示例#1
0
rtems_status_code rtems_timer_create(
  rtems_name  name,
  rtems_id   *id
)
{
  Timer_Control *the_timer;

  if ( !rtems_is_name_valid( name ) )
    return RTEMS_INVALID_NAME;

  if ( !id )
    return RTEMS_INVALID_ADDRESS;

  the_timer = _Timer_Allocate();

  if ( !the_timer ) {
    _Objects_Allocator_unlock();
    return RTEMS_TOO_MANY;
  }

  the_timer->the_class = TIMER_DORMANT;
  _Watchdog_Preinitialize( &the_timer->Ticker, _Per_CPU_Get_snapshot() );

  _Objects_Open(
    &_Timer_Information,
    &the_timer->Object,
    (Objects_Name) name
  );

  *id = the_timer->Object.id;
  _Objects_Allocator_unlock();
  return RTEMS_SUCCESSFUL;
}
rtems_status_code rtems_extension_create(
  rtems_name                    name,
  const rtems_extensions_table *extension_table,
  rtems_id                     *id
)
{
  Extension_Control *the_extension;

  if ( !id )
    return RTEMS_INVALID_ADDRESS;

  if ( !rtems_is_name_valid( name ) )
    return RTEMS_INVALID_NAME;

  _Thread_Disable_dispatch();         /* to prevent deletion */

  the_extension = _Extension_Allocate();

  if ( !the_extension ) {
    _Thread_Enable_dispatch();
    return RTEMS_TOO_MANY;
  }

  _User_extensions_Add_set_with_table( &the_extension->Extension, extension_table );

  _Objects_Open(
    &_Extension_Information,
    &the_extension->Object,
    (Objects_Name) name
  );

  *id = the_extension->Object.id;
  _Thread_Enable_dispatch();
  return RTEMS_SUCCESSFUL;
}
示例#3
0
rtems_status_code rtems_region_create(
  rtems_name          name,
  void               *starting_address,
  uintptr_t           length,
  uintptr_t           page_size,
  rtems_attribute     attribute_set,
  rtems_id           *id
)
{
  rtems_status_code  return_status;
  Region_Control    *the_region;

  if ( !rtems_is_name_valid( name ) )
    return RTEMS_INVALID_NAME;

  if ( !starting_address )
    return RTEMS_INVALID_ADDRESS;

  if ( !id )
    return RTEMS_INVALID_ADDRESS;

  the_region = _Region_Allocate();

    if ( !the_region )
      return_status = RTEMS_TOO_MANY;

    else {
      _Thread_queue_Initialize( &the_region->Wait_queue );

      if ( _Attributes_Is_priority( attribute_set ) ) {
        the_region->wait_operations = &_Thread_queue_Operations_priority;
      } else {
        the_region->wait_operations = &_Thread_queue_Operations_FIFO;
      }

      the_region->maximum_segment_size = _Heap_Initialize(
        &the_region->Memory, starting_address, length, page_size
      );

      if ( !the_region->maximum_segment_size ) {
        _Region_Free( the_region );
        return_status = RTEMS_INVALID_SIZE;
      } else {
        the_region->attribute_set = attribute_set;

        _Objects_Open(
          &_Region_Information,
          &the_region->Object,
          (Objects_Name) name
        );

        *id = the_region->Object.id;
        return_status = RTEMS_SUCCESSFUL;
      }
    }

  _Objects_Allocator_unlock();

  return return_status;
}
示例#4
0
rtems_status_code rtems_timer_create(
  rtems_name  name,
  rtems_id   *id
)
{
  Timer_Control *the_timer;

  if ( !rtems_is_name_valid( name ) )
    return RTEMS_INVALID_NAME;

  if ( !id )
    return RTEMS_INVALID_ADDRESS;

  _Thread_Disable_dispatch();         /* to prevent deletion */

  the_timer = _Timer_Allocate();

  if ( !the_timer ) {
    _Thread_Enable_dispatch();
    return RTEMS_TOO_MANY;
  }

  the_timer->the_class = TIMER_DORMANT;
  _Watchdog_Initialize( &the_timer->Ticker, NULL, 0, NULL );

  _Objects_Open(
    &_Timer_Information,
    &the_timer->Object,
    (Objects_Name) name
  );

  *id = the_timer->Object.id;
  _Thread_Enable_dispatch();
  return RTEMS_SUCCESSFUL;
}
示例#5
0
rtems_status_code rtems_barrier_create(
  rtems_name           name,
  rtems_attribute      attribute_set,
  uint32_t             maximum_waiters,
  rtems_id            *id
)
{
  Barrier_Control         *the_barrier;
  CORE_barrier_Attributes  the_attributes;

  if ( !rtems_is_name_valid( name ) )
    return RTEMS_INVALID_NAME;

  if ( !id )
    return RTEMS_INVALID_ADDRESS;

  /* Initialize core barrier attributes */
  if ( _Attributes_Is_barrier_automatic( attribute_set ) ) {
    the_attributes.discipline = CORE_BARRIER_AUTOMATIC_RELEASE;
    if ( maximum_waiters == 0 )
      return RTEMS_INVALID_NUMBER;
  } else
    the_attributes.discipline = CORE_BARRIER_MANUAL_RELEASE;
  the_attributes.maximum_count = maximum_waiters;

  _Thread_Disable_dispatch();             /* prevents deletion */

  the_barrier = _Barrier_Allocate();

  if ( !the_barrier ) {
    _Thread_Enable_dispatch();
    return RTEMS_TOO_MANY;
  }

  the_barrier->attribute_set = attribute_set;

  _CORE_barrier_Initialize( &the_barrier->Barrier, &the_attributes );

  _Objects_Open(
    &_Barrier_Information,
    &the_barrier->Object,
    (Objects_Name) name
  );

  *id = the_barrier->Object.id;

  _Thread_Enable_dispatch();
  return RTEMS_SUCCESSFUL;
}
示例#6
0
rtems_status_code rtems_port_create(
  rtems_name    name,
  void         *internal_start,
  void         *external_start,
  uint32_t      length,
  rtems_id     *id
)
{
  register Dual_ported_memory_Control *the_port;

  if ( !rtems_is_name_valid( name ) )
    return RTEMS_INVALID_NAME;

  if ( !id )
    return RTEMS_INVALID_ADDRESS;

  if ( !_Addresses_Is_aligned( internal_start ) ||
       !_Addresses_Is_aligned( external_start ) )
    return RTEMS_INVALID_ADDRESS;

  _Thread_Disable_dispatch();             /* to prevent deletion */

  the_port = _Dual_ported_memory_Allocate();

  if ( !the_port ) {
    _Thread_Enable_dispatch();
    return RTEMS_TOO_MANY;
  }

  the_port->internal_base = internal_start;
  the_port->external_base = external_start;
  the_port->length        = length - 1;

  _Objects_Open(
    &_Dual_ported_memory_Information,
    &the_port->Object,
    (Objects_Name) name
  );

