name = pci_name(pci_dev);
#else
	print_name = pci_dev->slot_name;
#endif /* LINUX_VERSION_CODE */

	if ((rv = pci_request_regions(pci_dev, print_name)) != 0)
	{
		DBGPRINT(RT_DEBUG_ERROR, ("Request PCI resource failed, errno=%d!\n", rv));
		goto err_out;
	}
	
	/* map physical address to virtual address for accessing register */
	csr_addr = (unsigned long) ioremap(pci_resource_start(pci_dev, 0), pci_resource_len(pci_dev, 0));
	if (!csr_addr)
	{
		DBGPRINT(RT_DEBUG_ERROR, ("ioremap failed for device %s, region 0x%lX @ 0x%lX\n",
					print_name, (ULONG)pci_resource_len(pci_dev, 0), (ULONG)pci_resource_start(pci_dev, 0)));
		goto err_out_free_res;
	}
	else
	{
		DBGPRINT(RT_DEBUG_TRACE, ("%s: at 0x%lx, VA 0x%lx, IRQ %d. \n",  print_name, 
					(ULONG)pci_resource_start(pci_dev, 0), (ULONG)csr_addr, pci_dev->irq));
	}

	/* Set DMA master */
	pci_set_master(pci_dev);


/*RtmpDevInit============================================== */
	/* Allocate RTMP_ADAPTER adapter structure */
/*	handle = kmalloc(sizeof(struct os_cookie), GFP_KERNEL); */
	os_alloc_mem(NULL, (UCHAR **)&handle, sizeof(struct os_cookie));
	if (handle == NULL)
	{
		DBGPRINT(RT_DEBUG_ERROR, ("%s(): Allocate memory for os handle failed!\n", __FUNCTION__));
		goto err_out_iounmap;
	}
	memset(handle, 0, sizeof(struct os_cookie));

	((POS_COOKIE)handle)->pci_dev = pci_dev;

#ifdef OS_ABL_FUNC_SUPPORT
{
	RTMP_PCI_CONFIG PciConfig;
	PciConfig.ConfigVendorID = PCI_VENDOR_ID;
	/* get DRIVER operations */
	RTMP_DRV_OPS_FUNCTION(pRtmpDrvOps, NULL, &PciConfig, NULL);
}
#endif /* OS_ABL_FUNC_SUPPORT */

	rv = RTMPAllocAdapterBlock(handle, &pAd);	/* we may need the pci_dev for allocate structure of "RTMP_ADAPTER" */
	if (rv != NDIS_STATUS_SUCCESS) 
		goto err_out_iounmap;
	/* Here are the RTMP_ADAPTER structure with pci-bus specific parameters. */
/*	pAd->CSRBaseAddress = (PUCHAR)csr_addr; */
	RTMP_DRIVER_PCI_CSR_SET(pAd, csr_addr);

/*	RTMPInitPCIeDevice(pci_dev, pAd); */
	RTMP_DRIVER_PCIE_INIT(pAd, pci_dev);

/*NetDevInit============================================== */
	net_dev = RtmpPhyNetDevInit(pAd, &netDevHook);
	if (net_dev == NULL)
		goto err_out_free_radev;
	
	/* Here are the net_device structure with pci-bus specific parameters. */
	net_dev->irq = pci_dev->irq;		/* Interrupt IRQ number */
	net_dev->base_addr = csr_addr;		/* Save CSR virtual address and irq to device structure */
	pci_set_drvdata(pci_dev, net_dev);	/* Set driver data */
	
#ifdef NATIVE_WPA_SUPPLICANT_SUPPORT
/* for supporting Network Manager */
	/* Set the sysfs physical device reference for the network logical device
	  * if set prior to registration will cause a symlink during initialization.
	 */
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0))
	SET_NETDEV_DEV(net_dev, &(pci_dev->dev));
#endif
#endif /* NATIVE_WPA_SUPPLICANT_SUPPORT */

/*All done, it's time to register the net device to linux kernel. */
	/* Register this device */
#ifdef RT_CFG80211_SUPPORT
{
/*	pAd->pCfgDev = &(pci_dev->dev); */
/*	pAd->CFG80211_Register = CFG80211_Register; */
/*	RTMP_DRIVER_CFG80211_INIT(pAd, pci_dev); */

	/*
		In 2.6.32, cfg80211 register must be before register_netdevice();
		We can not put the register in rt28xx_open();
		Or you will suffer NULL pointer in list_add of
		cfg80211_netdev_notifier_call().
	*/
	CFG80211_Register(pAd, &(pci_dev->dev), net_dev);
}
#endif /* RT_CFG80211_SUPPORT */

	RTMP_DRIVER_OP_MODE_GET(pAd, &OpMode);
	rv = RtmpOSNetDevAttach(OpMode, net_dev, &netDevHook);
	if (rv)
		goto err_out_free_netdev;