  *id = the_port->Object.id;
  _Thread_Enable_dispatch();
  return RTEMS_SUCCESSFUL;
}
示例#7
0
rtems_status_code rtems_rate_monotonic_create(
  rtems_name  name,
  rtems_id   *id
)
{
  Rate_monotonic_Control *the_period;

  if ( !rtems_is_name_valid( name ) )
    return RTEMS_INVALID_NAME;

  if ( !id )
    return RTEMS_INVALID_ADDRESS;

  the_period = _Rate_monotonic_Allocate();

  if ( !the_period ) {
    _Objects_Allocator_unlock();
    return RTEMS_TOO_MANY;
  }

  _ISR_lock_Initialize( &the_period->Lock, "Rate Monotonic Period" );
  _Priority_Node_initialize( &the_period->Priority, 0 );
  _Priority_Node_set_inactive( &the_period->Priority );

  the_period->owner = _Thread_Get_executing();
  the_period->state = RATE_MONOTONIC_INACTIVE;

  _Watchdog_Preinitialize( &the_period->Timer, _Per_CPU_Get_by_index( 0 ) );
  _Watchdog_Initialize( &the_period->Timer, _Rate_monotonic_Timeout );

  _Rate_monotonic_Reset_statistics( the_period );

  _Objects_Open(
    &_Rate_monotonic_Information,
    &the_period->Object,
    (Objects_Name) name
  );

  *id = the_period->Object.id;
  _Objects_Allocator_unlock();
  return RTEMS_SUCCESSFUL;
}
示例#8
0
rtems_status_code rtems_rate_monotonic_create(
  rtems_name  name,
  rtems_id   *id
)
{
  Rate_monotonic_Control *the_period;

  if ( !rtems_is_name_valid( name ) )
    return RTEMS_INVALID_NAME;

  if ( !id )
    return RTEMS_INVALID_ADDRESS;

  _Thread_Disable_dispatch();            /* to prevent deletion */

  the_period = _Rate_monotonic_Allocate();

  if ( !the_period ) {
    _Thread_Enable_dispatch();
    return RTEMS_TOO_MANY;
  }

  the_period->owner = _Thread_Executing;
  the_period->state = RATE_MONOTONIC_INACTIVE;

  _Watchdog_Initialize( &the_period->Timer, NULL, 0, NULL );

  _Rate_monotonic_Reset_statistics( the_period );

  _Objects_Open(
    &_Rate_monotonic_Information,
    &the_period->Object,
    (Objects_Name) name
  );

  *id = the_period->Object.id;
  _Thread_Enable_dispatch();
  return RTEMS_SUCCESSFUL;
}
示例#9
0
bool _Thread_Initialize(
  Thread_Information                   *information,
  Thread_Control                       *the_thread,
  const Scheduler_Control              *scheduler,
  void                                 *stack_area,
  size_t                                stack_size,
  bool                                  is_fp,
  Priority_Control                      priority,
  bool                                  is_preemptible,
  Thread_CPU_budget_algorithms          budget_algorithm,
  Thread_CPU_budget_algorithm_callout   budget_callout,
  uint32_t                              isr_level,
  Objects_Name                          name
)
{
  uintptr_t                tls_size = _TLS_Get_size();
  size_t                   actual_stack_size = 0;
  void                    *stack = NULL;
  #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
    void                  *fp_area = NULL;
  #endif
  bool                     extension_status;
  size_t                   i;
  bool                     scheduler_node_initialized = false;
  Per_CPU_Control         *cpu = _Per_CPU_Get_by_index( 0 );

#if defined( RTEMS_SMP )
  if ( rtems_configuration_is_smp_enabled() && !is_preemptible ) {
    return false;
  }
#endif

  memset(
    &the_thread->current_state,
    0,
    information->Objects.size - offsetof( Thread_Control, current_state )
  );

  for ( i = 0 ; i < _Thread_Control_add_on_count ; ++i ) {
    const Thread_Control_add_on *add_on = &_Thread_Control_add_ons[ i ];

    *(void **) ( (char *) the_thread + add_on->destination_offset ) =
      (char *) the_thread + add_on->source_offset;
  }

  /*
   *  Allocate and Initialize the stack for this thread.
   */
  #if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API)
    actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
    if ( !actual_stack_size || actual_stack_size < stack_size )
      return false;                     /* stack allocation failed */

    stack = the_thread->Start.stack;
  #else
    if ( !stack_area ) {
      actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
      if ( !actual_stack_size || actual_stack_size < stack_size )
        return false;                     /* stack allocation failed */

      stack = the_thread->Start.stack;
      the_thread->Start.core_allocated_stack = true;
    } else {
      stack = stack_area;
      actual_stack_size = stack_size;
      the_thread->Start.core_allocated_stack = false;
    }
  #endif

  _Stack_Initialize(
     &the_thread->Start.Initial_stack,
     stack,
     actual_stack_size
  );

  /* Thread-local storage (TLS) area allocation */
  if ( tls_size > 0 ) {
    uintptr_t tls_align = _TLS_Heap_align_up( (uintptr_t) _TLS_Alignment );
    uintptr_t tls_alloc = _TLS_Get_allocation_size( tls_size, tls_align );

    the_thread->Start.tls_area =
      _Workspace_Allocate_aligned( tls_alloc, tls_align );

    if ( the_thread->Start.tls_area == NULL ) {
      goto failed;
    }
  }

  /*
   *  Allocate the floating point area for this thread
   */
  #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
    if ( is_fp ) {
      fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE );
      if ( !fp_area )
        goto failed;
      fp_area = _Context_Fp_start( fp_area, 0 );
    }
    the_thread->fp_context       = fp_area;
    the_thread->Start.fp_context = fp_area;
  #endif

  /*
   *  Get thread queue heads
   */
  the_thread->Wait.spare_heads = _Freechain_Get(
    &information->Free_thread_queue_heads,
    _Workspace_Allocate,
    _Objects_Extend_size( &information->Objects ),
    THREAD_QUEUE_HEADS_SIZE( _Scheduler_Count )
  );
  if ( the_thread->Wait.spare_heads == NULL ) {
    goto failed;
  }
  _Thread_queue_Heads_initialize( the_thread->Wait.spare_heads );

  /*
   *  General initialization
   */

  the_thread->is_fp                  = is_fp;
  the_thread->Start.isr_level        = isr_level;
  the_thread->Start.is_preemptible   = is_preemptible;
  the_thread->Start.budget_algorithm = budget_algorithm;
  the_thread->Start.budget_callout   = budget_callout;

  _Thread_Timer_initialize( &the_thread->Timer, cpu );

  switch ( budget_algorithm ) {
    case THREAD_CPU_BUDGET_ALGORITHM_NONE:
    case THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE:
      break;
    #if defined(RTEMS_SCORE_THREAD_ENABLE_EXHAUST_TIMESLICE)
      case THREAD_CPU_BUDGET_ALGORITHM_EXHAUST_TIMESLICE:
        the_thread->cpu_time_budget =
          rtems_configuration_get_ticks_per_timeslice();
        break;
    #endif
    #if defined(RTEMS_SCORE_THREAD_ENABLE_SCHEDULER_CALLOUT)
      case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
	break;
    #endif
  }

#if defined(RTEMS_SMP)
  RTEMS_STATIC_ASSERT( THREAD_SCHEDULER_BLOCKED == 0, Scheduler_state );
  the_thread->Scheduler.own_control = scheduler;
  the_thread->Scheduler.control = scheduler;
  the_thread->Scheduler.own_node = the_thread->Scheduler.node;
  _Resource_Node_initialize( &the_thread->Resource_node );
  the_thread->Lock.current = &the_thread->Lock.Default;
  _SMP_ticket_lock_Initialize( &the_thread->Lock.Default );
  _SMP_lock_Stats_initialize( &the_thread->Lock.Stats, "Thread Lock" );
  _SMP_lock_Stats_initialize( &the_thread->Potpourri_stats, "Thread Potpourri" );
#endif

  _Thread_Debug_set_real_processor( the_thread, cpu );

  /* Initialize the CPU for the non-SMP schedulers */
  _Thread_Set_CPU( the_thread, cpu );

  _Thread_queue_Initialize( &the_thread->Join_queue );

  the_thread->current_state           = STATES_DORMANT;
  the_thread->Wait.operations         = &_Thread_queue_Operations_default;
  the_thread->current_priority        = priority;
  the_thread->real_priority           = priority;
  the_thread->Start.initial_priority  = priority;

  RTEMS_STATIC_ASSERT( THREAD_WAIT_FLAGS_INITIAL == 0, Wait_flags );

  _Scheduler_Node_initialize( scheduler, the_thread );
  scheduler_node_initialized = true;

  _Scheduler_Update_priority( the_thread, priority );

  /* POSIX Keys */
  _RBTree_Initialize_empty( &the_thread->Keys.Key_value_pairs );
  _ISR_lock_Initialize( &the_thread->Keys.Lock, "POSIX Key Value Pairs" );

  _Thread_Action_control_initialize( &the_thread->Post_switch_actions );

  RTEMS_STATIC_ASSERT( THREAD_LIFE_NORMAL == 0, Life_state );

  /*
   *  Open the object
   */
  _Objects_Open( &information->Objects, &the_thread->Object, name );

  /*
   *  We assume the Allocator Mutex is locked and dispatching is
   *  enabled when we get here.  We want to be able to run the
   *  user extensions with dispatching enabled.  The Allocator
   *  Mutex provides sufficient protection to let the user extensions
   *  run safely.
   */
  extension_status = _User_extensions_Thread_create( the_thread );
  if ( extension_status )
    return true;

failed:

  if ( scheduler_node_initialized ) {
    _Scheduler_Node_destroy( scheduler, the_thread );
  }

  _Workspace_Free( the_thread->Start.tls_area );

  _Freechain_Put(
    &information->Free_thread_queue_heads,
    the_thread->Wait.spare_heads
  );

  #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
    _Workspace_Free( fp_area );
  #endif

   _Thread_Stack_Free( the_thread );
  return false;
}
示例#10
0
int _POSIX_Message_queue_Create_support(
  const char                    *name,
  int                            pshared,
  unsigned int                   oflag,
  struct mq_attr                *attr_ptr,
  POSIX_Message_queue_Control  **message_queue
)
{
  POSIX_Message_queue_Control   *the_mq;
  CORE_message_queue_Attributes *the_mq_attr;
  struct mq_attr                 attr;

  _Thread_Disable_dispatch();
 
  /*
   *  There is no real basis for the default values.  They will work
   *  but were not compared against any existing implementation for
   *  compatibility.  See README.mqueue for an example program we
   *  think will print out the defaults.  Report anything you find with it.
   */

  if ( attr_ptr == NULL ) {
    attr.mq_maxmsg  = 10;
    attr.mq_msgsize = 16;
  } else {
    if ( attr_ptr->mq_maxmsg < 0 ){
      _Thread_Enable_dispatch();
      set_errno_and_return_minus_one( EINVAL );
    }

    if ( attr_ptr->mq_msgsize < 0 ){
      _Thread_Enable_dispatch();
      set_errno_and_return_minus_one( EINVAL );
    }

    attr = *attr_ptr;
  }

#if 0 && defined(RTEMS_MULTIPROCESSING)
  if ( pshared == PTHREAD_PROCESS_SHARED &&
       !( _Objects_MP_Allocate_and_open( &_POSIX_Message_queue_Information, 0,
                            the_mq->Object.id, FALSE ) ) ) {
    _POSIX_Message_queue_Free( the_mq );
    _Thread_Enable_dispatch();
    set_errno_and_return_minus_one( ENFILE );
  }
#endif
 
  the_mq = _POSIX_Message_queue_Allocate();
  if ( !the_mq ) {
    _Thread_Enable_dispatch();
    set_errno_and_return_minus_one( ENFILE );
  }
 
  the_mq->process_shared  = pshared;
  the_mq->oflag = oflag;
  the_mq->named = TRUE;
  the_mq->open_count = 1;
  the_mq->linked = TRUE;

 
  /* XXX
   *
   *  Note that thread blocking discipline should be based on the
   *  current scheduling policy.
   */

  the_mq_attr = &the_mq->Message_queue.Attributes;
  the_mq_attr->discipline = CORE_MESSAGE_QUEUE_DISCIPLINES_FIFO;

  if ( ! _CORE_message_queue_Initialize(
           &the_mq->Message_queue,
           OBJECTS_POSIX_MESSAGE_QUEUES,
           the_mq_attr,
           attr.mq_maxmsg,
           attr.mq_msgsize,
#if 0 && defined(RTEMS_MULTIPROCESSING)
           _POSIX_Message_queue_MP_Send_extract_proxy
#else
           NULL
#endif
      ) ) {

#if 0 && defined(RTEMS_MULTIPROCESSING)
    if ( pshared == PTHREAD_PROCESS_SHARED )
      _Objects_MP_Close( &_POSIX_Message_queue_Information, the_mq->Object.id );
#endif
 
    _POSIX_Message_queue_Free( the_mq );
    _Thread_Enable_dispatch();
    set_errno_and_return_minus_one( ENOSPC );
  }

  _Objects_Open(
    &_POSIX_Message_queue_Information,
    &the_mq->Object,
    (char *) name
  );
 
  *message_queue = the_mq;
 
#if 0 && defined(RTEMS_MULTIPROCESSING)
  if ( pshared == PTHREAD_PROCESS_SHARED )
    _POSIX_Message_queue_MP_Send_process_packet(
      POSIX_MESSAGE_QUEUE_MP_ANNOUNCE_CREATE,
      the_mq->Object.id,
      (char *) name,
      0                          /* Not used */
    );
#endif
 
  _Thread_Enable_dispatch();
  return 0;
}
示例#11
0
rtems_status_code rtems_partition_create(
  rtems_name       name,
  void            *starting_address,
  uint32_t         length,
  uint32_t         buffer_size,
  rtems_attribute  attribute_set,
  rtems_id        *id
)
{
  register Partition_Control *the_partition;

  if ( !rtems_is_name_valid( name ) )
    return RTEMS_INVALID_NAME;

  if ( !starting_address )
    return RTEMS_INVALID_ADDRESS;

  if ( !id )
    return RTEMS_INVALID_ADDRESS;

  if ( length == 0 || buffer_size == 0 || length < buffer_size ||
         !_Partition_Is_buffer_size_aligned( buffer_size ) )
    return RTEMS_INVALID_SIZE;

  if ( !_Addresses_Is_aligned( starting_address ) )
     return RTEMS_INVALID_ADDRESS;