#ifdef CONFIG_STA_SUPPORT
/*	pAd->StaCfg.OriDevType = net_dev->type; */
	RTMP_DRIVER_STA_DEV_TYPE_SET(pAd, net_dev->type);
#endif /* CONFIG_STA_SUPPORT */

/*#ifdef KTHREAD_SUPPORT */
#ifdef PRE_ASSIGN_MAC_ADDR
	UCHAR PermanentAddress[MAC_ADDR_LEN];
	RTMP_DRIVER_MAC_ADDR_GET(pAd, &PermanentAddress[0]);
	DBGPRINT(RT_DEBUG_TRACE, ("@%s MAC address: %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__, PermanentAddress[0], PermanentAddress[1],PermanentAddress[2],PermanentAddress[3],PermanentAddress[4],PermanentAddress[5]));
	/* Set up the Mac address */
	RtmpOSNetDevAddrSet(OpMode, net_dev, &PermanentAddress[0], NULL);
#endif /* PRE_ASSIGN_MAC_ADDR */

	DBGPRINT(RT_DEBUG_TRACE, ("<=== rt2860_probe\n"));

	return 0; /* probe ok */


	/* --------------------------- ERROR HANDLE --------------------------- */
err_out_free_netdev:
	RtmpOSNetDevFree(net_dev);
	
err_out_free_radev:
	/* free RTMP_ADAPTER strcuture and os_cookie*/
	RTMPFreeAdapter(pAd);

err_out_iounmap:
	iounmap((void *)(csr_addr));
	release_mem_region(pci_resource_start(pci_dev, 0), pci_resource_len(pci_dev, 0)); 
	
err_out_free_res:
	pci_release_regions(pci_dev);
	
err_out:
	pci_disable_device(pci_dev);

	DBGPRINT(RT_DEBUG_ERROR, ("<=== rt2860_probe failed with rv = %d!\n", rv));

	return -ENODEV; /* probe fail */
}
示例#29
0
//
// PCI device probe & initialization function
//
static INT __devinit   rt2860_probe(
    IN  struct pci_dev              *pci_dev,
    IN  const struct pci_device_id  *pci_id)
{
	PRTMP_ADAPTER		pAd = (PRTMP_ADAPTER)NULL;
	struct  net_device		*net_dev;
	PVOID				handle;
	PSTRING				print_name;
	ULONG				csr_addr;
	INT rv = 0;
	RTMP_OS_NETDEV_OP_HOOK	netDevHook;

	DBGPRINT(RT_DEBUG_TRACE, ("===> rt2860_probe\n"));

//PCIDevInit==============================================
	// wake up and enable device
	if ((rv = pci_enable_device(pci_dev))!= 0)
	{
		DBGPRINT(RT_DEBUG_ERROR, ("Enable PCI device failed, errno=%d!\n", rv));
		return rv;
	}

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
	print_name = pci_dev ? pci_name(pci_dev) : "rt3090";
#else
	print_name = pci_dev ? pci_dev->slot_name : "rt3090";
#endif // LINUX_VERSION_CODE //

	if ((rv = pci_request_regions(pci_dev, print_name)) != 0)
	{
		DBGPRINT(RT_DEBUG_ERROR, ("Request PCI resource failed, errno=%d!\n", rv));
		goto err_out;
	}

	// map physical address to virtual address for accessing register
	csr_addr = (unsigned long) ioremap(pci_resource_start(pci_dev, 0), pci_resource_len(pci_dev, 0));
	if (!csr_addr)
	{
		DBGPRINT(RT_DEBUG_ERROR, ("ioremap failed for device %s, region 0x%lX @ 0x%lX\n",
					print_name, (ULONG)pci_resource_len(pci_dev, 0), (ULONG)pci_resource_start(pci_dev, 0)));
		goto err_out_free_res;
	}
	else
	{
		DBGPRINT(RT_DEBUG_TRACE, ("%s: at 0x%lx, VA 0x%lx, IRQ %d. \n",  print_name,
					(ULONG)pci_resource_start(pci_dev, 0), (ULONG)csr_addr, pci_dev->irq));
	}

	// Set DMA master
	pci_set_master(pci_dev);


//RtmpDevInit==============================================
	// Allocate RTMP_ADAPTER adapter structure
	handle = kmalloc(sizeof(struct os_cookie), GFP_KERNEL);
	if (handle == NULL)
	{
		DBGPRINT(RT_DEBUG_ERROR, ("%s(): Allocate memory for os handle failed!\n", __FUNCTION__));
		goto err_out_iounmap;
	}