#if defined(RTEMS_MULTIPROCESSING)
  if ( _Attributes_Is_global( attribute_set ) &&
       !_System_state_Is_multiprocessing )
    return RTEMS_MP_NOT_CONFIGURED;
#endif

  _Thread_Disable_dispatch();               /* prevents deletion */

  the_partition = _Partition_Allocate();

  if ( !the_partition ) {
    _Thread_Enable_dispatch();
    return RTEMS_TOO_MANY;
  }

#if defined(RTEMS_MULTIPROCESSING)
  if ( _Attributes_Is_global( attribute_set ) &&
       !( _Objects_MP_Allocate_and_open( &_Partition_Information, name,
                            the_partition->Object.id, false ) ) ) {
    _Partition_Free( the_partition );
    _Thread_Enable_dispatch();
    return RTEMS_TOO_MANY;
  }
#endif

  the_partition->starting_address      = starting_address;
  the_partition->length                = length;
  the_partition->buffer_size           = buffer_size;
  the_partition->attribute_set         = attribute_set;
  the_partition->number_of_used_blocks = 0;

  _Chain_Initialize( &the_partition->Memory, starting_address,
                        length / buffer_size, buffer_size );

  _Objects_Open(
    &_Partition_Information,
    &the_partition->Object,
    (Objects_Name) name
  );

  *id = the_partition->Object.id;
#if defined(RTEMS_MULTIPROCESSING)
  if ( _Attributes_Is_global( attribute_set ) )
    _Partition_MP_Send_process_packet(
      PARTITION_MP_ANNOUNCE_CREATE,
      the_partition->Object.id,
      name,
      0                  /* Not used */
    );
#endif

  _Thread_Enable_dispatch();
  return RTEMS_SUCCESSFUL;
}
示例#12
0
int timer_create(
  clockid_t        clock_id,
  struct sigevent *evp,
  timer_t         *timerid
)
{
  POSIX_Timer_Control *ptimer;

  if ( clock_id != CLOCK_REALTIME )
    rtems_set_errno_and_return_minus_one( EINVAL );

 /*
  *  The data of the structure evp are checked in order to verify if they
  *  are coherent.
  */

  if (evp != NULL) {
    /* The structure has data */
    if ( ( evp->sigev_notify != SIGEV_NONE ) &&
         ( evp->sigev_notify != SIGEV_SIGNAL ) ) {
       /* The value of the field sigev_notify is not valid */
       rtems_set_errno_and_return_minus_one( EINVAL );
     }

     if ( !evp->sigev_signo )
       rtems_set_errno_and_return_minus_one( EINVAL );

     if ( !is_valid_signo(evp->sigev_signo) )
       rtems_set_errno_and_return_minus_one( EINVAL );
  }

  _Thread_Disable_dispatch();         /* to prevent deletion */

  /*
   *  Allocate a timer
   */
  ptimer = _POSIX_Timer_Allocate();
  if ( !ptimer ) {
    _Thread_Enable_dispatch();
    rtems_set_errno_and_return_minus_one( EAGAIN );
  }

  /* The data of the created timer are stored to use them later */

  ptimer->state     = POSIX_TIMER_STATE_CREATE_NEW;
  ptimer->thread_id = _Thread_Executing->Object.id;

  if ( evp != NULL ) {
    ptimer->inf.sigev_notify = evp->sigev_notify;
    ptimer->inf.sigev_signo  = evp->sigev_signo;
    ptimer->inf.sigev_value  = evp->sigev_value;
  }

  ptimer->overrun  = 0;
  ptimer->timer_data.it_value.tv_sec     = 0;
  ptimer->timer_data.it_value.tv_nsec    = 0;
  ptimer->timer_data.it_interval.tv_sec  = 0;
  ptimer->timer_data.it_interval.tv_nsec = 0;

  _Watchdog_Initialize( &ptimer->Timer, NULL, 0, NULL );
  _Objects_Open(&_POSIX_Timer_Information, &ptimer->Object, (Objects_Name) 0);

  *timerid  = ptimer->Object.id;
  _Thread_Enable_dispatch();
  return 0;
}
示例#13
0
epos_status_code epos_message_queue_create(
  epos_name       name,
  uint32_t         count,
  size_t           max_message_size,
  epos_attribute  attribute_set,
  epos_id        *id
)
{
  register Message_queue_Control *the_message_queue;
  CORE_message_queue_Attributes   the_msgq_attributes;
#if defined(RTEMS_MULTIPROCESSING)
  bool                            is_global;
#endif

  if ( !epos_is_name_valid( name ) )
    return RTEMS_INVALID_NAME;

  if ( !id )
    return RTEMS_INVALID_ADDRESS;

#if defined(RTEMS_MULTIPROCESSING)
  if ( (is_global = _Attributes_Is_global( attribute_set ) ) &&
       !_System_state_Is_multiprocessing )
    return RTEMS_MP_NOT_CONFIGURED;
#endif

  if ( count == 0 )
      return RTEMS_INVALID_NUMBER;

  if ( max_message_size == 0 )
      return RTEMS_INVALID_SIZE;

#if defined(RTEMS_MULTIPROCESSING)
#if 1
  /*
   * I am not 100% sure this should be an error.
   * It seems reasonable to create a que with a large max size,
   * and then just send smaller msgs from remote (or all) nodes.
   */

  if ( is_global && (_MPCI_table->maximum_packet_size < max_message_size) )
    return RTEMS_INVALID_SIZE;
#endif
#endif


  _Thread_Disable_dispatch();              /* protects object pointer */

  the_message_queue = _Message_queue_Allocate();

  if ( !the_message_queue ) {
    _Thread_Enable_dispatch();
    return RTEMS_TOO_MANY;
  }

#if defined(RTEMS_MULTIPROCESSING)
  if ( is_global &&
    !( _Objects_MP_Allocate_and_open( &_Message_queue_Information,
                              name, the_message_queue->Object.id, false ) ) ) {
    _Message_queue_Free( the_message_queue );
    _Thread_Enable_dispatch();
    return RTEMS_TOO_MANY;
  }
#endif

  the_message_queue->attribute_set = attribute_set;

  if (_Attributes_Is_priority( attribute_set ) )
    the_msgq_attributes.discipline = CORE_MESSAGE_QUEUE_DISCIPLINES_PRIORITY;
  else
    the_msgq_attributes.discipline = CORE_MESSAGE_QUEUE_DISCIPLINES_FIFO;

  if ( ! _CORE_message_queue_Initialize(
           &the_message_queue->message_queue,
           &the_msgq_attributes,
           count,
           max_message_size
         ) ) {
#if defined(RTEMS_MULTIPROCESSING)
    if ( is_global )
        _Objects_MP_Close(
          &_Message_queue_Information, the_message_queue->Object.id);
#endif

    _Message_queue_Free( the_message_queue );
    _Thread_Enable_dispatch();
    return RTEMS_UNSATISFIED;
  }

  _Objects_Open(
    &_Message_queue_Information,
    &the_message_queue->Object,
    (Objects_Name) name
  );

  *id = the_message_queue->Object.id;

#if defined(RTEMS_MULTIPROCESSING)
  if ( is_global )
    _Message_queue_MP_Send_process_packet(
      MESSAGE_QUEUE_MP_ANNOUNCE_CREATE,
      the_message_queue->Object.id,
      name,
      0
    );
#endif

  _Thread_Enable_dispatch();
  return RTEMS_SUCCESSFUL;
}
示例#14
0
rtems_status_code rtems_region_create(
    rtems_name          name,
    void               *starting_address,
    uintptr_t           length,
    uintptr_t           page_size,
    rtems_attribute     attribute_set,
    rtems_id           *id
)
{
    rtems_status_code  return_status;
    Region_Control    *the_region;

    if ( !rtems_is_name_valid( name ) )
        return RTEMS_INVALID_NAME;

    if ( !starting_address )
        return RTEMS_INVALID_ADDRESS;

    if ( !id )
        return RTEMS_INVALID_ADDRESS;

    _RTEMS_Lock_allocator();                      /* to prevent deletion */

    the_region = _Region_Allocate();

    if ( !the_region )
        return_status = RTEMS_TOO_MANY;

    else {

        the_region->maximum_segment_size = _Heap_Initialize(
                                               &the_region->Memory, starting_address, length, page_size
                                           );

        if ( !the_region->maximum_segment_size ) {
            _Region_Free( the_region );
            return_status = RTEMS_INVALID_SIZE;
        }

        else {

            the_region->starting_address      = starting_address;
            the_region->length                = length;
            the_region->page_size             = page_size;
            the_region->attribute_set         = attribute_set;
            the_region->number_of_used_blocks = 0;

            _Thread_queue_Initialize(
                &the_region->Wait_queue,
                _Attributes_Is_priority( attribute_set ) ?
                THREAD_QUEUE_DISCIPLINE_PRIORITY : THREAD_QUEUE_DISCIPLINE_FIFO,
                STATES_WAITING_FOR_SEGMENT,
                RTEMS_TIMEOUT
            );

            _Objects_Open(
                &_Region_Information,
                &the_region->Object,
                (Objects_Name) name
            );

            *id = the_region->Object.id;
            return_status = RTEMS_SUCCESSFUL;
        }
    }

    _RTEMS_Unlock_allocator();
    return return_status;
}
bool _Thread_Initialize(
  Objects_Information                  *information,
  Thread_Control                       *the_thread,
  const Scheduler_Control              *scheduler,
  void                                 *stack_area,
  size_t                                stack_size,
  bool                                  is_fp,
  Priority_Control                      priority,
  bool                                  is_preemptible,
  Thread_CPU_budget_algorithms          budget_algorithm,
  Thread_CPU_budget_algorithm_callout   budget_callout,
  uint32_t                              isr_level,
  Objects_Name                          name
)
{
  uintptr_t                tls_size = _TLS_Get_size();
  size_t                   actual_stack_size = 0;
  void                    *stack = NULL;
  #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
    void                  *fp_area = NULL;
  #endif
  bool                     extension_status;
  size_t                   i;
  bool                     scheduler_node_initialized = false;
  Per_CPU_Control         *cpu = _Per_CPU_Get_by_index( 0 );

#if defined( RTEMS_SMP )
  if ( rtems_configuration_is_smp_enabled() && !is_preemptible ) {
    return false;
  }
#endif

  for ( i = 0 ; i < _Thread_Control_add_on_count ; ++i ) {
    const Thread_Control_add_on *add_on = &_Thread_Control_add_ons[ i ];

    *(void **) ( (char *) the_thread + add_on->destination_offset ) =
      (char *) the_thread + add_on->source_offset;
  }

  /*
   *  Initialize the Ada self pointer
   */
  #if __RTEMS_ADA__
    the_thread->rtems_ada_self = NULL;
  #endif

  the_thread->Start.tls_area = NULL;

  /*
   *  Allocate and Initialize the stack for this thread.
   */
  #if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API)
    actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
    if ( !actual_stack_size || actual_stack_size < stack_size )
      return false;                     /* stack allocation failed */

    stack = the_thread->Start.stack;
  #else
    if ( !stack_area ) {
      actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
      if ( !actual_stack_size || actual_stack_size < stack_size )
        return false;                     /* stack allocation failed */

      stack = the_thread->Start.stack;
      the_thread->Start.core_allocated_stack = true;
    } else {
      stack = stack_area;
      actual_stack_size = stack_size;
      the_thread->Start.core_allocated_stack = false;
    }
  #endif

  _Stack_Initialize(
     &the_thread->Start.Initial_stack,
     stack,
     actual_stack_size
  );

  /* Thread-local storage (TLS) area allocation */
  if ( tls_size > 0 ) {
    uintptr_t tls_align = _TLS_Heap_align_up( (uintptr_t) _TLS_Alignment );
    uintptr_t tls_alloc = _TLS_Get_allocation_size( tls_size, tls_align );

    the_thread->Start.tls_area =
      _Workspace_Allocate_aligned( tls_alloc, tls_align );

    if ( the_thread->Start.tls_area == NULL ) {
      goto failed;
    }
  }

  /*
   *  Allocate the floating point area for this thread
   */
  #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
    if ( is_fp ) {
      fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE );
      if ( !fp_area )
        goto failed;
      fp_area = _Context_Fp_start( fp_area, 0 );
    }
    the_thread->fp_context       = fp_area;
    the_thread->Start.fp_context = fp_area;
  #endif

  /*
   *  Initialize the thread timer
   */
  _Watchdog_Initialize( &the_thread->Timer, NULL, 0, NULL );

  #ifdef __RTEMS_STRICT_ORDER_MUTEX__
    /* Initialize the head of chain of held mutexes */
    _Chain_Initialize_empty(&the_thread->lock_mutex);
  #endif

  /*
   * Clear the extensions area so extension users can determine
   * if they are linked to the thread. An extension user may
   * create the extension long after tasks have been created
   * so they cannot rely on the thread create user extension
   * call.  The object index starts with one, so the first extension context is
   * unused.
   */
  for ( i = 1 ; i <= rtems_configuration_get_maximum_extensions() ; ++i )
    the_thread->extensions[ i ] = NULL;

  /*
   *  General initialization
   */

  the_thread->Start.isr_level        = isr_level;
  the_thread->Start.is_preemptible   = is_preemptible;
  the_thread->Start.budget_algorithm = budget_algorithm;
  the_thread->Start.budget_callout   = budget_callout;

  switch ( budget_algorithm ) {
    case THREAD_CPU_BUDGET_ALGORITHM_NONE:
    case THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE:
      break;
    #if defined(RTEMS_SCORE_THREAD_ENABLE_EXHAUST_TIMESLICE)
      case THREAD_CPU_BUDGET_ALGORITHM_EXHAUST_TIMESLICE:
        the_thread->cpu_time_budget =
          rtems_configuration_get_ticks_per_timeslice();
        break;
    #endif
    #if defined(RTEMS_SCORE_THREAD_ENABLE_SCHEDULER_CALLOUT)
      case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
	break;
    #endif
  }

#if defined(RTEMS_SMP)
  the_thread->Scheduler.state = THREAD_SCHEDULER_BLOCKED;
  the_thread->Scheduler.own_control = scheduler;
  the_thread->Scheduler.control = scheduler;
  the_thread->Scheduler.own_node = the_thread->Scheduler.node;
  _Resource_Node_initialize( &the_thread->Resource_node );
  _CPU_Context_Set_is_executing( &the_thread->Registers, false );
#endif