	((POS_COOKIE)handle)->pci_dev = pci_dev;

	rv = RTMPAllocAdapterBlock(handle, &pAd);	//shiang: we may need the pci_dev for allocate structure of "RTMP_ADAPTER"
	if (rv != NDIS_STATUS_SUCCESS)
		goto err_out_iounmap;
	// Here are the RTMP_ADAPTER structure with pci-bus specific parameters.
	pAd->CSRBaseAddress = (PUCHAR)csr_addr;
	DBGPRINT(RT_DEBUG_ERROR, ("pAd->CSRBaseAddress =0x%lx, csr_addr=0x%lx!\n", (ULONG)pAd->CSRBaseAddress, csr_addr));
	RtmpRaDevCtrlInit(pAd, RTMP_DEV_INF_PCI);


//NetDevInit==============================================
	net_dev = RtmpPhyNetDevInit(pAd, &netDevHook);
	if (net_dev == NULL)
		goto err_out_free_radev;

	// Here are the net_device structure with pci-bus specific parameters.
	net_dev->irq = pci_dev->irq;		// Interrupt IRQ number
	net_dev->base_addr = csr_addr;		// Save CSR virtual address and irq to device structure
	pci_set_drvdata(pci_dev, net_dev);	// Set driver data

#ifdef NATIVE_WPA_SUPPLICANT_SUPPORT
/* for supporting Network Manager */
	/* Set the sysfs physical device reference for the network logical device
	  * if set prior to registration will cause a symlink during initialization.
	 */
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0))
	SET_NETDEV_DEV(net_dev, &(pci_dev->dev));
#endif
#endif // NATIVE_WPA_SUPPLICANT_SUPPORT //


//All done, it's time to register the net device to linux kernel.
	// Register this device
	rv = RtmpOSNetDevAttach(net_dev, &netDevHook);
	if (rv)
		goto err_out_free_netdev;

#ifdef CONFIG_STA_SUPPORT
	pAd->StaCfg.OriDevType = net_dev->type;
#endif // CONFIG_STA_SUPPORT //
RTMPInitPCIeDevice(pci_dev, pAd);

	DBGPRINT(RT_DEBUG_TRACE, ("<=== rt2860_probe\n"));

	return 0; // probe ok


	/* --------------------------- ERROR HANDLE --------------------------- */
err_out_free_netdev:
	RtmpOSNetDevFree(net_dev);

err_out_free_radev:
	/* free RTMP_ADAPTER strcuture and os_cookie*/
	RTMPFreeAdapter(pAd);

err_out_iounmap:
	iounmap((void *)(csr_addr));
	release_mem_region(pci_resource_start(pci_dev, 0), pci_resource_len(pci_dev, 0));

err_out_free_res:
	pci_release_regions(pci_dev);

err_out:
	pci_disable_device(pci_dev);

	DBGPRINT(RT_DEBUG_ERROR, ("<=== rt2860_probe failed with rv = %d!\n", rv));

	return -ENODEV; /* probe fail */
}
示例#30
0
/*
* Jeff: this function should be called under ioctl (rtnl_lock is accquired) while
* LINUX_VERSION_CODE < KERNEL_VERSION(2,6,26)
*/
int rtw_change_ifname(_adapter *padapter, const char *ifname)
{
	struct net_device *pnetdev;
	struct net_device *cur_pnetdev = padapter->pnetdev;
	struct rereg_nd_name_data *rereg_priv;
	int ret;

	if(!padapter)
		goto error;

	rereg_priv = &padapter->rereg_nd_name_priv;

	//free the old_pnetdev
	if(rereg_priv->old_pnetdev) {
		free_netdev(rereg_priv->old_pnetdev);
		rereg_priv->old_pnetdev = NULL;
	}

#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,26))
	if(!rtnl_is_locked())
		unregister_netdev(cur_pnetdev);
	else
#endif
		unregister_netdevice(cur_pnetdev);

	rtw_proc_remove_one(cur_pnetdev);

	rereg_priv->old_pnetdev=cur_pnetdev;

	pnetdev = rtw_init_netdev(padapter);
	if (!pnetdev)  {
		ret = -1;
		goto error;
	}

	SET_NETDEV_DEV(pnetdev, dvobj_to_dev(adapter_to_dvobj(padapter)));

	rtw_init_netdev_name(pnetdev, ifname);

	_rtw_memcpy(pnetdev->dev_addr, padapter->eeprompriv.mac_addr, ETH_ALEN);

#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,26))
	if(!rtnl_is_locked())
		ret = register_netdev(pnetdev);
	else
#endif
		ret = register_netdevice(pnetdev);

	if ( ret != 0) {
		RT_TRACE(_module_hci_intfs_c_,_drv_err_,("register_netdev() failed\n"));
		goto error;
	}

	rtw_proc_init_one(pnetdev);

	return 0;

error:

	return -1;

}