  _Thread_Debug_set_real_processor( the_thread, cpu );

  /* Initialize the CPU for the non-SMP schedulers */
  _Thread_Set_CPU( the_thread, cpu );

  the_thread->current_state           = STATES_DORMANT;
  the_thread->Wait.queue              = NULL;
  the_thread->resource_count          = 0;
  the_thread->real_priority           = priority;
  the_thread->Start.initial_priority  = priority;

  _Scheduler_Node_initialize( scheduler, the_thread );
  scheduler_node_initialized = true;

  _Thread_Set_priority( the_thread, priority );

  /*
   *  Initialize the CPU usage statistics
   */
  #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
    _Timestamp_Set_to_zero( &the_thread->cpu_time_used );
  #else
    the_thread->cpu_time_used = 0;
  #endif

  /*
   * initialize thread's key vaule node chain
   */
  _Chain_Initialize_empty( &the_thread->Key_Chain );

  _Thread_Action_control_initialize( &the_thread->Post_switch_actions );

  _Thread_Action_initialize(
    &the_thread->Life.Action,
    _Thread_Life_action_handler
  );
  the_thread->Life.state = THREAD_LIFE_NORMAL;
  the_thread->Life.terminator = NULL;

  /*
   *  Open the object
   */
  _Objects_Open( information, &the_thread->Object, name );

  /*
   *  We assume the Allocator Mutex is locked and dispatching is
   *  enabled when we get here.  We want to be able to run the
   *  user extensions with dispatching enabled.  The Allocator
   *  Mutex provides sufficient protection to let the user extensions
   *  run safely.
   */
  extension_status = _User_extensions_Thread_create( the_thread );
  if ( extension_status )
    return true;

failed:

  if ( scheduler_node_initialized ) {
    _Scheduler_Node_destroy( scheduler, the_thread );
  }

  _Workspace_Free( the_thread->Start.tls_area );

  #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
    _Workspace_Free( fp_area );
  #endif

   _Thread_Stack_Free( the_thread );
  return false;
}
示例#16
0
rtems_status_code rtems_semaphore_create(
  rtems_name           name,
  uint32_t             count,
  rtems_attribute      attribute_set,
  rtems_task_priority  priority_ceiling,
  rtems_id            *id
)
{
  register Semaphore_Control *the_semaphore;
  CORE_mutex_Attributes       the_mutex_attr;
  CORE_semaphore_Attributes   the_semaphore_attr;
  CORE_mutex_Status           mutex_status;

  if ( !rtems_is_name_valid( name ) )
    return RTEMS_INVALID_NAME;

  if ( !id )
    return RTEMS_INVALID_ADDRESS;

#if defined(RTEMS_MULTIPROCESSING)
  if ( _Attributes_Is_global( attribute_set ) ) {

    if ( !_System_state_Is_multiprocessing )
      return RTEMS_MP_NOT_CONFIGURED;

    if ( _Attributes_Is_inherit_priority( attribute_set ) ||
         _Attributes_Is_priority_ceiling( attribute_set ) )
      return RTEMS_NOT_DEFINED;

  } else
#endif

  if ( _Attributes_Is_inherit_priority( attribute_set ) ||
              _Attributes_Is_priority_ceiling( attribute_set ) ) {

    if ( ! (_Attributes_Is_binary_semaphore( attribute_set ) &&
            _Attributes_Is_priority( attribute_set ) ) )
      return RTEMS_NOT_DEFINED;

  }

  if ( _Attributes_Is_inherit_priority( attribute_set ) &&
       _Attributes_Is_priority_ceiling( attribute_set ) )
    return RTEMS_NOT_DEFINED;

  if ( !_Attributes_Is_counting_semaphore( attribute_set ) && ( count > 1 ) )
    return RTEMS_INVALID_NUMBER;

  _Thread_Disable_dispatch();             /* prevents deletion */

  the_semaphore = _Semaphore_Allocate();

  if ( !the_semaphore ) {
    _Thread_Enable_dispatch();
    return RTEMS_TOO_MANY;
  }

#if defined(RTEMS_MULTIPROCESSING)
  if ( _Attributes_Is_global( attribute_set ) &&
       ! ( _Objects_MP_Allocate_and_open( &_Semaphore_Information, name,
                            the_semaphore->Object.id, false ) ) ) {
    _Semaphore_Free( the_semaphore );
    _Thread_Enable_dispatch();
    return RTEMS_TOO_MANY;
  }
#endif

  the_semaphore->attribute_set = attribute_set;

  /*
   *  Initialize it as a counting semaphore.
   */
  if ( _Attributes_Is_counting_semaphore( attribute_set ) ) {
    /*
     *  This effectively disables limit checking.
     */
    the_semaphore_attr.maximum_count = 0xFFFFFFFF;

    if ( _Attributes_Is_priority( attribute_set ) )
      the_semaphore_attr.discipline = CORE_SEMAPHORE_DISCIPLINES_PRIORITY;
    else
      the_semaphore_attr.discipline = CORE_SEMAPHORE_DISCIPLINES_FIFO;

    /*
     *  The following are just to make Purify happy.
     */
    the_mutex_attr.lock_nesting_behavior = CORE_MUTEX_NESTING_ACQUIRES;
    the_mutex_attr.priority_ceiling = PRIORITY_MINIMUM;

    _CORE_semaphore_Initialize(
      &the_semaphore->Core_control.semaphore,
      &the_semaphore_attr,
      count
    );
  } else {
    /*
     *  It is either simple binary semaphore or a more powerful mutex
     *  style binary semaphore.  This is the mutex style.
     */
    if ( _Attributes_Is_priority( attribute_set ) )
      the_mutex_attr.discipline = CORE_MUTEX_DISCIPLINES_PRIORITY;
    else
      the_mutex_attr.discipline = CORE_MUTEX_DISCIPLINES_FIFO;

    if ( _Attributes_Is_binary_semaphore( attribute_set ) ) {
      the_mutex_attr.priority_ceiling      = priority_ceiling;
      the_mutex_attr.lock_nesting_behavior = CORE_MUTEX_NESTING_ACQUIRES;
      the_mutex_attr.only_owner_release    = false;

      if ( the_mutex_attr.discipline == CORE_MUTEX_DISCIPLINES_PRIORITY ) {
        if ( _Attributes_Is_inherit_priority( attribute_set ) ) {
          the_mutex_attr.discipline = CORE_MUTEX_DISCIPLINES_PRIORITY_INHERIT;
          the_mutex_attr.only_owner_release = true;
        } else if ( _Attributes_Is_priority_ceiling( attribute_set ) ) {
          the_mutex_attr.discipline = CORE_MUTEX_DISCIPLINES_PRIORITY_CEILING;
          the_mutex_attr.only_owner_release = true;
        }
      }
    } else /* must be simple binary semaphore */ {
      the_mutex_attr.lock_nesting_behavior = CORE_MUTEX_NESTING_BLOCKS;
      the_mutex_attr.only_owner_release = false;
    }

    mutex_status = _CORE_mutex_Initialize(
      &the_semaphore->Core_control.mutex,
      &the_mutex_attr,
      (count == 1) ? CORE_MUTEX_UNLOCKED : CORE_MUTEX_LOCKED
    );

    if ( mutex_status == CORE_MUTEX_STATUS_CEILING_VIOLATED ) {
      _Semaphore_Free( the_semaphore );
      _Thread_Enable_dispatch();
      return RTEMS_INVALID_PRIORITY;
    }
  }

  /*
   *  Whether we initialized it as a mutex or counting semaphore, it is
   *  now ready to be "offered" for use as a Classic API Semaphore.
   */
  _Objects_Open(
    &_Semaphore_Information,
    &the_semaphore->Object,
    (Objects_Name) name
  );

  *id = the_semaphore->Object.id;

#if defined(RTEMS_MULTIPROCESSING)
  if ( _Attributes_Is_global( attribute_set ) )
    _Semaphore_MP_Send_process_packet(
      SEMAPHORE_MP_ANNOUNCE_CREATE,
      the_semaphore->Object.id,
      name,
      0                          /* Not used */
    );
#endif
  _Thread_Enable_dispatch();
  return RTEMS_SUCCESSFUL;
}
示例#17
0
bool _Thread_Initialize(
    Objects_Information                  *information,
    Thread_Control                       *the_thread,
    void                                 *stack_area,
    size_t                                stack_size,
    bool                                  is_fp,
    Priority_Control                      priority,
    bool                                  is_preemptible,
    Thread_CPU_budget_algorithms          budget_algorithm,
    Thread_CPU_budget_algorithm_callout   budget_callout,
    uint32_t                              isr_level,
    Objects_Name                          name
)
{
    size_t               actual_stack_size = 0;
    void                *stack = NULL;
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
    void              *fp_area;
#endif
    void                *sched = NULL;
    void                *extensions_area;
    bool                 extension_status;
    int                  i;

#if defined( RTEMS_SMP )
    if ( rtems_configuration_is_smp_enabled() && !is_preemptible ) {
        return false;
    }
#endif

    /*
     *  Initialize the Ada self pointer
     */
#if __RTEMS_ADA__
    the_thread->rtems_ada_self = NULL;
#endif

    /*
     *  Zero out all the allocated memory fields
     */
    for ( i=0 ; i <= THREAD_API_LAST ; i++ )
        the_thread->API_Extensions[i] = NULL;

    extensions_area = NULL;
    the_thread->libc_reent = NULL;

#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
    fp_area = NULL;
#endif

    /*
     *  Allocate and Initialize the stack for this thread.
     */
#if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API)
    actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
    if ( !actual_stack_size || actual_stack_size < stack_size )
        return false;                     /* stack allocation failed */

    stack = the_thread->Start.stack;
#else
    if ( !stack_area ) {
        actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
        if ( !actual_stack_size || actual_stack_size < stack_size )
            return false;                     /* stack allocation failed */

        stack = the_thread->Start.stack;
        the_thread->Start.core_allocated_stack = true;
    } else {
        stack = stack_area;
        actual_stack_size = stack_size;
        the_thread->Start.core_allocated_stack = false;
    }
#endif

    _Stack_Initialize(
        &the_thread->Start.Initial_stack,
        stack,
        actual_stack_size
    );

    /*
     *  Allocate the floating point area for this thread
     */
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
    if ( is_fp ) {
        fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE );
        if ( !fp_area )
            goto failed;
        fp_area = _Context_Fp_start( fp_area, 0 );
    }
    the_thread->fp_context       = fp_area;
    the_thread->Start.fp_context = fp_area;
#endif

    /*
     *  Initialize the thread timer
     */
    _Watchdog_Initialize( &the_thread->Timer, NULL, 0, NULL );

#ifdef __RTEMS_STRICT_ORDER_MUTEX__
    /* Initialize the head of chain of held mutexes */
    _Chain_Initialize_empty(&the_thread->lock_mutex);
#endif

    /*
     *  Allocate the extensions area for this thread
     */
    if ( _Thread_Maximum_extensions ) {
        extensions_area = _Workspace_Allocate(
                              (_Thread_Maximum_extensions + 1) * sizeof( void * )
                          );
        if ( !extensions_area )
            goto failed;
    }
    the_thread->extensions = (void **) extensions_area;

    /*
     * Clear the extensions area so extension users can determine
     * if they are linked to the thread. An extension user may
     * create the extension long after tasks have been created
     * so they cannot rely on the thread create user extension
     * call.
     */
    if ( the_thread->extensions ) {
        for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
            the_thread->extensions[i] = NULL;
    }

    /*
     *  General initialization
     */

    the_thread->Start.is_preemptible   = is_preemptible;
    the_thread->Start.budget_algorithm = budget_algorithm;
    the_thread->Start.budget_callout   = budget_callout;

    switch ( budget_algorithm ) {
    case THREAD_CPU_BUDGET_ALGORITHM_NONE:
    case THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE:
        break;
#if defined(RTEMS_SCORE_THREAD_ENABLE_EXHAUST_TIMESLICE)
    case THREAD_CPU_BUDGET_ALGORITHM_EXHAUST_TIMESLICE:
        the_thread->cpu_time_budget = _Thread_Ticks_per_timeslice;
        break;
#endif
#if defined(RTEMS_SCORE_THREAD_ENABLE_SCHEDULER_CALLOUT)
    case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
        break;
#endif
    }

    the_thread->Start.isr_level         = isr_level;

#if defined(RTEMS_SMP)
    the_thread->is_scheduled            = false;
    the_thread->is_executing            = false;

    /* Initialize the cpu field for the non-SMP schedulers */
    the_thread->cpu                     = _Per_CPU_Get_by_index( 0 );
#endif

    the_thread->current_state           = STATES_DORMANT;
    the_thread->Wait.queue              = NULL;
    the_thread->resource_count          = 0;
    the_thread->real_priority           = priority;
    the_thread->Start.initial_priority  = priority;
    sched =_Scheduler_Allocate( the_thread );
    if ( !sched )
        goto failed;
    _Thread_Set_priority( the_thread, priority );

    /*
     *  Initialize the CPU usage statistics
     */
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
    _Timestamp_Set_to_zero( &the_thread->cpu_time_used );
#else
    the_thread->cpu_time_used = 0;
#endif

    /*
     *  Open the object
     */
    _Objects_Open( information, &the_thread->Object, name );

    /*
     *  We assume the Allocator Mutex is locked and dispatching is
     *  enabled when we get here.  We want to be able to run the
     *  user extensions with dispatching enabled.  The Allocator
     *  Mutex provides sufficient protection to let the user extensions
     *  run safely.
     */
    extension_status = _User_extensions_Thread_create( the_thread );
    if ( extension_status )
        return true;

failed:
    _Workspace_Free( the_thread->libc_reent );

    for ( i=0 ; i <= THREAD_API_LAST ; i++ )
        _Workspace_Free( the_thread->API_Extensions[i] );

    _Workspace_Free( extensions_area );

#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
    _Workspace_Free( fp_area );
#endif

    _Workspace_Free( sched );

    _Thread_Stack_Free( the_thread );
    return false;
}
示例#18
0
rtems_status_code rtems_semaphore_create(
  rtems_name           name,
  uint32_t             count,
  rtems_attribute      attribute_set,
  rtems_task_priority  priority_ceiling,
  rtems_id            *id
)
{
  Semaphore_Control          *the_semaphore;
  CORE_mutex_Attributes       the_mutex_attr;
  CORE_semaphore_Attributes   the_semaphore_attr;
  CORE_mutex_Status           mutex_status;

  if ( !rtems_is_name_valid( name ) )
    return RTEMS_INVALID_NAME;

  if ( !id )
    return RTEMS_INVALID_ADDRESS;

#if defined(RTEMS_MULTIPROCESSING)
  if ( _Attributes_Is_global( attribute_set ) ) {

    if ( !_System_state_Is_multiprocessing )
      return RTEMS_MP_NOT_CONFIGURED;

    if ( _Attributes_Is_inherit_priority( attribute_set ) ||
         _Attributes_Is_priority_ceiling( attribute_set ) ||
         _Attributes_Is_multiprocessor_resource_sharing( attribute_set ) )
      return RTEMS_NOT_DEFINED;

  } else
#endif

  if ( _Attributes_Is_multiprocessor_resource_sharing( attribute_set ) &&
       !( _Attributes_Is_binary_semaphore( attribute_set ) &&
         !_Attributes_Is_priority( attribute_set ) ) ) {
    return RTEMS_NOT_DEFINED;
  }

  if ( _Attributes_Is_inherit_priority( attribute_set ) ||
              _Attributes_Is_priority_ceiling( attribute_set ) ) {

    if ( ! (_Attributes_Is_binary_semaphore( attribute_set ) &&
            _Attributes_Is_priority( attribute_set ) ) )
      return RTEMS_NOT_DEFINED;

  }

  if ( !_Attributes_Has_at_most_one_protocol( attribute_set ) )
    return RTEMS_NOT_DEFINED;

  if ( !_Attributes_Is_counting_semaphore( attribute_set ) && ( count > 1 ) )
    return RTEMS_INVALID_NUMBER;

#if !defined(RTEMS_SMP)
  /*
   * On uni-processor configurations the Multiprocessor Resource Sharing
   * Protocol is equivalent to the Priority Ceiling Protocol.
   */
  if ( _Attributes_Is_multiprocessor_resource_sharing( attribute_set ) ) {
    attribute_set |= RTEMS_PRIORITY_CEILING | RTEMS_PRIORITY;
  }
#endif

  the_semaphore = _Semaphore_Allocate();

  if ( !the_semaphore ) {
    _Objects_Allocator_unlock();
    return RTEMS_TOO_MANY;
  }

#if defined(RTEMS_MULTIPROCESSING)
  if ( _Attributes_Is_global( attribute_set ) &&
       ! ( _Objects_MP_Allocate_and_open( &_Semaphore_Information, name,
                            the_semaphore->Object.id, false ) ) ) {
    _Semaphore_Free( the_semaphore );
    _Objects_Allocator_unlock();
    return RTEMS_TOO_MANY;
  }
#endif

  the_semaphore->attribute_set = attribute_set;

  /*
   *  Initialize it as a counting semaphore.
   */
  if ( _Attributes_Is_counting_semaphore( attribute_set ) ) {
    /*
     *  This effectively disables limit checking.
     */
    the_semaphore_attr.maximum_count = 0xFFFFFFFF;

    if ( _Attributes_Is_priority( attribute_set ) )
      the_semaphore_attr.discipline = CORE_SEMAPHORE_DISCIPLINES_PRIORITY;
    else
      the_semaphore_attr.discipline = CORE_SEMAPHORE_DISCIPLINES_FIFO;

    /*
     *  The following are just to make Purify happy.
     */
    the_mutex_attr.lock_nesting_behavior = CORE_MUTEX_NESTING_ACQUIRES;
    the_mutex_attr.priority_ceiling = PRIORITY_MINIMUM;

    _CORE_semaphore_Initialize(
      &the_semaphore->Core_control.semaphore,
      &the_semaphore_attr,
      count
    );
#if defined(RTEMS_SMP)
  } else if ( _Attributes_Is_multiprocessor_resource_sharing( attribute_set ) ) {
    MRSP_Status mrsp_status = _MRSP_Initialize(
      &the_semaphore->Core_control.mrsp,
      priority_ceiling,
      _Thread_Get_executing(),
      count != 1
    );

    if ( mrsp_status != MRSP_SUCCESSFUL ) {
      _Semaphore_Free( the_semaphore );
      _Objects_Allocator_unlock();

      return _Semaphore_Translate_MRSP_status_code( mrsp_status );
    }
#endif
  } else {
    /*
     *  It is either simple binary semaphore or a more powerful mutex
     *  style binary semaphore.  This is the mutex style.
     */
    if ( _Attributes_Is_priority( attribute_set ) )
      the_mutex_attr.discipline = CORE_MUTEX_DISCIPLINES_PRIORITY;
    else
      the_mutex_attr.discipline = CORE_MUTEX_DISCIPLINES_FIFO;

    if ( _Attributes_Is_binary_semaphore( attribute_set ) ) {
      the_mutex_attr.priority_ceiling      = _RTEMS_tasks_Priority_to_Core(
                                               priority_ceiling
                                             );
      the_mutex_attr.lock_nesting_behavior = CORE_MUTEX_NESTING_ACQUIRES;
      the_mutex_attr.only_owner_release    = false;

      if ( the_mutex_attr.discipline == CORE_MUTEX_DISCIPLINES_PRIORITY ) {
        if ( _Attributes_Is_inherit_priority( attribute_set ) ) {
          the_mutex_attr.discipline = CORE_MUTEX_DISCIPLINES_PRIORITY_INHERIT;
          the_mutex_attr.only_owner_release = true;
        } else if ( _Attributes_Is_priority_ceiling( attribute_set ) ) {
          the_mutex_attr.discipline = CORE_MUTEX_DISCIPLINES_PRIORITY_CEILING;
          the_mutex_attr.only_owner_release = true;
        }
      }
    } else /* must be simple binary semaphore */ {
      the_mutex_attr.lock_nesting_behavior = CORE_MUTEX_NESTING_BLOCKS;
      the_mutex_attr.only_owner_release = false;
    }

    mutex_status = _CORE_mutex_Initialize(
      &the_semaphore->Core_control.mutex,
      _Thread_Get_executing(),
      &the_mutex_attr,
      count != 1
    );

    if ( mutex_status == CORE_MUTEX_STATUS_CEILING_VIOLATED ) {
      _Semaphore_Free( the_semaphore );
      _Objects_Allocator_unlock();
      return RTEMS_INVALID_PRIORITY;
    }
  }

  /*
   *  Whether we initialized it as a mutex or counting semaphore, it is
   *  now ready to be "offered" for use as a Classic API Semaphore.
   */
  _Objects_Open(
    &_Semaphore_Information,
    &the_semaphore->Object,
    (Objects_Name) name
  );

  *id = the_semaphore->Object.id;

#if defined(RTEMS_MULTIPROCESSING)
  if ( _Attributes_Is_global( attribute_set ) )
    _Semaphore_MP_Send_process_packet(
      SEMAPHORE_MP_ANNOUNCE_CREATE,
      the_semaphore->Object.id,
      name,
      0                          /* Not used */
    );
#endif
  _Objects_Allocator_unlock();
  return RTEMS_SUCCESSFUL;
}